数学史资料

合集下载

数学史复习资料

数学史复习资料

一、单项选择题1.关于古埃及数学的知识,主要来源于( )。

A.埃及纸草书和苏格兰纸草书B.兰德纸草书和莫斯科纸草书C.莫斯科纸草书和希腊纸草书D. 兰德纸草书和尼罗河纸草书2.以“万物皆数”为信条的古希腊数学学派是( )。

A.爱奥尼亚学派B.伊利亚学派C.诡辩学派D.毕达哥拉斯学派3.最早记载勾股定理的我国古代名著是( )。

A.《九章算术》B.《孙子算经》C.《周髀算经》D.《缀术》4.首先使用符号“0”来表示零的国家或民族是( )。

A.中国B.印度C.阿拉伯D.古希腊5.欧洲中世纪漫长的黑暗时期过后,第一位有影响的数学家是( )。

A.斐波那契B.卡尔丹C.塔塔利亚D.费罗6.对微积分的诞生具有重要意义的“行星运行三大定律”,其发现者是( )。

A.伽利略B.哥白尼C.开普勒D.牛顿7.对古代埃及数学成就的了解主要来源于( )A.纸草书B.羊皮书C.泥版D.金字塔内的石刻8.公元前4世纪,数学家梅内赫莫斯在研究下面的哪个问题时发现了圆锥曲线?( )A.不可公度数B.化圆为方C.倍立方体D.三等分角9.《九章算术》中的“阳马”是指一种特殊的( )A.棱柱B.棱锥C.棱台D.楔形体10.印度古代数学著作《计算方法纲要》的作者是( )A.阿耶波多B.婆罗摩笈多C.马哈维拉D.婆什迦罗11.射影几何产生于文艺复兴时期的( )A.音乐演奏B.服装设计C.雕刻艺术D.绘画艺术12.微分符号“d”、积分符号“”的首先使用者是( )A.牛顿B.莱布尼茨C.开普勒D.卡瓦列里13.作为“非欧几何”理论建立者之一的年轻数学家波尔约是( )A.俄国人B.德国人C.葡萄牙人D.匈牙利人14.最早证明了有理数集是可数集的数学家是( )A.康托尔B.欧拉C.魏尔斯特拉斯D.柯西15.在1900年巴黎国际数学家大会上提出了23个著名的数学问题的数学家( )A.希尔伯特B.庞加莱C.罗素D.克莱因16.《周髀算经》和()是我国古代两部重要的数学著作。

数学史 复习资料

数学史 复习资料

数学史复习资料一、选择题1、对古代埃及数学成就的了解主要来源于(A)A纸草书 B羊皮书 C泥版 D金字塔内的石刻2、对古代巴比伦数学成就的了解主要来源于(C)A纸草书 B羊皮书 C泥版 D金字塔内的石刻3、《九章算术》中的“阳马”是指一种特殊的(B)A棱柱 B棱锥 C棱台 D楔形体4、射影几何产生于文艺复兴时期的(C)A音乐演奏 B服装设计 C绘画艺术 D雕刻艺术5、欧洲中世纪漫长的黑暗时期过后第一位有影响的数学家是(A)。

A斐波那契 B卡尔丹 C塔塔利亚 D费罗6、被称作“第一位数学家和论证几何学的鼻祖”的数学家是(B)A欧几里得 B泰勒斯 C毕达哥拉斯 D阿波罗尼奥斯7、被称作“非欧几何之父”的数学家是(D)A波利亚 B高斯 C魏尔斯特拉斯 D罗巴切夫斯基8、对微积分的诞生具有重要意义的“行星运行三大定律”其发现者是(C)A伽利略 B哥白尼 C开普勒 D牛顿9、公元前世纪数学家梅内赫莫斯在研究下面的哪个问题时发现了圆锥曲线?(C) A不可公度数 B化圆为方 C倍立方体 D三等分角10、印度古代数学著作《计算方法纲要》的作者是(C)A阿耶波多 B婆罗摩笈多 C马哈维拉 D婆什迦罗11、最早证明了有理数集是可数集的数学家是(A)A康托尔 B欧拉 C魏尔斯特拉斯 D柯西12、下列哪一位数学家不属于“悉檀多”时期的印度数学家?(C)A阿耶波多 B马哈维拉 C奥马海亚姆 D婆罗摩笈多13、在1900年巴黎国际数学家大会上提出了23个著名的数学问题的数学家是(A) A希尔伯特 B庞加莱 C罗素 D F克莱因14、与祖暅原理本质上一致的是(D)A德沙格原理 B中值定理 C泰勒定理 D卡瓦列里原理.15、我国元代数学著作《四元玉鉴》的作者是(C)A秦九韶 B杨辉 C朱世杰 D贾宪.16、就微分学与积分学的起源而言(A)A积分学早于微分学 B微分学早于积分学 C积分学与微分学同期 D不确定.17、在现存的中国古代数学著作中最早的一部是(D)A《孙子算经》 B《墨经》 C《算数书》 D《周髀算经》.18、中国古典数学发展的顶峰时期是(D)A两汉时期 B隋唐时期 C魏晋南北朝时期 D宋元时期.19、大数学家欧拉出生于(A)A瑞士 B奥地利 C德国 D法国.20、首先获得四次方程一般解法的数学家是(D)A塔塔利亚 B卡当 C费罗 D费拉利.21、世界上讲述方程最早的著作是( A)A.中国的《九章算术》B.阿拉伯花拉子米的《代数学》C.卡尔丹的《大法》D.牛顿的《普遍算术》22.《数学汇编》是一部荟萃总结前人成果的典型著作,它被认为是古希腊数学的安魂曲,其作者为(BA.托勒玫B.帕波斯C.阿波罗尼奥斯D.丢番图23.美索不达米亚是最早采用位值制记数的民族,他们主要用的是(AA.六十进制B.十进制C.五进制D.二十进制24."一尺之棰,日取其半,万世不竭"出自我国古代名著(B)。

数学史整理资料

数学史整理资料

李文林认为数学史的研究具有三重目的:一是历史的目的,即恢复历史本来的面目;二是数学的目的,即古为今用,为现实的数学研究与自主创新提供历史借鉴;三是教育的目的,即在数学教学中利用数学史,作为数学史研究的根本方法与手段,常有历史考证、数理分析、比拟研究等方法。

周脾算经:天文学与数学的著作九章算术:总结性的数学著作宋元全盛时期〔1000年-14世纪初〕中国数学的全盛时期数书九章:秦九韶贾宪三角阵〔二项展开式系数〕郭守敬的球面三角朱世杰的四元术〔四元高次方程论〕完整的系统与完备的算法历史学家往往把兴起于埃及、美索不达米亚、中国与印度等地域的古代文明称为“河谷文明〞。

早期数学就是在尼罗河、底格里斯河与幼发拉底河、黄河与长江、印度河与恒河等河谷地带首先开展起来的。

亚历山大大帝〔前356~前323 〕是欧洲历史上最伟大的军事天才,马其顿帝国最富盛名的征服者。

亚历山大大帝,古代马其顿国王,世界古代史上著名的军事家与政治家泰勒斯生于公元前624年,是公认的希腊哲学鼻祖。

泰勒斯在数学方面的奉献是开场了命题的证明,它标志着人们对客观事物的认识从感性上升到理性,这在数学史上是一个不寻常的飞跃。

泰勒斯是演绎几何学的鼻祖,开数学证明之先河,“毕达哥拉斯学派万毕达哥拉斯非常重视数学,企图用数来解释一切。

万物皆数〞是历史上第一次用数来观察、解释世界的学说。

无理数的发现是毕达哥拉斯学派最卓越的功绩,也是整个数学史上一项重大发现。

雅典时期的希腊数学黄金时代——亚历山大学派成就最大的是亚历山大前期三大数学家欧几里得、阿基米德与阿波罗尼奥斯。

欧几里得的几何原本是一部划时代的著作。

其伟大的历史意义在于它是用公理法建立起演绎体系的最早典范。

阿基米德他根据力学原理去探求解决面积与体积问题,已经包含积分学的初步思想。

阿波罗尼奥斯的主要奉献是对圆锥曲线的深入研究。

阿基米德“智慧之都〞“力学之父〞阿基米德原理〞(浮力定律)亚历山大后期,公元前146年以后,在罗马统治下的亚历山大学者仍能继承前人的工作,不断有所创造。

数学史概论复习资料

数学史概论复习资料

数学史复习资料第一章数学的起源与早期发展一、世界上早期常见有几种古老文明记数系统,它们分别是什么数字,采用多少进制数系?(P13)1.古埃及的象形数字(公元前3400年左右)2.古巴比伦的楔形数字(公元前2400年左右)3.中国的甲骨文(公元前1600年左右)4.希腊阿提卡数字(公元前500年左右)5.中国的算筹码(公元前500年左右)6.印度婆罗门数字(公元前500年左右)7.玛雅数字(?)其中除巴比伦楔形数字采用六十进制、玛雅数字采用二十进制外,其他均属十进制数系二、“河谷文明”指的是什么?(P16)历史学家往往把兴起于埃及、美索不达米亚、中国、印度等地域的古代文明称为“河谷文明”。

三、古埃及数学的知识主要依据哪两部纸草书?纸草书中问题绝大部分是实用性质,但个别例外,请举例。

(见P23)古埃及数学的知识,主要就是依据两部纸草书—莱茵德纸草书和莫斯科纸草书。

四、美索不达米亚人的记数制远胜埃及象形数字之处主要表现在哪些方面?(P23—25)1.大多数文明普遍采用十进制,但美索不达米亚人却创造了一套以60进制为主的楔形文记数系统。

2.美索不达米亚人的记数制远胜埃及象形数字之处,还在于他们巧妙地将位置原理推广应用到整数以为的分数。

3.美索不达米亚人还经常利用各种数表来进行计算,使计算更加简捷。

第二章古代希腊数学一、希腊数学一般是指什么时期,活动于什么地方的数学家创造的数学?(P32)希腊数学一般指从公元前600年一公元600年间,活动于希腊半岛、爱琴海区域、马其顿与色雷斯地区、意大利半岛、小亚细亚以及非洲北部的数学家们创造的数学。

二、毕达哥拉斯学派认为宇宙万物皆依赖于整数的信条由于什么发现而受到动摇?这个“第一次数学危机”是由于什么人提出的新比例理论而暂时消除?(P38)毕达哥拉斯学派认为宇宙万物皆依赖于整数的信条吗,由于不可公度量的发现而受到了动摇。

大约一个世纪以后,这一“危机”才由于毕达哥拉斯学派成员阿契塔斯的学生欧多克斯提出新比例理论而暂时消除。

第一讲数学史简介

第一讲数学史简介

欧洲中世纪数学状况及代表人物
中世纪初期,欧洲数学发展相对 滞后,主要受古希腊和阿拉伯数
学影响。
代表人物:斐波那契,其《算盘 书》介绍了印度数字系统和阿拉 伯数字运算,对欧洲数学产生深
远影响。
中世纪后期,随着大学兴起,数 学开始复兴,代表人物有奥雷姆
等。
文艺复兴时期对数学影响及代表人物
文艺复兴推动了科学和艺术的 发展,数学也得以繁荣。
印度数学
印度古代数学在算术、代 数和三角学等领域有着独 特贡献,如0的发明、阿拉 伯数字的发展等。
阿拉伯数学
阿拉伯数学家在数学史上 也占有重要地位,如花拉 子米的代数、阿拉伯三角 学等。
中美洲玛雅数学
玛雅文明在数学方面也有 一定成就,如玛雅数字系 统和复杂的历法计算等。
03
中世纪至文艺复兴时期数 学发展
数学史意义
数学史可以帮助学生了解数学在人类文明发展中的作用,理解数学在推动社会进 步和科学发展中的价值。同时,通过了解数学家们的探索精神和创新思维,可以 激发学生的数学兴趣和求知欲。
数学发展历程简述
• 古代数学:古代数学起源于人类早期的生产活动,产生于计数、测量和计算等 实践活动中。古埃及、古希腊、古印度和古代中国等文明古国都有自己的数学 发展历程,如古埃及的几何学、古希腊的演绎数学、古印度的算术和代数以及 古代中国的筹算等。
数据科学与数学
数据科学是近年来迅速发展的学科领域,它涉及到数据分析、数据挖掘、机器学习等方面 。数据科学与数学的交叉融合将为数学研究提供新的思路和方法,推动数学在数据分析、 人工智能等领域的应用。
生物数学与医学
生物数学是数学与生物学交叉融合的产物,它在生物医学研究中发挥着越来越重要的作用 。通过数学建模和模拟,生物数学家可以研究生物系统的复杂性和动态性,为医学诊断和 治疗提供新的思路和方法。

大学课本每册数学史资料整理

大学课本每册数学史资料整理

大学课本每册数学史资料整理1. 引言本文档旨在对大学教材中每册关于数学史方面的资料进行整理和归纳。

通过对这些资料的梳理,学生可以更好地理解数学的历史背景和发展过程,增强对数学的兴趣和理解能力。

2. 第一册2.1 数学史概述- 介绍数学史的定义和研究范围- 引导学生了解数学史的重要性和价值- 简要介绍数学史的主要发展时期和学派2.2 古代数学- 对古希腊、古埃及、古巴比伦等古代文明的数学成就进行概述- 介绍古代数学家如欧几里得、阿基米德等的贡献和成就- 探讨古代数学的应用领域和作用2.3 中世纪数学- 简要阐述中世纪欧洲数学的发展情况- 介绍中世纪数学家如勒让德、斐波那契等人的研究成果- 讨论中世纪数学与宗教、哲学等其他学科的关系3. 第二册3.1 文艺复兴数学- 介绍文艺复兴时期欧洲数学的兴起和发展- 引导学生了解文艺复兴数学家对数学思维的重要贡献- 分析文艺复兴数学对科学革命的影响和推动作用3.2 近代数学- 介绍近代数学的起源和发展背景- 探讨近代数学家如牛顿、莱布尼兹等的创新成果- 分析近代数学和科学革命、工业革命的相互关系3.3 现代数学- 对现代数学的重大突破和发展进行概述- 介绍现代数学家如高斯、欧拉等的影响力和贡献- 探讨现代数学的应用领域和对其他学科的影响4. 结论通过对大学课本中每册数学史资料的整理,学生能够系统地了解数学史的发展脉络和重要人物,加深对数学的认识和理解。

数学史能够激发学生的兴趣和好奇心,帮助他们更好地应用数学知识解决实际问题,促进数学思维的形成和发展。

以上是对大学课本每册数学史资料整理的简要概述,希望能对广大学生有所帮助和启发。

数学简史_完整版

数学简史_完整版

数学简史_完整版数学,作为一门研究数量、结构、变化和空间等概念的学科,是人类文明的重要组成部分。

它不仅是一种工具,更是一种语言,一种思维方式。

数学的发展历程,如同一条源远流长的河流,承载着人类智慧的结晶,见证着人类文明的进步。

数学的起源可以追溯到古代,那时的人们为了解决生活中的实际问题,如测量土地、分配资源等,开始运用简单的数学概念。

在中国,最早的数学文献可以追溯到公元前一世纪的《九章算术》,它详细介绍了分数、比例、开方等基本数学概念,并解决了许多实际问题。

在古希腊,数学家毕达哥拉斯提出了勾股定理,这是数学史上第一个被广泛认可的定理。

在古印度,数学家阿耶波多提出了零的概念,并发展了十进制计数法。

随着文明的进步,数学逐渐成为一门独立的学科。

在17世纪,牛顿和莱布尼茨分别独立发明了微积分,这是数学史上的一次重大突破。

微积分的发明,使得人们能够更准确地描述和预测自然现象,从而推动了科学技术的快速发展。

在18世纪,欧拉提出了复数和欧拉公式,进一步丰富了数学的内涵。

19世纪是数学发展的黄金时代,数学家们开始研究抽象的数学概念,如群论、环论、域论等。

德国数学家高斯提出了代数基本定理,证明了每一个非零的复数多项式方程都有复数根。

法国数学家庞加莱提出了拓扑学,研究几何图形在连续变换下的不变性质。

英国数学家罗素提出了集合论,试图为数学提供一个坚实的基础。

20世纪以来,数学的发展更加迅速,计算机科学的兴起为数学提供了新的研究方向和应用领域。

数学家们开始研究复杂系统、混沌理论、分形几何等新兴领域。

同时,数学在经济学、生物学、物理学等领域的应用也越来越广泛。

例如,在经济学中,数学被用于建立模型和分析市场行为;在生物学中,数学被用于研究生物系统的动态变化;在物理学中,数学被用于描述和预测自然现象。

数学的发展历程充满了挑战和机遇。

它不仅需要数学家们不断探索和创新,更需要全社会的支持和参与。

让我们共同关注数学的发展,为人类的进步贡献自己的力量。

数学史简介(含多款)

数学史简介(含多款)

数学史简介数学,作为人类智慧的结晶,自古以来就与人类文明的发展紧密相连。

从最初的计数和测量,到抽象的代数和几何,再到现代的计算机科学和量子力学,数学始终在各个领域发挥着重要作用。

本文将简要介绍数学的发展历程,以展示这一学科的无穷魅力。

一、古代数学数学的起源可以追溯到史前时期,当时的人们为了解决实际问题,如土地测量、天文观测等,开始研究数学。

古埃及和巴比伦是数学发展最早的地区之一,他们研究了几何学和算术,并制定了一些数学规则。

约公元前300年,古希腊数学家欧几里得发表了《几何原本》,这是一部系统地阐述了平面几何知识的著作,对后世产生了深远影响。

二、中世纪数学在中世纪,阿拉伯世界成为了数学研究的中心。

阿拉伯数学家对古希腊数学进行了翻译和传承,并在此基础上进行创新。

他们引入了印度数学中的数字系统,即阿拉伯数字,这一系统在当时比罗马数字更为先进。

阿拉伯数学家还研究了代数学,提出了方程的解法和代数符号。

三、文艺复兴时期数学文艺复兴时期,欧洲数学迅速发展。

这一时期的数学家开始研究更为复杂的数学问题,如三次方程的解法、无穷级数等。

意大利数学家伽利略和德国数学家开普勒在天文学领域取得了重要成果,为后来牛顿和莱布尼茨创立微积分奠定了基础。

四、现代数学17世纪,英国数学家牛顿和德国数学家莱布尼茨几乎同时发明了微积分。

这一学科的出现标志着现代数学的诞生。

此后,数学家们开始研究更为抽象的数学问题,如拓扑学、群论等。

19世纪,法国数学家庞加莱提出了拓扑学的基本概念,为现代几何学的发展奠定了基础。

20世纪,数学家们继续深入研究各个领域,如概率论、数论、计算机科学等,使数学得到了空前的发展。

五、数学在中国中国古代数学也有着悠久的历史。

早在商周时期,我国就有了甲骨文中的数学记载。

汉代,数学家赵爽提出了勾股定理的证明,被称为“赵爽定理”。

唐代,数学家李冶、秦九韶等人研究了高次方程的解法。

宋代,数学家贾宪、杨辉等人研究了几何学和算术。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§5.2阿拉伯数学5.2.1阿拉伯文明概况阿拉伯国家指以阿拉伯民族为主体的国家,大多分布在亚洲西部和北非一带,一般使用阿拉伯语,信奉伊斯兰教。

然而“阿拉伯数学”并非指阿拉伯国家的数学,而是指8-15世纪阿拉伯帝国统治下的中亚西亚地区的数学,是穆斯林、希腊人、波斯人和基督徒等所写的阿拉伯文数学著作。

穆斯林在默罕莫得(mohammed)的鼓舞下,在默罕莫得死后(632)不到半个世纪的时间内征服了从印度到西班牙,乃至北非和南意大利的大片土地,到7世纪初,阿拉伯半岛基本统一。

661年,叙利亚总督摩阿维亚(muawiyah)被选为哈里发后改为世袭制,开始了倭马亚王朝(umayyads, 661-750).755年阿拉伯帝国分裂为两个独立王国。

750年阿布尔·阿拔斯(abū'l-abbās,722-754)推翻倭马亚王朝,建立了东部王国阿拔斯王朝,762年迁都巴格达。

756年,逃亡到西班牙的倭马亚王朝后裔阿卜杜·拉曼(abdal-rahmān) 宣告建立西部阿拉伯王国,定首都西班牙的哥尔多华。

909年,伊斯兰什叶派脱离巴格达,在北非突尼斯建立一个新的哈里发国家,973年迁都埃及开罗。

11世纪开始,阿拉伯帝国受到外民族的侵略,11世纪初东亚突厥人一支的塞尔柱(seljuk)人入侵阿拉伯,并于1055年在巴格达建立素丹政权;1097年十字军东征,开始了基督教欧洲对穆斯林亚洲的征服;1258年,蒙古人旭烈兀(1219-1265)占领巴格达,建立伊儿汗国,从此阿拉伯帝国灭亡。

在世界文明史上,阿拉伯人在保存和传播希腊、印度甚至中国的文化,最终为近代欧洲的文艺复兴准备学术前提方面作出了巨大贡献。

阿拉伯建国后,东西两个帝国的哈里发都十分重视科学与艺术事业,他们曾经从拜占庭帝国收买过大量希腊人手稿,他们还延请各地科学家到他们的首都从事科学研究,巴格达成为当时的科学文化中心与商业中心,那里设有学院、图书馆、天文台等科学机构。

6世纪柏拉图学院被罗马王封闭后,很多希腊学者转入波斯,这样具有希腊学术传统的波斯文化后来成为阿拉伯文化的一部分。

埃及的亚历山大里亚城曾是希腊的学术中心,被阿拉伯征服后,也成为留给阿拉伯人的重要文化遗产,而且叙利亚学派所在的安提阿、大马士革与基督教景教派所在地以得撒,都在阿拉伯帝国的统治下。

这样阿拉伯获得印度、希腊、近东等多地区的文化,大多来源于希腊人的手稿或叙利亚与希伯来文译本。

今天的研究表明,中国的文化也曾直接流入阿拉伯,或通过印度间接传播阿拉伯世界。

在曼苏尔哈里发时期,婆罗摩笈多等印度天算家的著作在766年左右传入巴格达,并译成阿拉伯文,8世纪末到9世纪初的兰希哈里发时期,包括《几何原本》和《大汇编》在内的希腊天文数学经典先后都被译成阿拉伯文字。

9世纪最著名翻译家,阿拉伯学者伊本·科拉(Tabit ibn Qorra,836-901)翻译了欧几里得、阿波罗尼乌斯、阿基米德、托勒玫、狄奥多修斯等人的著作。

到10世纪丢番图、海伦等人著作也被译成阿拉伯文。

5.2.2阿拉伯数学在中世纪的东方,除中国人之外,阿拉伯人在科学上的成就是非常突出的。

就数学而言,阿拉伯人的成就主要在代数学、三角学方面,更为重要的是,阿拉伯人在把古代东方数学文化传播到欧洲,导致欧洲近代数学的建立,作出了不可磨灭的贡献。

1.代数学阿拉伯数学的突出成就首先表现在代数学方面。

花拉子米(Mohammed ibn Musa al-Khowarizmi,约783~850)是中世纪对欧洲数学影响最大的阿拉伯数学家,他的《还原与对消计算概要》(al-kitāb al-mukhta sar fī hisāb al-jabr wa'l-muqābala)(约820年前后)一书在12世纪被译成拉丁文,在欧洲产生巨大影响。

阿拉伯语“al-jabr”, 意为还原移项,“a'l-muqābala”即对消之意,传入欧洲后,到十四世纪“al-jabr”演变为拉丁语“algebra”,也就成了今天的英文"algebra"。

《代数学》的内容主要是算术问题,尽管所讨论的数学问题比丢番图和印度人的问题简单,但讨论一般性解法而比起丢番图的著作更接近于近代初等代数。

《代数学》首先指出,该书的数学问题都是由根(x)、平方(x2)和数(常数)这三者组成。

接着分六章叙述6种类型的一、二次方程求解问题。

第一章讨论“平方等于根”的方程,即ax2 = bx 型方程;第二章讨论“平方等于数”的方程,即ax2 = b 型方程;第三章讨论“根等于数”的方程,即一次方程ax = b;第四、五、六章是关于三项二次方程求解问题,分别讨论三种类型的二次方程:x2 + px = q,x2 + q = px,x2 = px + q ,都给出了相应的求根公式。

这六种方程的系数都是正数,可统一为以下一般形式x 2 + px + q= 0这样,花拉子米相当于获得一般的求根公式.每一问题求出正根x后,花拉子米又求出根的平方x2。

他明确指出,二次方程可能有两个正根,也可能有负根,但他不取负根与零根。

在以上六章内容之后,花拉子米又以几何方式证明上述各种解法的合理性。

花拉子米还指出,任何二次方程都可以通过“还原”与“对消”(即移项与合并同类项)的步骤化成他所讨论的六种类型方程。

由此可见,《代数学》关于方程的讨论已超越传统的算术方式,具有初等代数性质,不过,在使用代数符号方面,相对丢番图和印度人的工作有了退步。

花拉子米用几何方式证明代数解法的传统被阿拉伯其它数学家所继承,这种几何证明方式的来源今天尚不清楚,它似乎来源于希腊人的传统,但更接近于中国宋元数学中的“条段法”。

花拉子米的另一本书《印度计算法》(algoritmi de numero indorum)也是数学史上十分有价值的数学著作,其中系统介绍印度数码和十进制记数法,以及相应的计算方法。

尽管在8世纪印度数码和记数法随印度天文表传入阿拉伯,但并未引起人们的广泛注意,正是花拉子米的这本书使它们在阿拉伯世界流行起来,更值得称道的是,它后来被译成拉丁文在欧洲传播,为欧洲近代数学的发生提供了科学基础,所以欧洲一直称这种数码为阿拉伯数码。

该书在欧洲传播后,“algoritmi”也演变为“algorithm”。

花拉子米的数学工作为艾布·卡米勒(abu kamil,约850~930)所继承,此人被称作“埃及的计算家”,可能是埃及人。

他的《计算技巧珍本》的传播和影响仅次于花拉子米的《代数学》,许多数学问题也采自于花拉子米的书,他把埃及、巴比伦式的实用代数与希腊式理论几何结合起来,也常常用几何图示法证明代数解法的合理性。

其另一著作《论五边形和十边形》包括几何和代数两方面的内容,关于四次方程解法和处理无理系数二次方程是其主要特色。

波斯人奥马·海亚姆(omar khayyam,1048?-1131)是11世纪最著名且最富成就的数学家、天文学家和诗人,他曾得到塞尔柱统治者马利克沙(malik-shah,1055~1092)的重用,受命在伊斯法罕(今伊朗境内)天文台负责历法改革工作,制定了精密的哲拉里历。

他在代数学方面的成就集中反映于他的《还原与对消问题的论证》(简称《代数学》)一书中,其中有开平方、开立方算法,根据奥马自己所说,这些方法来源于印度算法,但后人将其与印度的相关方法相比较,发现相去甚远,倒与中国的宋元时期的增乘开方法十分接近,而且在取实数根的近似分数时,采用与秦九韶、朱世杰相同的公式。

该书对代数学发展的最杰出贡献是用圆锥曲线解三次方程。

希腊人门奈赫莫斯(menaechmus,约bc360)为解决倍立方体问题而发现了圆锥曲线,实际上它与三次方程x3 = 2a2相联系。

阿基米德在解用平面截球,使所截得的两部分体积比为定值的问题时,导致一个三次方程:x2(a -x) = bc2。

他利用两条圆锥曲线 y(a - x) = ab和ax2 = c2y 的交点来求解。

阿基米德的传统启发了阿拉伯数学家,一些人也采取这种方式解三次代数方程。

奥马?海亚姆首先对不高于三次的代数方程分为25类(系数为正数),找到14类三次方程,对每类三次方程给出相应一种几何解法,例如解x3+ ax = b,首先将其化为x3+ c3x = c2d,(这里c2= a, c2d = b,按照希腊人的数学传统,a、b是线段,c2为正方形,c2d为长方体),方程x3 + c2x = c2d的解就是抛物线x2 = cy与半圆y2 = x(d - x) 交点的横坐标x。

他首先画出正焦弦为c的抛物线,再画出直径为d 的半圆,过它们的交点作垂线ps,则qs长度就是方程的解。

这一创造,使代数与几何的联系更加密切。

可惜在1851年以前,欧洲人并不了解奥马?海亚姆的这种解析几何方法。

在求高次方程的数值解上,晚期的纳西尔·丁(nasir-eddin,1201~1274)和阿尔·卡西(al-kashī,?~1429)都给出了开高次方的一般性算法。

阿尔·卡西是蒙古帖木儿时代撒马尔罕天文台负责人,他在《算术之钥》中还给出了用于开方的二项式系数表,与11世纪中国贾宪的“开方作法本源图”十分相似,而且所介绍的两种造表方法之一,与杨辉算书所录贾宪“增乘方法求廉草”完全一致。

《算术之钥》中还有“契丹算法”(即盈不足术,当时的历史学家称中国为契丹al-khataayn)和“百鸡问题”,后来传入欧洲。

阿拉伯人代数学确切的来源并不清楚,除印度、亚历山大里亚的希腊数学外,应当还有中国数学的影响。

在使用数学符号方面,与丢番图相比阿拉伯人退步了,阿拉伯数学家没有继承丢番图的做法,始终用语言叙述他们的解法。

2.三角学由于数理天文学的需要,阿拉伯人继承并推进了希腊的三角术,其学术主要来源于印度的《苏利耶历数全书》等天文历表,以及希腊托勒玫的《大汇编》(almagest)、梅尼劳斯的《球面论》(sphaerica)等古典著作。

天文计算的需要,阿拉伯天文学家都致力于高精度三角函数表的编造。

9世纪的海拜什·哈西卜(al-hasīb, 764?~870?)在印度人的基础上制定间隔为15'的60进制正弦表,并且还编制了间隔为1?的正切表。

正切、余切函数的引入,导源于古代的立竿测影,中国唐代一行在编制的《大衍历》中,所立“九服晷影”就是关于不同地理纬度处晷影、漏刻长度的表格算法,其中用到了与正切表等价的影长数表,可视为最早的正切表。

艾布·瓦法(abū'l-wafā, 940~997?)在哈西卜的基础上进一步编制出间隔为10'的正弦表和正余弦表,特别是比鲁尼(al-bīrūnī, 973~1050)利用二次插值法制定了正弦、正切函数表。

相关文档
最新文档