第四章成岩阶段有机质的微生物分解和演变汇总
油气田开发地质学简答题题库

1、井下断层存在的可能标志是什么,应用这些标志应注意哪些问题?.首先就是地层的连续性被打破,诸如地层的重复、缺少、杂乱排列等等;其次是看到断层碎屑;其他的一些断层的经典标志在井下可能不会太显现;2.(一)生物化学生气阶段在这个阶段,埋藏深度较浅,温度、压力较低,有机质除形成少量烃类和挥发性气体以及早期低熟石油以外,大部分转化成干酪根保存在沉积岩中;(二)热催化生油气阶段这个阶段产生的烃类已经成熟,在化学结构上显示出同原始有机质有了明显区别,而与石油却非常相似;(三)热裂解生凝析气阶段凝析气和湿气大量形成,主要是与高温下石油裂解作用有关,二石油焦化及干酪根残渣热解生成的气体量是有限的;(四)深部高温生气阶段已形成的液态烃和重质气态烃强烈裂解,变成热力学上最稳定的甲烷,干酪根残渣在析出甲烷后进一步浓缩,成为沥青或是次石墨。
2、试述有机质向油气演化的主要阶段及其基本特征。
一)生物化学生气阶段(1)埋深:0-1000米;(2)温度:10-60度;(3)演化阶段:沉积物的成岩作用阶段,碳化作用的泥炭-褐煤阶段(4)作用因素:浅层以细菌生物化学作用为主,较深层以化学作用为主(5)主要产物:生物成因气、干酪根、少量油(6)烃类组成特征:烃类在有机质中所占比例很小(二)热催化生油气阶段(1)深度:1500~2500—3500米;(2)温度:50~60—150~180度(3)演化阶段:后生作用的前期,有机质成熟,进入生油门限(4)作用因素:热力+催化作用;(5)主要产物:大量石油,原油伴生气,湿气,残余干酪根;(6)烃类组成特征:正烷烃碳原子数及分子量减少,中、低分子量的分子是正构烷烃中的主要组成组分,奇数碳优势消失,环烷烃及芳香烃的碳原子数也递减,多环及多芳核化合物显著减少(三)热裂解生凝析气阶段(1)深度:4000-6000米;(2)温度:180-250度;(3)演化阶段:后生作用后期,碳化作用的瘦煤-贫煤阶段,有机质成熟时期;(4)作用因素:石油热裂解、热焦化阶段;(5)产物:残余干酪根及液态烃,热裂解产生凝析气、湿气及干酪根残渣;(6)烃类组成:液态烃急剧减少,低分子正烷烃剧增,主要为甲烷及其气态同系物(四)深部高温生成气阶段(1)深度:>6000米;(2)温度:>250度,高温高压;(3)作用阶段:变生作用阶段,半烟煤-无烟煤的高度碳化阶段;(4)作用因素:热变质;(5)主要产物:湿气、凝析气、干酪根残渣,深部高温高压下热变质成干气和石墨。
煤化学

1.煤的形成过程泥炭化作用过程和煤化作用。
图示如下:2.煤化程度由低到高依次是:褐煤、烟煤(长焰煤、气煤、肥煤、焦煤、瘦煤、贫煤)、无烟煤。
3.泥炭化作用的概念:高等植物死亡后,在生物化学作用下,变成泥炭的过程称为泥炭化作用。
4.泥炭的有机组成:腐植酸,沥青质,未分解的纤维素,半纤维素,果胶质,木质素5.成岩作用阶段:在上覆沉积物的压力下,泥炭发生了压紧,失水,胶体老化,团结等一系列的变化,微生物的作用逐渐消失,取而代之的是物理化学作用,泥炭变成了致密的岩石状的褐煤6.变质作用阶段:碳含量明显增加,氧含量迅速减少,腐植酸也迅速减少并很快消失,褐煤逐渐转化成为烟煤。
7.变质作用的三种类型:岩浆变质作用,深成变质作用,动力变质作用8.变质作用的因素:温度,时间,压力9.希尔特定律:指同一煤田大致相同的构造条件下,随着煤层的埋深的增加,煤的挥发分减少,变质程度增加第二章课后习题1.煤是由什么物质形成的?P6答:植物2.成煤植物的主要化学组成是什么,他们各自对成煤的贡献有哪些?答:糖类及其衍生物,木质素,蛋白质,脂类化合物3.什么是腐植煤?什么是腐泥煤?答:高等植物☞腐植煤,低等植物腐泥煤5.泥炭化作用、成岩作用和变质作用的本质是什么?P22、P25、P26答:泥炭化作用是指高等植物残骸在泥炭沼泽中,经过生物化学和地球化学作用演变成泥炭的过程。
成岩作用:泥炭在沼泽中层层堆积,越积越厚,当地壳下沉的速度超过植物堆积速度时,泥炭将被黏土、泥砂等沉积物覆盖。
无定形的泥炭在上覆无机沉积物的压力作用下,逐渐发生压紧、失水、胶体老化硬结等物理和物理化学变化,转变为具有岩石特征的褐煤的过程。
变质作用:褐煤沉降到地壳深处,受长时间地热和高压作用,组成、结构、性质发生变化,转变为烟煤和无烟煤的过程。
6.影响煤质的成因因素答:成煤物质,成煤环境,成煤作用7.什么是煤层气?答:煤层气是储存在煤层中以甲烷为主要成分,以吸附在煤基质颗粒表面为主,部分游离在煤空隙中的烃类化合物第三章(煤的结构)1.煤的有机质是由大量相对分子质量不同,分子结构相似,但又不完全相同的相似化合物组成的混合物2.煤的大分子是由多个分子结构相似的基本机构单元通过乔建链接,这些基本结构单元类似于聚合物的聚合单元,分为规则部分和不规则部分,规则部分主要是各种环,成为基本结构单元的核,或芳香核, 不规则部分是链接在核周围的烷基侧链,和各种官能团3.随着煤化程度的提高,构成核的环数增多,周围的官能团减少4.煤的结构基本参数:芳碳率,芳氢率,芳环率5.芳碳率:指煤的基本结构单元中属于芳香族结构的碳原子与总的碳原子之比6.芳氢率:指煤的基本结构单元中属于芳香族结构的氢原子与总的氢原子之比7.芳环数:指煤的基本结构单元中芳香环数的平均值第三章课后习题1.煤分子结构单元是如何构成的?结构单元间是怎样构成煤的大分子的?答:结构单元类似于聚合物的聚合单元,分为规则部分和不规则部分,规则部分主要是各种环,成为基本结构单元的核,或芳香核, 不规则部分是链接在核周围的烷基侧链,和各种官能团结构单元通过乔建链接成煤的大分子结构2.煤分子中有哪些官能团答:含氧官能团(羟基,羧基,羰基,甲氧基,醚键),含硫官能团(硫醇)含氮官能团(氨基)3.研究煤分子结构的方法有哪些?P45答:煤结构的研究方法主要有三类:物理研究法、化学研究法和物理化学研究法。
有机质的成烃模式及阶段划分

温度约为150-200℃。
同时
干酪根
继续通过热降解 或热裂解
分子量较高 的烃类
150-175℃时 开始大量裂解
低分子量化合物 轻烃(C1-C8)为主
在地层温度和压力超过烃类相态转变的临界值 时,这些轻质烃类就会发生逆蒸发,反溶解于气态 烃中,形成凝析气和更富含气态烃的湿气。
一般在Ro为1.0%左右时液态油产率达到最大值 生油高峰。
之后由于有机质生油潜量的不断消耗,油的产 率不断下降,天然气的产率则不断上升,气油比不 断增加。该阶段为正常原油形成阶段。
➢生烃门限
指沉积盆地中干酪根开始明显热降解生烃作用 的起始成熟度或深度。显然,生烃门限的概念不表 示形成未熟油的门限条件。
产物的
物理性质
化学组成
密度降低 颜色变浅
杂 原 子 化 合 物 ( NOS 化合物)丰度下降
低碳数化合物丰度增加
碳稳定同位素δ13C变重
气油比(GOR)增加
第二节 有机质成烃模式的改进和发展 一、黄第藩对有机质成烃演化模式的改进
反映 其成烃演化模式
反映 其成烃演化模式
成气(腐殖化作用) 成油(腐泥化作用) 母质类ቤተ መጻሕፍቲ ባይዱ(成烃潜力) 相应产物的成熟程度
➢液态窗
Pusey提出的石油存在的“液态窗”就是对应这 个生油主带。
他总结了世界上一些油田中石油产层的温度分 布状态,指出:
液态烃窗口 “油窗”
65.6℃ 液态烃 148.9℃
开始大量形成 高于此温度时则被破坏
3.高熟阶段(成熟作用晚期)
相当于有机质深成作用阶段后期。
镜质组反射率在1.3%-2.0%之间
勘探揭示出一些可能源于 未熟或低熟源岩的原油
沉积环境中有机质的来源与演化

沉积环境中有机质的来源与演化沉积环境是地球表面上最重要的化学反应器之一,同时也是有机质积累和保存的主要场所。
有机质的来源和演化对于理解地球的生命演化历史以及生态系统的功能起着至关重要的作用。
本文将从三个方面探讨沉积环境中有机质的来源与演化。
首先,有机质的来源主要包括生物体的残骸、微生物活动和沉积物生成过程中的有机碎屑。
生物体的残骸包括植物的叶子、树木的根和动物的骨骼等,这些有机残骸经过一系列的生物和地球化学反应,逐渐转化为化石燃料和其他有机物质。
微生物活动也是沉积环境中有机质来源的重要途径,微生物通过分解有机残骸释放出的废物和代谢产物,将有机质转化为更加稳定的形式,例如沥青和腐殖酸等。
此外,在沉积过程中,有机物碎屑通过物理和化学作用逐渐聚集形成沉积物,成为有机质来源的另一种形式。
其次,沉积环境中的有机质经历了一系列的演化过程,主要包括腐殖化、厌氧分解和成岩作用。
腐殖化是有机质在沉积过程中经历的最早一步演化过程,其中有机物质被微生物分解为可溶解的有机质和难溶解的有机质。
随着沉积过程的不断进行,有机质逐渐被厌氧微生物分解,产生甲烷等气体和硫化物等物质。
最后,有机质在沉积岩形成过程中经历了成岩作用,其中高温和高压作用下,有机质逐渐转化为油气和煤炭等化石燃料。
最后,沉积环境中的有机质演化对于地球的生态系统功能具有重要影响。
有机质的演化过程不仅决定了化石燃料的形成和分布,也影响了埋藏油气资源的产量和质量。
此外,有机质的演化还影响了地球上的气候变化和物种多样性。
有机质丰富的沉积岩可以作为地球气候变化的记录,通过对古代有机质的分析,人们可以了解到过去的气候环境变化情况。
同时,沉积环境中的有机质也是生态系统中重要的能源来源,通过食物链的传递和循环过程,维持了地球上各种生命形式的生存和繁衍。
综上所述,沉积环境中有机质的来源与演化对于理解地球的生命演化历史和生态系统的功能起着重要作用。
有机质的来源主要包括生物体的残骸、微生物活动和沉积过程中的有机碎屑。
地球化学-第四章生物标志物3

重排甾烷包括:13α17β(H),20R/S与 13β(H)17α(H), 20R/S。特征碎片离子 为:m/z259。在m/z217也有显示。
成
重排甾烷广泛分布于地质体中,但现代生物体中 未发现有重排甾族化合物,因而认为重排甾烷是甾醇
因 在成岩作用期间由于粘土的酸性催化作用转变为重排
甾烯,而后进一步转化为重排甾烷。
甲藻甾烷来源于由沟鞭藻提供的甲藻甾 醇。一般存在于三叠纪以来的地层中,因为 沟鞭藻在三叠纪醇的成岩转化方式
四、低分子量甾烷
低分子量甾烷碳数可以从21至24,但地质体中常 见的是孕甾烷(C21)和升孕甾烷(C22)。有关低 分之子量甾烷的成因有两种观点,其一认为可以直接 来源于动物的性激素和胆汁酸以及微生物;另一种观 点认为孕甾烷主要是其它甾烷受热的作用,侧链断裂 形成的。更多的实例支持后一种观点。
(2)有机质和原油的成熟度
由于需要较高的温度才能脱甲基、脱氢成为 芳香化合物,所以在有机质成熟以后,芳甾类特 别是三芳甾才明显增多,常用的成熟度指标有:
MA(Ⅰ)/MA(Ⅰ+Ⅱ):源岩和石油中的芳香甾族化合物, 随成熟度的增加,侧链会发生断裂,从而使低分子量单芳甾 烃相对于长链单芳甾烃发生富集。在计算该比值时,一般用 C27~ C29的单芳甾类的总和作为MA(Ⅱ),C21+ C22作为MA (Ⅰ)。
C29甾烷的 20S/(20R+20S)对 ββ/(αα+ββ)的 曲线在描述源岩或石 油成熟度方面特别有 效。正常情况下不同 成熟度样品的投影应 为一条直线。当存在 其它异常情况或实验 误差时,用该图可很 明显的检测出来。
C29甾烷异构化参数相关图
注意!其它一些因素也可能会影响甾烷的异构化比值。
油气地球化学

二、生物标志化合物
• 3.甾萜化合物
• 1)萜类化合物 • 是分布广泛含量丰富的标志物,包括环状和非
环状结构的化合物 • 主要指环状结构的萜类。包括双环倍半萜、三
环双萜、长链三环萜、四环萜和五环三帖。双 环倍半萜和三环双萜来自于高等植物 • 长链三环萜主要分布海相沉积中,藻类成因 • 五环三帖包括藿烷和非藿烷系列 • 藿烷是重要的生物标志物;主要来源于细菌和 蓝绿藻和低等植物。 • 四环萜是无环萜类降解产物
• 1959年在美国匹兹堡成立了第一个国际性的有机地球化 学分会。
• 1962年在意大利米兰召开了第一次国际会议,出版了 《有机地球化学进展》,规定两年召开一届学术会议。
• 1963年布雷格主编《有机地球化学》,论述天然有机物 地球化学。
• 1964年苏联出版《有机质地球化学》,论述沉积金属矿 产的有机地球化学,标志着有机地球化学学科独立。
• 80年代以后对煤成油的机理取得了深刻的认识。
二、油气地球化学的发展史
• 在相当长的一段时间内,油气地球化学仍会为石油形成 与分布的研究作出应有的贡献。
• 对新区勘探和老区深化研究; • 对低成熟油、煤成油以及碳酸盐成烃机制的深入认识; • 运用生物标志物,尤其是非烃化合物来研究油气运移; • 油藏地球化学着重研究孔隙形成无机-有机反映并预测
三、有机质的研究方法
• 2.分离和纯化 • 根据研究的目的进一步进行组分的分离和纯化。 • 主要采用方法有柱色层、薄层色谱、络合物加成等。 • 3.干酪根的分离 • 抽提后的岩样中还含有大量不溶于有机溶剂的干酪
根。分离的方法有物理的和化学的, • 物理方法不会影响干酪根的成分,但不能完全除去
全部矿物,尤其是黄铁矿,其与干酪根紧密共生。 • 化学方法可以较完全分离干酪根,但多少改变干酪
储层地质学(中国石油大学)-4成岩作用

和次生孔隙的形成。
1、有机酸的形成 在烃源岩生成液态烃之前,干洛根分子就释放出其外围羧 基和酚基,形成一元羧酸和二元羧酸两类水溶性有机酸。 二元羧酸阴离子浓度幅度下降的主要原因是热脱羧作用, 温度高时,二元羧酸就会脱羧转变为一元羧酸和(或)CO2。
2、羧酸和酚基在碳酸盐和铝硅酸盐溶蚀和次生孔隙形成中的
缚石类胶结物:呈粒状、板状、纤维状、针状等。 赤铁矿胶结物:常受含氧孔隙水的分解。 黄铁矿胶结物:形成于强还原环境。在同生成岩阶段的黄铁矿
在电镜下显示为草莓状,由八面体黄铁矿微晶集合而成。在砂
岩油藏中,黄铁矿常富集于油水边界部位。
4、交代作用 (1)概念 一种矿物代替另一种矿物的作用。
(2)类型
储层地质学——成岩作用 及其对储层孔隙发育的影响
(1)成岩作用:是沉积物沉积之后转变沉积岩直至变质作用 之前,或因构造运动重新抬升到地表遭受风化之前所发生的
物理、化学和生物的作用,以及这些作用所引起的沉积物或
沉积岩的结构、构造和成分的变化。 (2)影响因素:较多,但以孔隙水的性质及运动最为重要。 (3)主要类型:压实、压溶、交代、矿物的多形转化、重结 晶等作用。
2、压溶作用 产生:缝合线、微缝合线、未缝合线的缝。 若缝合线中没有不溶残余和自生矿物充填,可作为储集
空间储渗油气。
3、胶结作用 (1)碳酸盐矿物胶结物 古代的:主要为方解石和白云石; 现代的:方解石、文石、镁方解石和白云石。
三种结晶形态:泥晶、纤维晶、较粗的粒状晶体。
影响胶结物晶体形态的因素是镁离子、硫酸根离子、铁离 子的选择性毒害效应,结果使镁方解石成长为数微米宽的纤 维状或泥晶状陡斜菱面体。
4、交代作用 (1)白云石化作用 雾心亮边构造:在 污浊白云石的外缘形成
煤化学课后答案

煤化学课后答案《煤化学》习题与思考题参考答案绪论1 煤炭综合利用有什么意义?答:煤炭综合利用是指煤的非燃料利用,开展煤炭综合利用(1)有利于合理利用煤炭资源,提高经济效益我国煤炭资源丰富,煤种齐全,不仅可以作燃料,也适用于许多其它工业用途。
如果以煤炭作为燃料的价值为1,则加工成煤焦油能增值10倍,加工成塑料能增值90倍,合成染料能增值375 倍,制成药品可增值750倍,而制成合成纤维增值高达1500倍。
(2)有利于减轻污染,保护环境开展煤炭的综合利用是消除公害、保护环境的有效途径,煤炭加工所产生的煤灰、煤渣废气、废液都可以得到合理的处理和利用。
(3)有利于煤化工与石油化工互相依存,共同发展煤炭资源与石油资源相比要大得多,从长远观点看,发展煤炭资源的综合利用就显得尤为重要。
以这种煤作为原料可以得到很多石油化工较难得到的产品,如萘、酚类等,从煤中可以独特地制得一些带有五环的化合物如茚、苊,以及三个芳香环以上的化合物,如蒽、菲、芘、苊蒽、晕苯等稠环化合物。
另外,煤炭可以生产大量的烯烃和烷烃制品以补充石油原料的不足。
2 煤炭综合利用有那些工艺方法答:煤炭综合利用的主要工艺方法有:干馏、气化、液化、炭素化和煤基化学品(1)干馏――将煤料在隔绝空气的条件下加热炭化,以得到焦炭、焦油和煤气的工艺过程。
按加热终温的不同,煤的干馏可分为三类:低温干馏干馏终温500~550℃产物:煤气、低温焦油、半焦中温干馏干馏终温600~800℃产物:煤气、中温焦油、半焦高温干馏干馏终温950~1050℃产物:煤气、高温焦油、焦炭煤的干馏是技术最成熟、应用最广泛的煤炭综合利用方法。
(2)气化――将煤(煤的半焦、焦炭)在气化炉中加热,并通入气化剂(空气、氧气、水蒸气或氢气),使煤中的可燃成分转化为煤气的工艺过程。
(3)液化――采用溶解、加氢、加压与加热等方法,将煤中的有机物转化为液体产物的工艺过程。
(4)炭素化――以煤及其衍生物为原料,生产炭素材料的工艺过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一些简单的作为微生物主要碳源和能源的化合物,如葡萄糖、果糖等几乎 所有微生物都能利用。而纤维素、半纤维素、甲壳素、果胶质、木质素、芳 香化合物、无机化合物等只能为具专化胞外酶的专化微生物所利用。
④ 小分子化合物经过细胞膜进入细胞后,还要由酶来降解——中间产物— —再合成多种氨基酸、核苷酸、脂肪酸和糖类等——进而合成蛋白质、核酸 、类脂和多糖等。
有机营 养物质
一系列复杂的生化转变
新的微生物 细胞物质
ቤተ መጻሕፍቲ ባይዱ
一、微生物的作用——4、异养微生物在地化中的作用
在生物圈-有机圈从中起,源微意生义物上是说无,处没不有在微、生无物所就不没能有。生命和生命的进化。 ① 根据异养在假动说物,、异植养物微、生微物生是物地“球三上足生鼎命立先”驱的。生态系统中,异 ② 在生态系养统微中生,物异是养必微不生可物少是的必成不员可—少—的分成解员者——分解者。 ③ 造成有利于有机质沉积保存的还原环境。 ④ 对生物元素地化循环贡献:碳素循环、氮素循环、硫素循环。 ⑤ 改造、代谢有机质——分解有机质与合成有机质。 ⑥ 参与(或促进)形成甲烷气、腐殖质和干酪根。
分子溶质才能透过细胞质膜而进入细胞。自然界和沉积物中的各种有机 化合物都可被不同类型的异养微生物利用作为营养物质,但大部分大分 子化合物必须由胞外酶分解成小分子化合物后,才能跨膜运输,被微生 物细胞所吸收。
有机 大分子
胞外酶分解 有机 小分子
跨膜运输
微生物 吸收
细胞膜
一、微生物的作用——3、微生物的代谢机制
一、微生物的作用——1、微生物简介
按照细菌生活的环境,可将其分为喜氧细菌(好气性细菌)和厌氧细 菌(嫌气性细菌)。
喜氧细菌——必须在有氧环境里生活。在有氧情况下它们将葡萄分 解为二氧化碳和水,释放出大量能量,这一过程称有氧呼吸。
厌氧细菌——只能生活在缺氧环境下,如甲烷菌、硫酸盐还原菌等。 它们可利用葡萄糖中的结合氧,将其分解为二氧化碳和其它代谢产物, 释放出少量能量。这一过程称为发酵或无氧呼吸。
加利福尼亚 洲圣地亚哥 湾近代沉积 中细菌数量
深度(cm) 0~3 4~6
14~16 24~26 44~46 66~68
嫌气型细菌 1 160 000 14 000 8 900 3 100 5 700 2 300
好气型细菌 74 000 000
314 000 56 000 10 400 28 100 4 200
它们与新的埋藏环境不相适应,将在内部发生一系 列生物化学、物理化学作用,改变沉积物的原始性质, 以达到新的稳定和平衡。
成岩阶段
发生作用
1、无机矿物经受了压实、定向、矿物转化、重结晶作用等固结 成岩。 2、湖沼中堆积的大量高等植物残体经过泥炭阶段形成了褐煤。 3、沉积物中分散有机质,在早期低温低压下不足以发生普遍的 化学反应,而以微生物的生物化学改造作用为主。
嫌气/好气 1:64 1:21 1:6 1:3 1:5 1:2
一、微生物的作用——3、微生物的代谢机制
① 微生物的代谢途径十分错综复杂,但从方向上分两大类:
分解途径——分子结构由大变小被简单化——吸收利用营养物质 合成途径——分子结构由小变大被复杂化——生成新的细胞物质
② 有机化合物是异养微生物的主要碳源和能源 细菌、真菌等通过细胞表面以吸收营养物质,故营养物质必须是小
一、微生物的作用——4、异养微生物在地化中的作用
有氧呼吸与发酵和无氧呼吸的区别在于:
微生物生存条件: ① 温度可以从-10℃到105℃ ② 压力高达1000atm ③ 介质pH值可从1到11,最适宜的pH值范围是6.5到8。 ④ 细菌可以在淡水和高饱和盐溶液中大量繁殖。
在一些极端环境,如火山热泉、冰冻极区、酸性热泉、高盐湖中都 有细菌存在。微生物生长最重要的限制因子是营养物质。只在有大量有 机物质存在,这种或那种群落的微生物就会大量生、繁殖。
第四章 成岩阶段有机质的 微生物分解和演变
一、微生物的作用 二、腐殖质的组成、结构及性质 三、缩合作用——腐殖质的形成 四、腐殖质的演化及成岩阶段产物
成岩阶段
环境条件
上覆压力不大,温度不高(低于50-60℃),富含孔隙水, 无机矿物与有机质混杂,底栖生物尤其是微生物活跃,组 成了复杂的体系。
适应环境
作用结果
大部分原始有机质被微生物分解和选择性吸收,剩余的组分 和参与的微生物残体一起,经还原、缩聚等作用形成了腐植质和 干酪根。
一、微生物的作用——1、微生物简介
地球上生物可分为三大类——动物、植物和原生生物。 原生生物即普通所指的微生物——任何显微尺度的生物。 原生生物——原核生物和真核生物,
原核生物——包括细菌和蓝细菌(蓝藻); 真核生物——包括原生动物、藻、真菌、粘菌。 原核——是没有核膜、核仁等结构的染色质体。 真核——是有核膜、核仁、染色体等结构。 对地质体内有机质进行改造的主要是以腐生为主的细菌和真菌。 只有异养腐生的细菌和真菌,它们以有机质为养料,并使部分有机物 矿质化,以便重新被光合生物所利用。这类微生物在有机质的改造和 在有机碳的生物-地化循环中,起了十分重要的作用。
有许多细菌是兼性的,可在不同环境下采用不同的呼吸方式。从生 物进化上说,最早出现是厌氧细菌,以后才有光合细菌和喜氧细菌。
一、微生物的作用——2、微生物的分布
微生物体积小,细胞能与环境直接接触,有利于细胞吸收大量营养 物质和排除废物,因而代谢作用迅速、活动力强;
微生物生殖率大、世代时间短,能在短时间内繁殖大量的群体,有 利于适应变化剧烈的新环境,能在环境相差极大的空间中生长和繁殖。
一、微生物的作用——2、微生物的分布
土壤是微生物生存的基地,是最适合它们生长、繁殖的栖所。 微生物分布:
① 土壤表层,无论在数量上和种类上都比深层土内多。 ② 在水体及水底淤泥和沉积物中,也大量分布着多种微生物。 ③ 分布于水表层和上层大都是好气型微生物。 ④ 而在深水或滞水水底、水底细粒沉积物中大都是嫌气型生物。 在沉积物上部几十米范围内微生物活动十分活跃,但随深度增加其数量 急剧减少,而且可以由好气性细菌活动为主转变为嫌气性细菌活动为主。