第15讲—用枚举法解应用题

合集下载

小学数学《常规应用题的解法——枚举法》练习题(含答案)

小学数学《常规应用题的解法——枚举法》练习题(含答案)

小学数学《常规应用题的解法——枚举法》练习题(含答案)知识要点我们在课堂上遇到的数学问题,有一些需要计算总数或种类的趣题,因其数量关系比较隐蔽,很难利用计算的方法解决。

我们可以抓住对象的特征,按照一定的顺序,选择恰当的标准,把问题分为不重复、不遗漏的有限种情形,通过一一列举或计数,最终达到解决目的。

这就是枚举法,也叫做列举法或穷举法。

解题指导11.枚举法在数字组合中的应用。

按照一定的组合规律,把所有组合的数一一列举出来。

【例1】用数字1,2,3组成不同的三位数,分别是哪几个数?【思路点拨】根据百位上的数字的不同分为3类。

第一类:百位上为1的有:123 132第二类:百位上为2的有:213 231第三类:百位上为3的有:312 321答:可以组成123,132,213 ,231,312 ,321六个数。

【变式题1】用0、6、7、8、9这五个数字组成各个数位上数字不相同的两位数共有多少个?解题指导22.骰子中的点数掷骰子是生活中常见的游戏玩法,既可以掷一个骰子,比较掷出的点数大小,也可以掷两个骰子,把两个骰子的点数相加,再比较点数的大小。

一个骰子只有6个点数,而两个骰子的点数经过组合最小是2,最大是12。

在解决有关掷两个骰子的问题时,要全面考虑所有出现的点数情况。

【例2】小明和小红玩掷骰子的游戏,共有两枚骰子,一起掷出。

若两枚骰子的点数和为7,则小明胜;若点数和为8,则小红胜。

试判断他们两人谁获胜的可能性大。

【思路点拨】将两枚骰子的点数和分别为7与8的各种情况都列举出来,就可得到问题的结论。

用a+b表示第一枚骰子的点数为a,第二枚骰子的点数是b的情况。

出现7的情况共有6种,它们是:1+6,2+5,3+4,4+3,5+2,6+1。

出现8的情况共有5种,它们是:2+6,3+5,4+4,5+3,6+2。

所以,小明获胜的可能性大。

注意,本题中若认为出现7的情况有1+6,2+5,3+4三种,出现8的情况有2+6,3+5,4+4也是三种,从而得“两人获胜的可能性一样大”,那就错了。

小学数学《常规应用题的解法——枚举法》练习题(含答案)

小学数学《常规应用题的解法——枚举法》练习题(含答案)

小学数学《常规应用题的解法——枚举法》练习题(含答案)知识要点我们在课堂上遇到的数学问题,有一些需要计算总数或种类的趣题,因其数量关系比较隐蔽,很难利用计算的方法解决。

我们可以抓住对象的特征,按照一定的顺序,选择恰当的标准,把问题分为不重复、不遗漏的有限种情形,通过一一列举或计数,最终达到解决目的。

这就是枚举法,也叫做列举法或穷举法。

解题指导11.枚举法在数字组合中的应用。

按照一定的组合规律,把所有组合的数一一列举出来。

【例1】用数字1,2,3组成不同的三位数,分别是哪几个数?【思路点拨】根据百位上的数字的不同分为3类。

第一类:百位上为1的有:123 132第二类:百位上为2的有:213 231第三类:百位上为3的有:312 321答:可以组成123,132,213 ,231,312 ,321六个数。

【变式题1】用0、6、7、8、9这五个数字组成各个数位上数字不相同的两位数共有多少个?解题指导22.骰子中的点数掷骰子是生活中常见的游戏玩法,既可以掷一个骰子,比较掷出的点数大小,也可以掷两个骰子,把两个骰子的点数相加,再比较点数的大小。

一个骰子只有6个点数,而两个骰子的点数经过组合最小是2,最大是12。

在解决有关掷两个骰子的问题时,要全面考虑所有出现的点数情况。

【例2】小明和小红玩掷骰子的游戏,共有两枚骰子,一起掷出。

若两枚骰子的点数和为7,则小明胜;若点数和为8,则小红胜。

试判断他们两人谁获胜的可能性大。

【思路点拨】将两枚骰子的点数和分别为7与8的各种情况都列举出来,就可得到问题的结论。

用a+b表示第一枚骰子的点数为a,第二枚骰子的点数是b的情况。

出现7的情况共有6种,它们是:1+6,2+5,3+4,4+3,5+2,6+1。

出现8的情况共有5种,它们是:2+6,3+5,4+4,5+3,6+2。

所以,小明获胜的可能性大。

注意,本题中若认为出现7的情况有1+6,2+5,3+4三种,出现8的情况有2+6,3+5,4+4也是三种,从而得“两人获胜的可能性一样大”,那就错了。

六年级奥数专题:枚举法

六年级奥数专题:枚举法

六年级奥数专题:枚举法 我们在课堂上遇到的数学问题,一般都可以列出算式,然后求出结果。

但在数学竞赛或生活中却经常会遇到一些有趣的题目,由于找不到计算它们的算式,似乎无从下手。

但是,如果题目所述的情况或满足题目要求的对象能够被一一列举出来,或能被分类列举出来,那么问题就可以通过枚举法获得解决。

所谓枚举法,就是根据题目要求,将符合要求的结果不重复、不遗漏地一一列举出来,从而解决问题的方法。

例1 小明和小红玩掷骰子的游戏,共有两枚骰子,一起掷出。

若两枚骰子的点数和为7,则小明胜;若点数和为8,则小红胜。

试判断他们两人谁获胜的可能性大。

分析与解:将两枚骰子的点数和分别为7与8的各种情况都列举出来,就可得到问题的结论。

用a+b表示第一枚骰子的点数为a,第二枚骰子的点数是b的情况。

出现7的情况共有6种,它们是: 1+6,2+5,3+4,4+3,5+2,6+1。

出现8的情况共有5种,它们是: 2+6,3+5,4+4,5+3,6+2。

所以,小明获胜的可能性大。

注意,本题中若认为出现7的情况有1+6,2+5,3+4三种,出现8的情况有2+6,3+5,4+4也是三种,从而得“两人获胜的可能性一样大”,那就错了。

例2 数一数,右图中有多少个三角形。

分析与解:图中的三角形形状、大小都不相同,位置也很凌乱,不好数清楚。

为了避免数数过程中的遗漏或重复,我们将图形的各部分编上号(见右图),然后按照图形的组成规律,把三角形分成单个的、由两部分组成的、由3部分组成的……再一类一类地列举出来。

单个的三角形有6个:1 ,2,3,5,6,8。

由两部分组成的三角形有4个: (1,2),(2,6),(4,6),(5,7)。

由三部分组成的三角形有1个:(5,7,8)。

由四部分组成的三角形有2个: (1,3,4,5),(2,6,7,8)。

由八部分组成的三角形有1个: (1,2,3,4,5,6,7,8)。

总共有6+4+1+2+1=14(个)。

三年级数学 简单枚举

三年级数学 简单枚举

第十九周简单枚举专题简析:枚举是一种常见的分析问题、解决问题的方法。

一般地,要根据问题要求,一一列举问题解答。

运用枚举法解应用题时,必须注意无重复、无遗漏,因此必须有次序、有规律地进行枚举。

运用枚举法解题的关键是要正确分类,要注意以下两点:一是分类要全,不能造成遗漏;二是枚举要清,要将每一个符合条件的对象都列举出来。

例题1 从小华家到学校有3条路可走,从学校到文峰公园有4条路可走。

从小华家到文峰公园,有几种不同的走法?文峰公园小华家为了帮助理解题意,我们可以画出如上示意图。

我们把小华的不同走法一一列举如下:根据列举可知,从小明家经学校到文峰公园,走①路有4种不同走法,走②路有4种不同走法,走③路也有4种不同走法,共有4×3=12种不同走法。

练习一1,从甲地到乙地,有3条公路直达,从乙地到丙地有2条铁路直达。

从甲地到丙地有多少种不同走法?2,新华书店有3种不同的英语书,4种不同的数学读物销售。

小明想买一种英语书和一种数学读物,共有多少种不同买法?3,明明有2件不同的上衣,3条不同的裤子,4双不同的鞋子。

最多可搭配成多少种不同的装束?例题2 用红、绿、黄三种信号灯组成一种信号,可以组成多少种不同的信号?思路导航:要使信号不同,要求每一种信号颜色的顺序不同,我们可以把这些信号进行列举:红绿黄红绿黄红绿黄红绿黄红绿黄黄绿红从上面可以看出,红色信号灯排在第一个位置时,有两种不同的信号,绿色信号灯排在第一个位置时,也有两种不同的信号,黄色信号灯排在第一个位置时,也有两种不同的信号,因而共有3个2种不同排列方法,即2×3=6种。

练 习 二1,用红、黄、蓝三种颜色涂圆圈,每个圆圈涂一种颜色,一共有多少种不同的涂法?○○○2,用数字1、2、3,可以组成多少个不同的三位数?分别是哪几个数?3,用2、3、5、7四个数字,可以组成多少个不同的四位数?例题3 一个长方形的周长是22米,如果它的长和宽都是整米数,那么这个长方形的面积有多少种可能?思路导航:由于长方形的周长是22米,可知它的长与宽之和为11米。

枚举问题

枚举问题

枚举问题在生活、生产和科学研究中,常常需要计算“完成一件事情,共有多少种不同的方法”的问题,这就要求我们根据题目的要求,把问题的答案一一列举出来,或者为了解决问题的方便,把问题分为不重复的有限种情况,一一列举各种情况加以解决,最终达到解决整个问题的目的,这种分析、解决问题的方法叫做枚举法。

枚举问题是分类计数进行解答的问题,利用枚举法解题的关键是合理分类。

正确分类可以促进问题的解决,利用正确分类把难点分散达到解决问题的目的。

在日常生活和生产实际中,我们还经常遇到这样一些问题:小红有白、黄两种衬衫,花、黑两种裙子,问小红有几种不同的打扮方法?3个人开会,每人都要和他人握手,共要握几次?解答这类问题,我们可以运用列举的方法,并从中找出一些解题的规律。

例题解析1、李娜、王蕾和吕丹并排在一起照相,共有几种不同的站法?2、用2、5、8三个数字,可以组成几个不同的三位数,其中最大的三位数是多少?最小的三位数是哪一个数?3、五个同学参加学校乒乓球决赛,每两人要赛一场,一共要赛多少场?4、王小明要从家到学校,共有几种不同的走法?(只准向上向右走,不准向下向左行)学校小明家5、从甲地到乙地有2条路可走,从乙地到丙地有3条路可走,从甲地经过乙地到丙地共有多少条不同的路可走呢?6、从1~~9这9个数字中,每次取2个数字,这两个数字的和都必须大于10,能有多少种取法?7、从甲地到乙地可以坐飞机、火车、汽车;从乙地到丙地可以坐飞机、火车、汽车、轮船,某人从甲地经过乙地到丙地共有几种走法?8、兰兰向妈妈要6分钱买一块橡皮。

妈妈叫兰兰从袋子里取硬币。

袋子里有1分、2分、5分硬币各6枚。

兰兰要拿6分钱,可以有几种拿法,用算式表示出来。

9、有红、黄、绿、蓝、白五种颜色的铅笔,每两种颜色的铅笔为一组,最多可以配成不重复的几组?10、三个圆A、B、C在同一条线上。

如图所示。

一只青蛙在这三个圆之间跳来跳去,它从A开始,跳了4次之后又回到A。

小学数学《常规应用题的解法——枚举法》教案

小学数学《常规应用题的解法——枚举法》教案

小学数学《常规应用题的解法——枚举法》教案小学数学《常规应用题的解法——枚举法》教案教学内容:教学目标:1.能利用枚举法解决生活中的问题。

教学重点:准确抓住对象的特征,按照一定的顺序,选择恰当的标准,把问题分为不重复、不遗漏的有限种情形,通过一一列举或计数,最终达到解决目的。

教学难点:准确抓住对象的特征,按照一定的顺序,选择恰当的标准,把问题分为不重复、不遗漏的有限种情形,通过一一列举或计数,最终达到解决目的。

教学过程:一.探索新知(一)教学例11.枚举法在数字组合中的应用。

按照一定的组合规律,把所有组合的数一一列举出来。

【例1】用数字1,2,3组成不同的三位数,分别是哪几个数?【思路点拨】根据百位上的数字的不同分为3类。

第一类:百位上为1的有:123 132第二类:百位上为2的有:213 231第三类:百位上为3的有:312 321答:可以组成123,132,213 ,231,312 ,321六个数。

【变式题1】用0、6、7、8、9这五个数字组成各个数位上数字不相同的两位数共有多少个?(二)教学例2.2.骰子中的点数掷骰子是生活中常见的游戏玩法,既可以掷一个骰子,比较掷出的点数大小,也可以掷两个骰子,把两个骰子的点数相加,再比较点数的大小。

一个骰子只有6个点数,而两个骰子的点数经过组合最小是2,最大是12。

在解决有关掷两个骰子的问题时,要全面考虑所有出现的点数情况。

【例2】小明和小红玩掷骰子的游戏,共有两枚骰子,一起掷出。

若两枚骰子的点数和为7,则小明胜;若点数和为8,则小红胜。

试判断他们两人谁获胜的可能性大。

【思路点拨】将两枚骰子的点数和分别为7与8的各种情况都列举出来,就可得到问题的结论。

用a+b表示第一枚骰子的点数为a,第二枚骰子的点数是b的情况。

出现7的情况共有6种,它们是:1+6,2+5,3+4,4+3,5+2,6+1。

出现8的情况共有5种,它们是:2+6,3+5,4+4,5+3,6+2。

2019年六年级奥数专题:枚举法

2019年六年级奥数专题:枚举法

2019年六年级奥数专题:枚举法我们在课堂上遇到的数学问题,一般都可以列出算式,然后求出结果。

但在数学竞赛或生活中却经常会遇到一些有趣的题目,由于找不到计算它们的算式,似乎无从下手。

但是,如果题目所述的情况或满足题目要求的对象能够被一一列举出来,或能被分类列举出来,那么问题就可以通过枚举法获得解决。

所谓枚举法,就是根据题目要求,将符合要求的结果不重复、不遗漏地一一列举出来,从而解决问题的方法。

例1 小明和小红玩掷骰子的游戏,共有两枚骰子,一起掷出。

若两枚骰子的点数和为7,则小明胜;若点数和为8,则小红胜。

试判断他们两人谁获胜的可能性大。

分析与解:将两枚骰子的点数和分别为7与8的各种情况都列举出来,就可得到问题的结论。

用a+b表示第一枚骰子的点数为a,第二枚骰子的点数是b的情况。

出现7的情况共有6种,它们是:1+6,2+5,3+4,4+3,5+2,6+1。

出现8的情况共有5种,它们是:2+6,3+5,4+4,5+3,6+2。

所以,小明获胜的可能性大。

注意,本题中若认为出现7的情况有1+6,2+5,3+4三种,出现8的情况有2+6,3+5,4+4也是三种,从而得“两人获胜的可能性一样大”,那就错了。

例2 数一数,右图中有多少个三角形。

分析与解:图中的三角形形状、大小都不相同,位置也很凌乱,不好数清楚。

为了避免数数过程中的遗漏或重复,我们将图形的各部分编上号(见右图),然后按照图形的组成规律,把三角形分成单个的、由两部分组成的、由3部分组成的……再一类一类地列举出来。

单个的三角形有6个:1 ,2,3,5,6,8。

由两部分组成的三角形有4个:(1,2),(2,6),(4,6),(5,7)。

由三部分组成的三角形有1个:(5,7,8)。

由四部分组成的三角形有2个:(1,3,4,5),(2,6,7,8)。

由八部分组成的三角形有1个:(1,2,3,4,5,6,7,8)。

总共有6+4+1+2+1=14(个)。

对于这类图形的计数问题,分类型数是常用的方法。

简单的枚举法例题及解法

简单的枚举法例题及解法

简单的枚举法例题及解法在我们的学习旅程中,枚举法就像一位默默无闻的英雄,常常被忽视,但它的威力可不容小觑。

想象一下,你在一场盛大的聚会上,满屋子都是美味的食物。

哎呀,这个、那个、还有那个,究竟该选哪个?这时候,枚举法就像是一个老朋友,告诉你一个个地试试,直到找到你心仪的那一款。

简单、直接,就是这么有意思。

今天咱们就来聊聊这个枚举法,它的运用和解法,就像一场轻松的游戏,让我们一起来“寻宝”吧!先说说什么是枚举法吧。

就是把所有可能的情况都列出来,然后一个一个地分析。

就像你在逛街,看到好多漂亮的衣服,你得试试才能知道哪件最适合你。

想象一下,假设你要参加一个舞会,衣服、鞋子、配饰全得搭配好。

你可以先列出所有的选择,慢慢试,最后找到最合适的那套。

听起来是不是很简单?是啊,关键在于你得耐心点儿,把每一个选择都好好“捋一捋”。

这招儿在数学题里也一样管用。

比如说,有一堆数字,你得找出和为某个特定数值的组合。

哎,别着急,咱们可以逐个枚举这些组合,看看哪几个数字凑在一起就能成就那个“梦想中的数”。

就像搭积木一样,慢慢来,不着急,最后总会拼出一个满意的形状来。

朋友们,这可是一种锻炼思维的好方法哦,既能训练逻辑,又能提升耐心,真是一举两得呢。

再举个例子,想象一下,咱们要去旅游,目标是找到一个最划算的行程。

你可能会想,“那得列出所有的景点、交通、食宿,细细比较。

”这就是枚举法的典型应用了。

慢慢比对价格,看看哪个套餐最合算。

也许你会发现,某个看似平常的选择,实际上能给你带来意想不到的惊喜。

就像生活,有时候不经意间的小决定,能给你带来大大的不同。

枚举法也有点缺点,特别是在选择多的时候,容易让人感到头晕眼花。

不过,没关系,记得放松心情。

就像吃自助餐,有时候光看菜单就觉得眼花缭乱,但只要你慢慢走过去,试一试,发现美味总是会来的。

找到合适的方法去整理这些选择,比如分类、分组,慢慢来,总会理出个头绪。

大家也许会问,枚举法能解决所有问题吗?当然不是,生活中的很多问题都是复杂多变的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B
B 列表分析法
注 1、分类要全,不可遗漏。分类后,把每一类中每一个

符合条件的对象列举出来
点 2、分类要清,避免重复
例1、用数字1,2,3可以组成多少个不同的三位数?分别是哪几个数? (每个数字只用一次)
【分析】三位数的最高位是百位,我们可以根据百位上数字的不同,进行分类排列: 百位上的数字是1,则有:123、132两种 百位上的数字是2,则有:213、231两种 百位上的数字是3,则有:312、321两种 所以,1、2、3这三个数字,可以组成123、132、213、231、312、321共6个数字。
枚举法解题的关键是准确分类
A 树形法
A
枚举法解题 方法
B
B 列表分析法
注 1、分类要全,不可遗漏。分类后,把每一类中每一个

符合条件的对象列举出来
点 2、分类要清,避免重复
注意:当用不同大小的数字组合成一个 固定的数值时,从大的数开始比小的数有利。
随堂练习 2
(1)把7支相同的铅笔分成3份,那么有多少种不同的分法?
(2)有甲、乙、丙、丁、戊五个足球代表队进行比 赛,每个队都要和其他队赛一场,总共要赛多少场?
例5 计划将甲、乙、丙三种不同的树苗种植在一条直路的同一侧,要求相邻的两棵
【分析】题目给定的限制条件为:合计花5元5角,买三种文具中的两种,数量不做限制。我们不遗漏 不重复,我们试试用表格的方法来枚举。
签字笔 1 1 2
圆珠笔 3
1 2 3 4 5
橡皮
5 1 9 7 5 3 1
我们从哪种文具着手分析呢?我是先从签字笔 开始选的。
大家可以试试从橡皮开始选择。比较下,先选 择哪一种更好。为什么呢?
例2、小明有面值为5角、8角的邮票各两枚,他用这些邮பைடு நூலகம்能付多少种 不同的邮资(寄信时,所需邮票的钱数)?
【分析】邮资由邮票的面值和使用的邮票张数决定,因此我们可以根据面值或张数来进行分类排序。
第1类:使用一张邮票,则有5角和8角2种; 第2类:使用二张邮票,则有1元、1元3角、1元6角3种; 第3类:使用三张邮票,则有1元8角、2元1角2种; 第4类:使用四张邮票,则有2元6角1种。
树苗不能相同,那么考虑前5棵,第1棵与第5棵同是甲种树苗的种法共有
种.
分析:由于相邻两棵树不能相同,第5棵要为甲种树苗,因此第四棵树苗
不能为甲.枚举可得共有不同种法6种.
解:画树状图枚举如下:
因此,第1棵与第5棵同是甲种树苗的种法共有6种.
例6、用长48厘米的铁丝围成各种长方形(长和宽都是整厘米数,且长 和宽不相等),围成的最大一个长方形面积是多少平方厘米?
张计算它们的钱数,共有
种不同的钱数。
【分析】一共有5张,每次取出4张计算钱数,则每次会剩下1张。每次剩下的 那1张都不相同,共可得出5种不同的钱数。
解:(1)剩下1张1元,取出5+10+50+100=165(元); (2)剩下1张5元,取出1+10+50+100=161(元); (3)剩下1张10元,取出1+5+50+100=156(元); (4)剩下1张50元,取出1+5+10+100=116(元); (5)剩下1张100元,取出1+5+10+50=66(元). 综上,共可得出5种不同的钱数.
请根据上表,当周长一定时,使围成的图形面积最大
随堂练习 3
(1)从A城到B城可乘火车、汽车、轮船;从B城到C城 可乘火车、汽车、轮船、飞机。某人从A城开始游览, 经B城到C城共有多少种走法?
(2)A、B、C三个自然数的乘积是6,求A、B、C 三个自然数分别可能是几? (A、B、C可以是不同的数,也可以是相同的数)
说明:此题也可以整体考虑.1+5+10+50+100=166(元).取出4张,会剩下1张 .因此,共有以下5种不同的钱数:166-1=165(元);166一5=161(元); 166-10=156(元);166-50=116(元);166-100=66(元).
例4、一个文具店中橡皮的售价为每块5角,圆珠笔的售价为每支1元, 签字笔的售价为每支2元5角。小明要在该店花5元5角购买其中的两种文 具,他有多少种不同的选择?
【分析】周长48厘米的长方形的长+宽=48÷2=24厘米,因为都是整数,所以可以列表如下

23
22
21
20

1
2
3
4
面积 23
44
63
80
19
18
17
16
15
14
13
5
6
7
8
9
10 11
95 108 119 128 135 140 143
我们知道长方形的面积为:长×宽,所以相对应的面积如表所示。 由表格,我们可以知道,围成的最大一个长方形面积为143平方厘米。
用枚举法解应用题
教育目标
初步了解枚举法 学会用枚举法分析问题、解决问题 掌握运用枚举法的分类方法和分析方法
教育重点
学会用枚举法解决问题
教育难点
掌握分类的方法,并在用枚举法解决问题时,避免遗漏
枚举法
如上例,找出并计算符合条件的数的总数,它的数量关系比较隐蔽,我们只能一一 把符合条件的数列举出来。这样的计数方法称为枚举法。
存在的问题:无重复、无遗漏是枚举法的难点。 解决的办法:有次序、有规律的进行枚举。
数目小:按一定顺序一一列举可能的情况

初步

估计

数目

大小
数目大:抓住对象的特征,分类列举
枚举法使用于数目、种类不很繁杂的题,且分析时尽量做到分类全面, 不重复不遗漏。
枚举法解题的关键是准确分类
A 树形法
A
枚举法解题 方法
所以,总共能付2+3+2+1=8种邮资。
随堂练习 1
(1)用3、4、7三张数守卡片,可以排成几个不同的三位 数?其中最小的三位数是多少?最大的三位数是多少?
(2)用3张10元和2张50元一共可以组成多少种 币值(组成的钱数)?
例3 你的口袋里有1元、5元、10元、50元、100元的纸币各1张.如果每次取出4
相关文档
最新文档