3框架内力与位移计算4(D值法)

合集下载

框架结构内力位移计算算例

框架结构内力位移计算算例

结构力学课程大作业——多层多跨框架结构内力及位移计算班级学号姓名华中科技大学土木工程与力学学院年月日结构力学课程大作业——多层多跨框架结构内力与位移计算一、任务1、计算多层多跨框架结构在荷载作用下的弯矩和结点位移。

2、计算方法要求:(1)用迭代法、D 值法、反弯点法及求解器计算框架结构在水平荷载作用下的弯矩,并用迭代法的结果计算其结点位移。

(2)用迭代法、分层法、二次力矩分配法及求解器计算框架结构在竖向荷载作用下的弯矩,并用迭代法的结果计算其结点位移。

3、分析近似法产生误差的原因。

二、计算简图及基本数据本组计算的结构其计算简图如图1所示,基本数据如下。

混凝土弹性模量:723.010/h E kN m =⨯构件尺寸:柱:底 层:23040b h cm ⨯=⨯其它层:23030b h cm ⨯=⨯ 梁:边 梁:22560b h cm ⨯=⨯中间梁:22530b h cm ⨯=⨯ 水平荷载:'15P F kN =,30P F kN =(见图2)竖向均布恒载:17/q kN m 顶= 21/q kN m 其它=(见图8) 图1各构件的线刚度:EIi L =,其中312b h I ⨯=边 梁:33410.250.6 4.51012I m -⨯==⨯F 7311 3.010 4.510225006EI i kN m L -⨯⨯⨯===⋅ 中间梁: 34420.250.3 5.6251012I m -⨯==⨯ 7422 3.010 5.6251067502.5EI i kN m L -⨯⨯⨯===⋅ 底层柱: 33440.30.4 1.61012I m -⨯==⨯ 7344 3.010 1.61096005EI i kN m L -⨯⨯⨯===⋅ 其它层柱:34430.30.3 6.751012I m -⨯==⨯ 7433 3.010 6.75106136.43.3EI i kN m L -⨯⨯⨯===⋅ 三、水平荷载作用下的计算 (一)用迭代法计算1、计算各杆的转角分配系数ikμ' 转角分配系数计算公式:()2ikikiki i i μ'=-∑结点“1”:12225000.3932(6136.422500)μ'=-=-⨯+156136.40.1072(6136.422500)μ'=-=-⨯+结点“2”:21225000.3182(67506136.422500)μ'=-=-⨯++图2232(67506136.422500)⨯++266136.40.0872(67506136.422500)μ'=-=-⨯++由于该结构是对称结构,因此结点“3”的分配系数应该等于结点“2”的,结点“4”的分配系数应该与结点“1”的相等,所以本题只需计算1、2、5、6、9、10、13、14、17、18结点的分配系数。

框架结构的内力和位移计算

框架结构的内力和位移计算

H
(4.21)
(10.53)
E
(4.84)
(括号内数字为线刚度相对值)
A
(i=EI/l)
B
8.00m
2021/4/10
(8.21)
I
(2.00) q=2.4kN/m
(10.77)
F
(5.00)
C
6.00m
19
4.40m
3.80m
水平荷载作用下的近似计算——反弯点法
框架所受水平荷载主要是风力和地震作用。将在每个楼层上 的总风力和总地震作用分配给各个框架,将结构分析简化为平面 框架分析。 • 受力和变形特点 • 假定条件 • 计算方法 • 需注意的问题
3
2
2i12z1
4i12z1 1/2
1
0 3 i13 z1
4i15z1
i14 z1 -1
4
i14 z1
1/2
5
2i15z1
11
2021/4/10
弯矩分配法注意事项
12
2021/4/10
例题
G
(4.21)
D
(7.11)
q=2.8kN/m
(7.63) q=3.8kN/m
H
(4.21)
(9.53)
E
基本假定
①假定同层各节点转角相同; 承认节点转角的存在,但是为了计算的方便,假定同层各节点转角相同。 ②假定同层各节点的侧移相同。这一假定,实际上忽略了框架梁的轴向变形。这与实际结构差别不大。
优点: 1、计算步骤与反弯点法相同,计算简便实用。 2、计算精度比反弯点法高。 缺点: 1、忽略柱的轴向变形,随结构高度增大,误差增大。 2、非规则框架中使用效果不好。
点角位移 ,0 各节点只有侧移,同层各节点 水平位移相等; • 底层柱反弯点在距底端2/3h处,上层各柱反 弯点在柱高1/2处。

框架施工图—内力分析及侧移计算(建筑构造)

框架施工图—内力分析及侧移计算(建筑构造)

(2) 侧移刚度d的确定 侧移刚度d表示柱上下两端有单位侧移时在柱中产生的 剪力。根据假定(1),梁柱线刚度之比无穷大,则各 柱端转角为零,由结构力学的两端无转角但有单位水平 位移时杆件的杆端剪力方程,柱的侧移刚度d可写成:
V 12 i
d= =
c
D
h2
EI
i=
c
h
内力分析及侧移计算
(3)同层各柱剪力的确定
(5
柱端弯矩确定以后,根据节点平衡条件可确定梁的弯矩。
对于边柱节点(图(a)),有Mb=Mc1+Mc2 对于中柱节点(图1(b))
Mb1=ib1/(ib1+ib2)(Mc1+Mc2 Mb2=ib2/(ib1+ib2)(Mc1+Mc2)
内力分析及侧移计算
如图所示,从框架中任取一柱AB,根据转角位移方
内力分析及侧移计算
分层法
认为某层框架梁上的荷载只给本层梁及与本层梁相连的框架产 生剪力和弯矩
进行弯矩分配后叠加,叠加后的不平衡弯矩再分配但不传递
内力分析及侧移计算
2 框架在水平荷载作用下内力的近似计算——反弯点法和D值法
A 反弯点法 反弯点法基本假定: (1) 在进行各柱间的剪力分配时,假定梁与柱的线
(2) 在确定各柱的反弯点位置时,假定除底层柱以
多层多跨框架所受水平荷载主要是风荷载及水平 地震作用。一般可简化为作用在框架节点上的集中 荷载,其弯矩图如图(a)所示。它的特点是,各杆的 弯矩图都是直线形,每杆都有一个零弯矩点,称为 反弯点。框架在水平荷载作用下的变形情况如图(b) 所示
内力分析及侧移计算
程,柱两端剪力为:
V
=
12ic h2
6ic h

水平荷载作用下框架内力的计算——D值法资料讲解

水平荷载作用下框架内力的计算——D值法资料讲解

水平荷载作用下框架内力的计算——D值法资料讲解D值法是一种常用于计算框架结构在水平荷载作用下的内力的方法。

下面是对D值法进行详细讲解的资料。

一、D值法的基本概念D值法是一种近似计算框架结构内力的方法,其基本思想是通过估算框架结构在水平荷载作用下的刚度来计算内力。

具体而言,D值法通过假设结构刚度的变化与结构的变形呈线性正比关系,将结构的刚度表示为一个D值,再通过对结构的初始刚度和变形的估计,计算出结构在水平荷载作用下的内力。

二、D值的计算步骤(一)计算结构的初始刚度1.根据结构的几何形状和材料特性,计算出结构在初始状态下的刚度矩阵。

2.对刚度矩阵进行变换,得到初始刚度矩阵。

(二)估算结构的变形1.假设结构受到线性弹性变形的影响。

2.估计结构的位移和转角。

(三)计算D值1.根据估算的位移和转角,计算出结构的变形矩阵。

2.根据初始刚度矩阵和变形矩阵,计算出结构的刚度矩阵。

3.将刚度矩阵转化为D值,即刚度指数。

(四)计算内力1.根据D值和水平荷载的大小,计算出结构的内力。

2.对结构的各个部位进行内力平衡计算,得到各个构件的内力。

三、D值法的优缺点D值法在计算框架结构内力时具有一定的优势和局限性。

(一)优点1.简洁易行:D值法不需要进行繁琐的矩阵计算,计算步骤相对简单。

2.适用范围广:D值法适用于一般的框架结构,包括多层和复杂形状的结构。

3.结果可靠:在合理的假设和估计前提下,D值法可以得到较为准确的内力计算结果。

(二)缺点1.假设过于理想化:D值法假设结构的变形与刚度呈线性正比关系,这在实际情况下不一定成立。

2.忽略非线性效应:D值法无法考虑结构中的非线性效应,如材料的非线性和连接件的滑动、屈曲等。

3.精度受限:由于D值法是一种近似计算方法,其精度相对有限,不适用于对结构内力要求较高的情况。

四、D值法的应用领域D值法在实际工程中被广泛应用,特别是在简化计算和快速评估结构内力的情况下。

1.结构抗震设计:D值法常用于抗震设计中,通过快速计算内力,进行结构的抗震性能评估。

框架结构的内力和位移计算(精)

框架结构的内力和位移计算(精)

假定: (1)平面结构假定; (2)忽略柱的轴向变形; (3)D值法考虑了结点转角, 假定同层结点转角相等
2019/3/19
27
D 值法
计算方法 1、D值——修正抗侧刚度的计算 水平荷载作用下,框架不仅有侧移, 且各结点有转角,设杆端有相对位 移 ,转角 、 ,转角 1 2 位移方程为:
2019/3/19
22
反弯点法
2、剪力的计算 根据假定1:
V1 j d1 j j
Vij d ij j
Vij , d ij
——第j层第I根柱的剪力及其抗侧刚度
第j层总剪力
V pj
Vpj V1 j V2 j Vmj
2019/3/19 23
反弯点法
V1 j
第j层各柱剪力为
M ( z) N B
M(z)——上部水平荷载对坐标Z力矩总和 B——两边柱轴线间的距离
N
2019/3/19 44
柱轴向变形产生的侧移

N j
任意水平荷载下柱轴向变形产生的第j层处侧移 把框架连续化,根据单位荷载法:
2 ( NN / EA)dz
N j 0
Hj
N ( H j z) / B
框架结构的内力和位移计算荷载和设计要求51计算简图计算简图计算简图计算简图计算简图52竖向荷载作用下的近似计算方法分层法分层法分层法分层法力学知识回顾分层法计算过程构件弯矩图53水平荷载作用下内力近似计算方法反弯点法反弯点法弯点法反弯点法反弯点法反弯点法反弯点法反弯点法54水平荷载作用下内力近似计算方法d55水平荷载作用下侧移的近似计算梁柱刚度比k中柱
2019/3/19
9
计算简图
二、结构构件的截面抗弯刚度 考虑楼板的影响,框架梁的截面抗弯刚度应适当提高 现浇钢筋混凝土楼盖: 中框架:I=2I0 边框架:I=1.5I0 装配整体式钢筋混凝土楼盖: 截面形式选取: 框架梁跨中截面: 中框架:I=1.5 I0 T型截面 边框架:I=1.2 I0 框架梁支座截面: 装配式钢筋混凝土楼盖: 矩形截面 中框架:I=I0 边框架:I=I0 注:I0为矩形截面框架梁的截面惯性矩

第四章 框架结构内力计算

第四章 框架结构内力计算

4、计算和确定梁、柱弯矩分配系数。 按修正后的刚度计算各结点周围杆件的杆 端分配系数。 5、按力矩分配法计算单层梁、柱弯矩。 6、将每个单层框架的计算结果按相应部分迭 加起来便得到原框架的计算结果,即柱的弯矩 取相邻两个单元中同一柱对应弯矩之和,而梁 的弯矩直接采用。
四、计算例题
作业2
3.2 水平荷载下内力的近似计算—反弯点法
d
i 1
m
V pj
ij
4、柱端弯矩的确定 M j V jY j 柱下端弯矩 柱上端弯矩 M j V j (h j Yj )
5、梁端弯矩的确定 M ml (M mt M m1b ) 对于边柱 ibl 对于中柱
M ml ( M mt M m1b ) M mr ibl ibr ibr ( M mt M m1b ) ibl ibr
第3章 框架结构的内力和位移计算
3.1 竖向荷载下内力的近似计算—分层法 3.2 水平荷载下内力的近似计算—反弯点法 3.3 水平荷载下内力的近似计算—D值法 3.4 水平荷载作用下侧移的近似计算
3.1 竖向荷载下内力近似计算—分层法
一、竖向荷载 自重、活荷、雪荷载及施工检修荷载等。 二、分层法的基本假设 1、忽略侧移的影响; 2、忽略每层梁的竖向荷载对其它各层梁 的影响。 三、分层法计算要点 1、将N层框架划分成N个单层框架,柱 端假定为固端, 用力矩分配法计算。
三、柱的侧移刚度D 12ic D 2 h
—为柱侧移刚度修正系数,表示梁柱刚 度比对柱侧移刚度的影响。

四、剪力计算 有了D值后,与反弯点法类似,计算各柱分 配的剪力 Dij Vij V pj Dij 五、确定柱反弯点高度比 影响柱反弯点高度的主要因素是柱上下端的 约束条件。

框架结构内力与位移计算

框架结构内力与位移计算

《高层建筑结构与抗震》辅导材料四框架结构内力与位移计算学习目标1、熟悉框架结构在竖向荷载和水平荷载作用下的弯矩图形、剪力图形和轴力图形;2、熟悉框架结构内力与位移计算的简化假定及计算简图的确定;3、掌握竖向荷载作用下框架内力的计算方法——分层法;4、掌握水平荷载作用下框架内力的计算方法——反弯点法和D值法,掌握框架结构的侧移计算方法。

学习重点1、竖向荷载作用下框架结构的内力计算;2、水平荷载作用下框架结构的内力及侧移计算。

框架在结构力学中称为刚架,刚架的内力和位移计算方法很多,可分为精确算法和近似算法。

精确法是采用较少的计算假定,较为接近实际情况地考虑建筑结构的内力、位移和外荷载的关系,一般需建立大型的代数方程组,并用电子计算机求解;近似算法对建筑结构引入较多的假定,进行简化计算。

由于近似计算简单、易于掌握,又能反映刚架受力和变形的基本特点,因此近似的计算方法仍为工程师们所常用。

本章内容主要介绍框架结构在荷载作用下内力与位移的近似计算方法。

其中分层法用于框架结构在竖向荷载作用下的内力计算,反弯点法和D值法用于框架结构在水平荷载作用下的内力计算。

既然是近似计算,就需要熟悉框架结构的计算简图和各种计算方法的简化假定。

一、框架结构计算简图的确定一般情况下,框架结构是一个空间受力体系,可以按照第四章所述的平面结构假定的简化原则,忽略结构纵向和横向之间的空间联系,忽略各构件的抗扭作用,将框架结构简化为沿横方向和纵方向的平面框架,承受竖向荷载和水平荷载,进行内力和位移计算。

结构设计时一般取中间有代表性的一榀横向框架进行分析,若作用于纵向框架上的荷载各不相同,则必要时应分别进行计算。

框架结构的节点一般总是三向受力的,但当按平面框架进行结构分析时,则节点也相应地简化。

在常见的现浇钢筋混凝土结构中,梁和柱内的纵向受力钢筋都将穿过节点或锚入节点区,这时节点应简化为刚接节点;对于现浇钢筋混凝土柱与基础的连接形式,一般也设计成固定支座,即为刚性连接。

三种方法计算框架水平作用下的内力(D值法,反弯点法,门架法)

三种方法计算框架水平作用下的内力(D值法,反弯点法,门架法)

0
0
0.40 1.28 0.219 90758 19876
7
3.20 0.56 0.40
0
0
0
0.40 1.28 0.219 90758 19876
6
3.20 0.56 0.45
0
0
0
0.45 1.44 0.219 90758 19876
5
3.20 0.56 0.45
0
0
0
0.45 1.44 0.219 90758 19876
10 3.20 0.47 0.24
0
0
0
0.24 0.77 0.190 90758 17244
9
3.20 0.47 0.34
0
0
0
0.34 1.09 0.190 90758 17244
8
3.20 0.47 0.39
0
0
0
0.39 1.25 0.190 90758 17244
7
3.20 0.47 0.40
4.74
1.6
7.58 3.89 4.10 3.48 3.89
C 9.08E+4
2.43
3.89
A 9.08E+4
4.86
7.78
9 B 1.77E+5 358600 19.2 9.48
1.6
15.17 11.66 12.30 10.45 11.66
C 9.08E+4
4.86
7.78
A 9.08E+4
表 1 反弯点法框架弯矩的计算
柱端弯
层轴 号号
D ij
∑ Dij
Fi
Vj
yh 或 (1-y)h
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

作业题:某三层两跨框架,跨度及层高、尺寸如图,柱截面积尺寸300×350,左跨梁截面为250×500,
右跨梁截面为250×400,现浇梁柱及楼面,采用C30钢筋混凝土(Ec=3.0×104MPa),试用D值法求其 内力(M图)。 0.8kN 3.60m
J
1.2kN
K
L
1.5kN 4.50m
D A
7.80m
第三章 框架结构内力与位移计算
----D值法
水平荷载作用下的改进反弯点法——D值法
当框架的高度较大、层数较多时,柱子的截面尺寸一般较大,这时梁、柱的线刚度之比往往要小于3, 反弯点法不再适用。如果仍采用类似反弯点的方法进行框架内力计算,就必须对反弯点法进行改进— —改进反弯点(D值)法。 日本武藤清教授在分析多层框架的受力特点和变形特点的基础上作了一些假定,经过力学分析,提出了 用修正柱的抗侧移刚度和调整反弯点高度的方法计算水平荷载下框架的内力。修正后的柱侧移刚度用D表 示,故称为D值法。
反弯点高度比
图给出了柱反弯 点位置和根据柱 剪力及反弯点位 置求出的柱端弯 矩、根据结点平 衡求出的梁端弯 矩。根据梁端弯 矩可进一步求出 梁剪力(图中未 给出)。
作业练习
1.用反弯点法和D值法计算的刚度系数d和D值物理意义是什么?什么区别?为什么?二者在基本假定 上有什么不同?分别在什么情况下使用? 2.影响水平荷载下柱反弯点位置的主要因素是什么? 框架顶层和底层柱反弯点位置与中部各层反弯点位 置相比,有什么变化? 3.D值法的计算步骤是什么?边柱和中柱,上层柱和底层柱D值的计算公式有是区别? 4.请归纳一下D值法与反弯点法都作了哪些假定?有哪些是相同的?为什么说二者都是近似方法?D值法 比反弯点法有哪些改进?
E
F
B
6.00m
C
பைடு நூலகம்3.60m
G
H
I
1.柱标准反弯点高度比 标准反弯点高度比是在各层等高、各跨相等、各层梁和柱线刚度都不改变的 多层框架在水平荷载作用下求得的反弯点高度比。为使用方便,已把标准反弯点 高度比的值制成表格。 在均布水平荷载下的yn列于表3—2;在倒三角形分布荷载下的yn列于表3—3。 根据该框架总层数m及该层所在楼层j以及梁柱线刚度比K值,从表中查得标准反弯 点高度比yn。
2.上下梁刚度变化时的反弯点高度比修正值yl 当某柱的上梁与下梁的刚度不等,柱上、下 结点转角不同时,反弯点位置有变化,应将标准 反弯点高度比yn加以修正,修正值为yl。 • 当 i1 十 i2<i3 十 i4 时.令 α 1=(i1 十 i2)/(i3 十 i4),根据α 1和K值从表3-4中查出y1,这时反弯 点应向上移,y1取正值。 • 当i3十i4<i1十i2 时.令α 1=(i3十i4)/(i1 十i2 ),根据α 1和K值从表3-4中查出y1,这时反弯点 应向下移,y1取负值。 • 对于底层,不考虑y1修正值。
反弯点高度比修正
3.上下层高度变化时反弯点高度比修正位y2和y3
层高有变化时,反弯点也有移动,如图 所示。 令上层层高和本层层高之比 h 上/ h=α 2, 由表3—5可查得修正值y2。 当α 2>1时,y2为正值,反弯点向上移。 当α 2<1时,y2为负值,反弯点向下移。 同理,令下层层高和本层层高之比 h 下 / h =α 3,由表3—5可查得修正值y3。
基本假定
①假定同层各节点转角相同; 承认节点转角的存在,但是为了计算的方便,假定同层各节点转角相同。 ②假定同层各节点的侧移相同。这一假定,实际上忽略了框架梁的轴向变形。这与实际结构差别不大。 优点: 1、计算步骤与反弯点法相同,计算简便实用。 2、计算精度比反弯点法高。 缺点: 1、忽略柱的轴向变形,随结构高度增大,误差增大。 2、非规则框架中使用效果不好。
2
(4 4 2 2)ic (4 2)i1 (4 2)i2 (6 6)ic 0 h 2 2 2 (i1 i2 ) / ic h 2 K h
上式反映了转角与层间位移δ 的关系

D

12ic 6ic 12ic 2 2 2 2 K h2 h2 h2 2 K 12i 2 则 D 2c h 2 K V
修正内容: • 柱侧移刚度D值
• 柱反弯点高度 比
柱 侧 移 刚 度 D 值
当梁柱线刚度比为有限值时,在水平荷载作用下,框架不仅有侧移,且各结点都有转角。 当杆端有相对位移δ ,且两端有转角θ l及θ 2时,由转角位移方程得到
12i 6i V 2c c ( 1 2 ) h h
i1 i2 i3 i4 K 2ic
对于边柱,令il=i3=0(或i2=i4=0),可得
i2 i4 K 2ic
对于框架的底层柱,由于底端为固结支座,无转角,亦可采取类似方法推导,过程 从略,所得底层柱的K值及α值不同于上层柱。 现将框架中常用各种情况的K值及α计算公式列于表中,以便应用。
影响柱反弯点高度的主要因素是柱上下端的约束条件。 当两端固定或两端转角完全相等时,θj-1=θj,因而Mj-1=Mj,反弯点在中点。 两端约束刚度不相同时,两端转角也不相等,θj-1≠θj,反弯点移向转角较大的一端,也就是移向约束刚 度较小的一端。 当一端为铰结时(支承转动刚度为0),弯矩为0,即反弯点与该端重合。 反弯点位置
影响柱两端约束刚度的主要因素
(1) (2) (3) (4) (5) 结构总层数及该层所在位置; 粱柱线刚度比; 荷载形式; 上层与下层粱刚度比; 上下层层高变化。
假定: 1、各层层间位移相等 2、各层梁、柱转角相等 3、上下层柱线刚度相等 4、上下层柱高相等
在D值法中,通过力学分析求得标准情况下的标准反弯点高度比yn (即反弯点到柱下端距离与柱全高的比值),再根据上、下梁线刚 度比值及上、下层层高变化,对yn进行调整。
框架侧移与节点转角
K为梁柱刚度比, α 值表示梁柱刚度比对柱刚度的影响。
K为梁柱刚度比,α值表示梁柱刚度比对柱刚度的影响。当K值无限大时,α=1,所 得D值与d值相等;当K值较小时,α<1,D值小于d值。因此,α称为柱刚度修正系数。
在更为普遍的情况中,中间柱上下左右四根梁的线刚度都不相等,这时取线刚度平 均值计算K值,即
框架中常用各种情况的K值及α 计算公式
有了D值以后,与反弯点法类似,假定同一楼层各柱的侧移相等,可得各柱的剪力
Vij
D
Dij
VPj
ij
式中,Vij——第j层第i柱的剪力; Dij——第j层第i柱的侧移刚度D值; ΣDij——第j层所有柱D值总和; VPj——第j层由外荷载引起的总剪力。
柱反弯点高度比

D
V

D值推导
D值也称为柱的抗侧刚度,定义与d值相同,但D值与 位移δ 和转角θ 均有关。现推导D值如下。 在有侧移和转角的框架中取出一部分结构,假定框架各 层层高相等,并假定各层梁柱节点转角相等 即 θ l=θ 2=θ 3=θ , 各层层间位移相等,即δ l=δ 2=δ 3=δ 。取中间节点2 为隔离体,由平衡条件 M 0
综上所述,各层柱的反弯点高度比由下式计算: y=yn十y1十y2十y3
例3-3:图为3层框架结构的平面及剖面图。图b给出了楼层高处的总水平力及各杆线刚度相对值。要 求用D值法分析内力。
解: 计算各层柱D 值如表1。 由图a可见,每 层有10根边柱 及5根中柱,所 有柱刚度之和 可计算每根柱 分配到的剪力。
相关文档
最新文档