高考物理 动量冲量精讲精练 爆炸反冲碰撞动量能量综合练习题

合集下载

高考物理动量冲量精讲精练爆炸及反冲问题

高考物理动量冲量精讲精练爆炸及反冲问题

爆炸及反冲问题1.爆炸现象的三条规律(1)动量守恒:由于爆炸是在极短的时间内完成的,爆炸物体间的相互作用力远远大于系统受到的外力,所以在爆炸过程中,系统的总动量守恒.(2)动能增加:在爆炸过程中,由于有其他形式的能量(如化学能)转化为动能,所以爆炸后系统的总动能增加.(3)位置不变:爆炸和碰撞的时间极短,因而在作用过程中,物体产生的位移很小,一般可忽略不计,可以认为爆炸或碰撞后仍然从爆炸或碰撞前的位置以新的动量开始运动.2.反冲的两条规律(1)总的机械能增加:反冲运动中,由于有其他形式的能量转变为机械能,所以系统的总机械能增加.(2)平均动量守恒若系统在全过程中动量守恒,则这一系统在全过程中平均动量也守恒.如果系统由两个物体组成,且相互作用前均静止,相互作用后均发生运动,则由m1v1-m2v2=0,得m1x1=m2x2.该式的适用条件是:①系统的总动量守恒或某一方向的动量守恒.②构成系统的m1、m2原来静止,因相互作用而运动.③x1、x2均为沿动量守恒方向相对于同一参考系的位移.例题1.我国发现的“神舟十一号”飞船与“天宫二号”空间站实现了完美对接.假设“神舟十一号”到达对接点附近时对地的速度为v,此时的质量为m;欲使飞船追上“天宫二号”实现对接,飞船需加速到v1,飞船发动机点火,将质量为Δm的燃气一次性向后喷出,燃气对地向后的速度大小为v2.这个过程中,下列各表达式正确的是( ) A.mv=mv1-Δmv2B.mv=mv1+Δmv2C.mv=(m-Δm)v1-Δmv2D.mv=(m-Δm)v1+Δmv2解析:选 C.飞船发动机点火喷出燃气,由动量守恒定律,mv=(m-Δm)v1-Δmv2,选项C正确.例题2.在静水中一条长l的小船,质量为M,船上一个质量为m的人,当他从船头走到船尾,若不计水对船的阻力,则船移动的位移大小为( )A.mMl B.mM+mlC.MM+ml D.mM-ml解析:选B.船和人组成的系统水平方向动量守恒,人在船上行进,船将后退,即mv 人=Mv 船,人从船头走到船尾,设船后退的距离为x ,则人相对地面行进的距离为l -x ,有m l -xt=M x t ,则m (l -x )=Mx ,得x =mlM +m,故选项B 正确. 例题3.一弹丸在飞行到距离地面5 m 高时仅有水平速度v =2 m/s ,爆炸成为甲、乙两块水平飞出,甲、乙的质量比为3∶1.不计质量损失,重力加速度g 取10 m/s 2,则下列图中两块弹片飞行的轨迹可能正确的是( )解析:选B.弹丸爆炸过程遵守动量守恒,若爆炸后甲、乙同向飞出,则有 2m =34mv 甲+14mv 乙①若爆炸后甲、乙反向飞出,则有 2m =34mv 甲-14mv 乙②或2m =-34mv 甲+14mv 乙③爆炸后甲、乙从同一高度做平抛运动,由选项A 中图可知,爆炸后甲、乙向相反方向飞出,下落时间t =2hg=2×510 s =1 s ,速度分别为v 甲=x 甲t =2.51m/s =2.5 m/s ,v 乙=x 乙t =0.51m/s =0.5 m/s ,代入②式不成立,A 项错误;同理,可求出选项B 、C 、D 中甲、乙的速度,分别代入①式、②式、③式可知,只有B 项正确.例题4.以初速度v 0与水平方向成60°角斜向上抛出的手榴弹,到达最高点时炸成质量分别为m 和2m 的两块.其中质量大的一块沿着原来的方向以2v 0的速度飞行.求:(1)质量较小的另一块弹片速度的大小和方向; (2)爆炸过程有多少化学能转化为弹片的动能.解析:(1)斜抛的手榴弹在水平方向上做匀速直线运动,在最高点处爆炸前的速度v 1=v 0cos 60°=12v 0.设v 1的方向为正方向,如图所示,由动量守恒定律得:3mv 1=2mv 1′+mv 2其中爆炸后大块弹片速度v 1′=2v 0,解得v 2=-2.5v 0,“-”号表示v 2的速度与爆炸前速度方向相反.(2)爆炸过程中转化为动能的化学能等于系统动能的增量,ΔE k =12×2mv 1′2+12mv 22-12(3m )v 21=274mv 20.答案:(1)2.5v 0 方向与爆炸前速度的方向相反 (2)274mv 20。

课标通用版高考物理总复习第六章02第2讲动量守恒定律碰撞爆炸反冲运动精练含解析

课标通用版高考物理总复习第六章02第2讲动量守恒定律碰撞爆炸反冲运动精练含解析

课标通用版高考物理总复习第六章02第2讲动量守恒定律碰撞爆炸反冲运动精练含解析第2讲动量守恒定律碰撞爆炸反冲运动A组基础过关1.(2019甘肃兰州月考)一颗子弹水平射入置于光滑水平面上的木块A并留在其中,A、B用一根弹性良好的轻质弹簧连在一起,如图所示。

则在子弹打击木块A及弹簧被压缩的过程中,对子弹、两木块和弹簧组成的系统( )A.动量守恒,机械能守恒B.动量不守恒,机械能守恒C.动量守恒,机械能不守恒D.无法判定动量、机械能是否守恒答案 C 动量守恒的条件是系统不受外力或所受外力的合力为零,本题中子弹、两木块、弹簧组成的系统,水平方向上不受外力,竖直方向上所受外力的合力为零,所以动量守恒。

子弹射入木块瞬间有部分机械能转化为内能,故系统机械能不守恒。

只有选项C正确。

2.(多选)如图所示,在水平光滑地面上有A、B两个木块,A、B之间用一轻弹簧连接。

A靠在墙壁上,用力F向左推B使两木块之间弹簧压缩并处于静止状态。

若突然撤去力F,则下列说法中正确的是( )A.木块A离开墙壁前,A、B和弹簧组成的系统动量守恒,机械能也守恒B.木块A离开墙壁前,A、B和弹簧组成的系统动量不守恒,但机械能守恒C.木块A离开墙壁后,A、B和弹簧组成的系统动量守恒,机械能也守恒D.木块A离开墙壁后,A、B和弹簧组成的系统动量不守恒,但机械能守恒答案BC 撤去F后,木块A离开墙壁前,竖直方向两木块及弹簧组成的系统所受的重力与支持力平衡,合力为零;而水平方向墙对A有向右的弹力,所以系统所受的合外力不为零,系统的动量不守恒,但系统的机械能守恒,故A错误,B正确。

A离开墙壁后,系统水平方向不受外力,竖直方向外力平衡,所以系统所受的合外力为零,系统的动量守恒,因弹簧弹力属于系统内力,则系统机械能也守恒,故C正确,D错误。

3.如图所示,一质量M=3.0kg的长方形木板B放在光滑水平地面上,在其右端放一个质量m=1.0kg的小木块A。

给A和B以大小均为4.0m/s、方向相反的初速度,使A开始向左运动,B开始向右运动,A始终没有滑离木板B。

2024年新高考版物理专题七动量习题部分

2024年新高考版物理专题七动量习题部分

2.(2022北京顺义期末,6)如图所示为大球和小球叠放在一起、在同一竖 直线上进行的超级碰撞实验,可以使小球弹起并上升到很大高度。将质 量为3m的大球(在下)、质量为m的小球(在上)叠放在一起,从距水平地面 高h处由静止释放,h远大于球的半径,不计空气阻力,重力加速度为g。假 设大球和地面、大球与小球的碰撞均为弹性碰撞,且碰撞时间极短。下 列说法正确的是 ( ) A.两球一起下落过程中,小球对大球的弹力大小为mg B.大球与地面碰撞前的速度大小为 2gh C.大球与小球碰撞后,小球上升的高度仍为h D.若大球的质量远大于小球的质量,小球上升的最大高度为3h
3.(2018课标Ⅱ,15,6分)高空坠物极易对行人造成伤害。若一个50 g的鸡
蛋从一居民楼的25层坠下,与地面的碰撞时间约为2 ms,则该鸡蛋对地面
产生的冲击力约为 ( )
A.10 N
B.102 N
C.103 N
D.104 N
答案 C
4.(2021湖南,2,4分)物体的运动状态可用位置x和动量p描述,称为相,对应p -x图像中的一个点。物体运动状态的变化可用p-x图像中的一条曲线来 描述,称为相轨迹。假如一质点沿x轴正方向做初速度为零的匀加速直线 运动,则对应的相轨迹可能是 ( )
2.(2022广西柳州柳江中学模拟,8)(多选)A、B两物体在光滑水平面上沿 同一直线运动,如图为发生碰撞前后的v-t图线,由图线可以判断 ( )
A.A、B的质量比为3∶2 B.A、B作用前后总动量守恒 C.A、B作用前后总动量不守恒 D.A、B作用前后总动能不变 答案 ABD
3.(2022浙江杭州建人中学月考,5)如图所示,一砂袋用无弹性轻细绳悬于 O点。开始时砂袋处于静止状态,一弹丸以水平速度v0击中砂袋后未穿出, 二者共同摆动。若弹丸质量为m,砂袋质量为5m,弹丸和砂袋形状大小忽 略不计,弹丸击中砂袋后漏出的砂子质量忽略不计,不计空气阻力,重力加 速度为g。下列说法中正确的是 ( ) A.弹丸打入砂袋过程中,细绳所受拉力大小保持不变 B.弹丸打入砂袋过程中,弹丸对砂袋的冲量大小大于 砂袋对弹丸的冲量大小 C.弹丸打入砂袋过程中所产生的热量为 mv02

高考物理动量冲量精讲精练爆炸反冲碰撞动量能量综合练习题

高考物理动量冲量精讲精练爆炸反冲碰撞动量能量综合练习题

爆炸反冲碰撞动量能量1.如图所示,在光滑水平面上质量分别为的A、B 两小球沿同一直线相向运动( )A.它们碰撞前的总动量是B.它们碰撞后的总动量是C.它们碰撞前的总动量是D.它们碰撞后的总动量是18 kg ·m/s,方向水平向右18 kg ·m/s,方向水平向左2 kg · m/s,方向水平向右2 kg · m/s,方向水平向左解析:选 C.它们碰撞前的总动量是 2 kg ·m/s,方向水平向右,A、B相碰过程中动量守恒,故它们碰撞后的总动量也是 2 kg ·m/s,方向水平向右,选项C正确.2. 一枚火箭搭载着卫星以速率v0 进入太空预定位置,由控制系统使箭体与卫星分离.已知前部分的卫星质量为m1,后部分的箭体质量为m2,分离后箭体以速率v2 沿火箭原方向飞行,若忽略空气阻力及分离要符合碰撞后乙球的速度必须大于或等于甲球的速度这一物理情景,即选项正确.4.(多选) 如图,大小相同的摆球a和b的质量分别为m和3m,摆长相同,摆动周期相同,并排悬挂,平衡时两球刚好接触,现将摆球 a 向左拉开一小角度后释放,若两球的碰撞是弹性的,下列判断正确m A=2 kg 、m B=4 kg ,速率分别为v A=5 m/s 、v B=2 m/s 前后系统质量的变化,则分离后卫星的速率v1 为()A.v0-v2 B.v0+v2m2C.v0-v2mm2D.v0+m(v 0-v)解析:选 D. 由动量守恒定律得(m1+m2)v 0=m1v1+m2v2得v1=v0+(v0-v2).3.甲、乙两球在水平光滑轨道上向同方向运动,已知它们的动量分别是p1= 5 kg· m/s,p2=7 kg· m/s,甲从后面追上乙并发生碰撞,碰后乙球的动量变为10 kg ·m/s,则二球质量m1与m2 间的关系可能是下面A.m1=m2 B.2m1=m2C.4m1=m2 D.6m1=m2解析:选 C. 甲、乙两球在碰撞过程中动量守恒,所以有:p1+p2=p1′+p2′,即:p1′= 2 kg·m/s. 由于在碰撞过程中,不可能有其它形式的能量转化为机械能,分机械能转化为内能,因此系统的机械能不会增加.所以有只能是系统内物体间机械能相互转化或一部222m1+2m2≥22p1′ p2′1+2,所以有:212m1 m1≤51m2,为题目给出物理情景是“甲从后面追上乙”,要符合这一物理情景,就必须有pm1> p m2,即m1<57m2;同时还p1m′<p2m′,所以m1> 15m2.因此 C的是 ( )A .第一次碰撞后的瞬间,两球的速度大小相等B .第一次碰撞后的瞬间,两球的动量大小相等C .第一次碰撞后,两球的最大摆角不相同D .发生第二次碰撞时,两球在各自的平衡位置解析:选 AD.两球在碰撞前后,水平方向不受外力,故水平两球组成的系统动量守恒,由动量守恒定v 2 = 2 ,可见第一次碰撞后的瞬间,两球的速度大小相等,选项 A 正确;因两球质量不相等,故两球碰后 的动量大小不相等,选项 B 错;两球碰后上摆过程,机械能守恒,故上升的最大高度相等,因摆长相等, 故两球碰后的最大摆角相同,选项 C 错;两球摆动周期相同,故经半个周期后,两球在平衡位置处发生第二次碰撞,选项 D 正确.5. ( 多选 )在质量为 M 的小车中挂有一单摆,摆球的质量为 m 0,小车和单摆以恒定的速度 v 沿光滑水平地面运动,与位于正对面的质量为 m 的静止木块发生碰撞,碰撞的时间极短,在此碰撞过程中,下列哪 些情况说法是可能发生的 ( )A .小车、木块、摆球的速度都发生变化,分别变为 v 1、v 2、v 3,满足 (M + m 0)v =Mv 1+mv 2+m 0v 3B .摆球的速度不变,小车和木块的速度变化为 v 1和 v 2,满足 Mv =Mv 1+mv 2C .摆球的速度不变,小车和木块的速度都变为 v 1,满足 Mv = (M +m )v 1D .小车和摆球的速度都变为 v 1,木块的速度变为 v 2,满足 (M +m 0)v =(M +m 0)v 1+mv 2 解析:选 BC.在小车 M 和木块发生碰撞的瞬间,摆球并没有直接与木块发生力的作用,它与小车一起 以共同速度 v 匀速运动时,摆线沿竖直方向,摆线对球的拉力和球的重力都与速度方向垂直,因而摆球未 受到水平力作用,球的速度不变,可以判定A 、 D 项错误;小车和木块碰撞过程,水平方向无外力作用,系统动量守恒,而题目对碰撞后,小车与木块是否分开或连在一起,没有加以说明,所以两种情况都可能 发生,即 B 、 C 选项正确.6.如图所示,光滑水平面上的木板右端,有一根轻质弹簧沿水平方向与木板相连,木板质量 M =3.0kg ,质量 m =1.0 kg 的铁块以水平速度 v 0= 4.0 m/s ,从木板的左端沿板面向右滑行,压缩弹簧后又被弹回,最后恰好停在木板的左端,则在上述过程中弹簧具有的最大弹性势能为 ( )A .4.0 J律有: mv 0= mv 1+ 3mv 2;又两球碰撞是弹性的,故机械能守恒,即 1 2 1 2 1 22mv 0= 2mv 1+ 23mv 2,解两式得:B .6.0 Jv 0C .3.0 JD .20 J解析:选 C. 设铁块与木板速度相同时,共同速度大小为 大路程为 L ,摩擦力大小为 F f ,根据能量守恒定律得铁块相对于木板向右运动过程1 2 1 22mv 0= F f L + 2(M + m)v +E p铁块相对于木板运动的整个过程1 2 1 22mv 02= 2F f L + 2(M + m)v 2又根据系统动量守恒可知, mv 0= (M +m)v 联立得到: E p =3.0 J ,故选 C.7.如图所示 A 、 B 两个物体粘在一起以 v 0=3 m/s 的速度向右 间有少量炸药,经过 O 点时炸药爆炸,假设所有的化学能全部转化 物体的动能且两物体仍然在水平面上运动,爆炸后A 物体的速度依变为 v A =2 m/s , B 物体继续向右运动进入半圆轨道且恰好通过最高圆轨道光滑无摩擦,求:(1) 炸药的化学能 E ;(2) 半圆弧的轨道半径 R.解析: (1)A 、 B 在爆炸前后动量守恒,得 2mv 0= mv A + mv B ,解得 v B =4 m/s 根据系统能量守恒有:1 2 1 2 1 22(2m)v 02+ E = 2mv 2A + 2mv 2B , 解得 E =1对 O 到 D 的过程根据动能定理可得:1212-μmgx OC -mg ·2R = 2mv D - 2mv B联立解得 R =0.3 m. 答案: (1)1 J (2) 0.3 m8.冰球运动员甲的质量为 80.0 kg. 当他以 5.0 m/s 的速度向前运动时,与另一质量为 100 kg 、速度 为 3.0 m/s 的迎面而来的运动员乙相撞.碰后甲恰好静止.假设碰撞时间极短,求:(1) 碰后乙的速度的大小; (2) 碰撞中总机械能的损失.解析:(1) 设运动员甲、 乙的质量分别为 m 、M ,碰前速度大小分别为 v 和 v 1,碰后乙的速度大小为v 1′, 由动量守恒定律得mv - Mv 1= Mv 1′①代入数据得 v 1′= 1.0 m/s ②v ,铁块相对木板向右运动时,相对滑行的最 物体的质量 m A = m B =1 kg , O 点到半圆最低点 C 的距离 x OC =0.25 m ,水平轨道的动摩擦因数 μ= 0.2 ,半J.(2) 由于 B 物体恰好经过最高点,故有2 vDmg = mR运动,物体中 为 A 、B 两个 然向右,大小 点 D ,已知两(2) 设碰撞过程中总机械能的损失为ΔE,有1 2 1 2 1 22mv2+2Mv12=2Mv1′2+ΔE③联立②③式,代入数据得ΔE=1 400 J.答案:(1)1.0 m/s (2)1 400 J9.如图,质量分别为m A、m B的两个弹性小球A、B静止在地面上方,B球距地面的高度h=0.8 m ,A 球在B球的正上方.先将B球释放,经过一段时间后再将A球释放.当A球下落t =0.3 s 时,刚好与B球在地面上方的P 点处相碰.碰撞时间极短,碰后瞬间A球的速度恰为零.已知m B=3m A,重力加速度大小g=10 m/s 2,忽略空气阻力及碰撞中的动能损失.求:弹簧拴接静止在水平面上,弹簧右端固定.质量为3m的物块A从圆弧轨道上距离水平面高h 处由静止释放,与 B 碰撞后推着 B 一起运动但与 B 不粘连.求:(1) 弹簧的最大弹性势能;(2)A 与 B 第一次分离后,物块A沿圆弧面上升的最大高度.解析:(1)A 下滑与 B 碰撞前,根据机械能守恒得123mgh=2× 3mv1A 与B 碰撞,根据动量守恒得3mv1=4mv2弹簧最短时弹性势能最大,系统的动能转化为弹性势能1 2 9根据能量守恒得E pmax=2× 4mv21 2 3 4 5 6 7 8=4mgh(2) 根据题意, A 与 B 分离时 A 的速度大小为v2A与B分离后沿圆弧面上升到最高点的过程中,根据机械能守恒得3mgh′=21× 3mv22解得h′=196h99答案:(1) 4mgh (2) 16h11. 如图所示,质量为M的平板车P高为h,质量为m的小物块Q 的大小不计,位于平板车的左端,系统原来静止在光滑水平地面上,一不可伸长的轻质细绳长为R,一端悬于Q正上方高为R处,另一端系一质量为m的小球(大小不计) .今将小球拉至悬线与竖直位置成60°角,由静止释放,小球到达最低点时与Q的碰撞时间极短,且无机械能损失,已知Q离开平板车时速度大小是平板车速度的两倍,Q与P 之1 小物块Q 离开平板车时,二者速度各为多大?2 平板车P 的长度为多少?3 小物块Q落地时与小车的水平距离为多少?解析:(1) 设小球与Q 碰前的速度为v0,小球下摆过程机械能守恒:12mgR(1-cos 60 °) =2mv0v0=gR小球与Q进行弹性碰撞,质量又相等,二者交换速度.小物块Q在平板车P上滑动的过程中,Q与P 组成的系统动量守恒:间的动摩擦因数为μ,已知质量M∶m=4∶1,重力加速度为g,求:mv 0= mv 1+ Mv 2解得: v 1= 3gR ,v 2= 6gR .(2) 对系统由能量守恒:Q 落地时二者相距: s =(v 1-v 2)t = 2Rh .6其中 v 2= 12v 1,M = 4m ,1212122mv 0= 2mv 1+2Mv 2+ μ mgL ,解得:7RL =18μ.(3)Q 脱离 P 后做平抛运动,由答案: (1) 3gR 6gR (2) 7R18μ(3)2Rh 6高考理综物理模拟试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

高考物理总复习 第六章 02 第2讲 动量守恒定律 碰撞 爆炸 反冲运动精练(含解析)

高考物理总复习 第六章 02 第2讲 动量守恒定律 碰撞 爆炸 反冲运动精练(含解析)

第2讲动量守恒定律碰撞爆炸反冲运动A组基础过关1.(2019甘肃兰州月考)一颗子弹水平射入置于光滑水平面上的木块A并留在其中,A、B用一根弹性良好的轻质弹簧连在一起,如图所示。

则在子弹打击木块A及弹簧被压缩的过程中,对子弹、两木块和弹簧组成的系统( )A.动量守恒,机械能守恒B.动量不守恒,机械能守恒C.动量守恒,机械能不守恒D.无法判定动量、机械能是否守恒答案 C 动量守恒的条件是系统不受外力或所受外力的合力为零,本题中子弹、两木块、弹簧组成的系统,水平方向上不受外力,竖直方向上所受外力的合力为零,所以动量守恒。

子弹射入木块瞬间有部分机械能转化为内能,故系统机械能不守恒。

只有选项C正确。

2.(多选)如图所示,在水平光滑地面上有A、B两个木块,A、B之间用一轻弹簧连接。

A靠在墙壁上,用力F向左推B使两木块之间弹簧压缩并处于静止状态。

若突然撤去力F,则下列说法中正确的是( )A.木块A离开墙壁前,A、B和弹簧组成的系统动量守恒,机械能也守恒B.木块A离开墙壁前,A、B和弹簧组成的系统动量不守恒,但机械能守恒C.木块A离开墙壁后,A、B和弹簧组成的系统动量守恒,机械能也守恒D.木块A离开墙壁后,A、B和弹簧组成的系统动量不守恒,但机械能守恒答案BC 撤去F后,木块A离开墙壁前,竖直方向两木块及弹簧组成的系统所受的重力与支持力平衡,合力为零;而水平方向墙对A有向右的弹力,所以系统所受的合外力不为零,系统的动量不守恒,但系统的机械能守恒,故A错误,B正确。

A离开墙壁后,系统水平方向不受外力,竖直方向外力平衡,所以系统所受的合外力为零,系统的动量守恒,因弹簧弹力属于系统内力,则系统机械能也守恒,故C正确,D错误。

3.如图所示,一质量M=3.0kg的长方形木板B放在光滑水平地面上,在其右端放一个质量m=1.0kg的小木块A。

给A和B以大小均为4.0m/s、方向相反的初速度,使A开始向左运动,B开始向右运动,A始终没有滑离木板B。

高考物理动量冲量精讲精练碰撞与动量守恒典型练习题

高考物理动量冲量精讲精练碰撞与动量守恒典型练习题

碰撞与动量守恒1. 如图所示,方盒A 静止在光滑的水平面上,盒内有一个小滑块B ,盒的质量是滑块的2倍,滑块与盒内水平面间的动摩擦因数为μ;若滑块以速度v 开始向左运动,与盒的左、右壁发生无机械能损失的碰撞,滑块在盒中来回运动多次,最终相对于盒静止,则此时盒的速度大小为________;滑块相对于盒运动的路程为________.解析:设滑块质量为m ,则盒子的质量为2m ;对整个过程,由动量守恒定律可得mv =3mv 共解得v 共=v 3. 由功能关系可得μmgs=12mv 2-12·3m·⎝ ⎛⎭⎪⎫v 32 解得s =v 23μg. 答案:v 3 v 23μg2. (多选)在光滑水平面上动能为E 0,动量大小为p 0的小钢球1与静止小钢球2发生碰撞,碰撞前后球1的运动方向相反,将碰撞后球1的动能和动量大小分别记为E 1、p 1,球2的动能和动量大小分别记为E 2、p 2,则必有( )A .E 1<E 0B .p 2>p 0C .E 2>E 0D .p 1>p 0 解析:选AB.因碰撞后两球速度均不为零,根据能量守恒定律,则碰撞过程中总动能不增加可知,E 1<E 0,E 2<E 0.故A 正确,C 错误;根据动量守恒定律得:p 0=p 2-p 1,得到p 2=p 0+p 1,可见,p 2>p 0.故B 正确.故选AB.3.两球A 、B 在光滑水平面上沿同一直线、同一方向运动,m A =1 kg ,m B =2 kg ,v A =6 m/s ,v B =2 m/s.当A 追上B 并发生碰撞后,两球A 、B 速度的可能值是( )A .v A ′=5 m/s ,vB ′=2.5 m/sB .v A ′=2 m/s ,v B ′=4 m/sC .v A ′=-4 m/s ,v B ′=7 m/sD .v A ′=7 m/s ,v B ′=1.5 m/s解析:选B.虽然题中四个选项均满足动量守恒定律,但A 、D 两项中,碰后A 的速度v A ′大于B 的速度v B ′,必然要发生第二次碰撞,不符合实际;C 项中,两球碰后的总动能E k ′=12m A v A ′2+12m B v B ′2=57 J ,大于碰前的总动能E k =22 J ,违背了能量守恒定律;而B 项既符合实际情况,也不违背能量守恒定律,故B 项正确.4.如图所示,在光滑的水平面上,质量m 1的小球A 以速率v 0向右运动.在小球的前方O 点处有一质量为m 2的小球B 处于静止状态,Q 点处为一竖直的墙壁.小球A 与小球B 发生正碰后小球A 与小球B 均向右运动.小球B 与墙壁碰撞后原速率返回并与小球A 在P 点相遇,PQ =2PO ,则两小球质量之比m 1∶m 2为( )A .7∶5B .1∶3C .2∶1D .5∶3解析:选D.设A 、B 两个小球碰撞后的速度分别为v 1、v 2,由动量守恒定律有:m 1v 0=m 1v 1+m 2v 2.① 由能量守恒定律有:12m 1v 20=12m 1v 21+12m 2v 22② 两个小球碰撞后到再次相遇,其速率不变,由运动学规律有:v 1∶v 2=PO ∶(PO +2PQ)=1∶5.③联立①②③,代入数据解得:m 1∶m 2=5∶3,故选D.5. (多选)如图所示,长木板A 放在光滑的水平面上,质量为m =4 kg 的小物体B 以水平速度v 0=2 m/s 滑上原来静止的长木板A 的上表面,由于A 、B 间存在摩擦,之后A 、B 速度随时间变化情况如图乙所示,取g =10 m/s 2,则下列说法正确的是( )A .木板A 获得的动能为2 JB .系统损失的机械能为2 JC .木板A 的最小长度为2 mD .A 、B 间的动摩擦因数为0.1解析:选AD.由图象可知,木板获得的速度为v =1 m/s ,A 、B 组成的系统动量守恒,以B 的初速度方向为正方向,由动量守恒定律得:mv 0=(M +m)v ,解得:木板A 的质量M =4 kg ,木板获得的动能为:E k =12Mv 2=2 J ,故A 正确;系统损失的机械能ΔE=12mv 20-12mv 2-12Mv 2,代入数据解得:ΔE=4 J ,故B 错误;由图得到:0~1 s 内B 的位移为x B =12×(2+1)×1 m=1.5 m ,A 的位移为x A =12×1×1 m=0.5 m ,木板A 的最小长度为L =x B -x A =1 m ,故C 错误;由图象可知,B 的加速度:a =-1 m/s 2,负号表示加速度的方向,由牛顿第二定律得:μm B g =m B a ,代入解得μ=0.1,故D 正确.高考理综物理模拟试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

高考物理最新模拟题精选训练(碰撞与动量守恒)专题03 爆炸与反冲(含解析)

高考物理最新模拟题精选训练(碰撞与动量守恒)专题03 爆炸与反冲(含解析)

专题03 爆炸与反冲1. 一个连同装备总质量为M=100kg的宇航员,在距离飞船x=45m处与飞船处于相对静止状态,宇航员背着装有质量为m0=0.5 kg氧气的贮气筒。

筒上装有可以使氧气以v=50 m/s的速度喷出的喷嘴,宇航员必须向着返回飞船的相反方向放出氧气,才能回到飞船,同时又必须保留一部分氧气供途中呼吸用,宇航员的耗氧率为Q=2.5×10-4kg/s,不考虑喷出氧气对设备及宇航员总质量的影响,则:(1)瞬时喷出多少氧气,宇航员才能安全返回飞船?(2)为了使总耗氧量最低,应一次喷出多少氧气?返回时间又是多少?(2)当总耗氧量最低时,宇航员安全返回,共消耗氧气△m,则△m=m+Qt④由①②④可得△m=QxMmv+m=22.2510m-⨯+m当m=22.2510m-⨯,即m=0.15 kg时,△m有极小值,故总耗氧量最低时,应一次喷出m=0.15kg的氧气。

将m=0.15 kg代入①②两式可解得返回时间:t=600 s。

【点评】若向前瞬时喷出微量气体,根据动量定理,则受到一个向后的瞬时作用力,具有一个瞬时加速度,获得一个速度后退。

若向前持续喷出气体,则速度一个向后的持续力,具有持续的加速度。

2.一火箭喷气发动机每次喷出m=200 g的气体,喷出的气体相对地面的速度v=1 000 m/s。

设此火箭初始质量M =300 kg ,发动机每秒喷气20次,在不考虑地球引力及空气阻力的情况下,火箭发动机1 s 末的速度是多大?【名师解析】:以火箭和它在1 s 内喷出的气体为研究对象,系统动量守恒。

设火箭1 s 末的速度为v ′,1 s 内共喷出质量为20m 的气体,以火箭前进的方向为正方向。

由动量守恒定律得(M -20m )v ′-20mv =0, 解得v ′=20mv M -20m =20×0.2×1 000300-20×0.2m/s≈13.5 m/s。

答案:13.5 m/s3.如图5-4所示,一对杂技演员(都视为质点)荡秋千(秋千绳处于水平位置)从A 点由静止出发绕O 点下摆,当摆到最低点B 时,女演员在极短时间内将男演员沿水平方向推出,然后自己刚好能回到高处A 。

高三物理动量能量综合练习(含答案)

高三物理动量能量综合练习(含答案)

1第七章 动量、能量守恒1.如图,一个质量为m 的物体以某一速度从A 点冲上倾角为的加速度为3g/4,这物体在斜面上上升的最大高度为h ,则这过程中A 、重力势能增加了mgh 43;B 、机械能损失了mgh 21;C 、动能损失了mgh ;D 、重力势能增加了mgh2.在奥运比赛项目中,高台跳水是我国运动员的强项.质量为m 的跳水运动员进入水中后受到水的阻力而竖直向下做减速运动,设水对他的阻力大小恒为F ,那么在他减速下降深度为h 的过程中,下列说法正确的是(g 为当地的重力加速度)A .他的动能减少了FhB .他的重力势能减少了mghC .他的机械能减少了(F -mg )hD .他的机械能减少了Fh3.光滑水平面上静置一质量为M 的木块,一颗质量为m 的子弹以水平速度v 1射入木块,以v 2速度穿出,对这个过程,下列说法正确的是A 、子弹对木块做的功等于()222121v v m -; B 、子弹对木块做的功等于子弹克服阻力做的功;C 、子弹对木块做的功等于木块获得的动能与子弹跟木块摩擦生热的内能之和;D 、子弹损失的动能等于木块的动能跟子弹与木块摩擦转化的内能和。

4.质量为m 的物体置于倾角为θ的斜面上,物体与斜面间的动摩擦系数为μ,在外力作用下,斜面以加速度a 沿水平方向向左做匀加速运动,运动中物体m 与斜面体相对静止。

则关于斜面对m 的支持力和摩擦力的下列说法中错误的是 A .支持力一定做正功 B .摩擦力一定做正功C .摩擦力可能不做功D .摩擦力可能做负功5.从地面上方同一点向东和向西分别沿水平方向抛出两个质量相等的小物体,抛出的初速度大小分别为v 和2v ,不计空气阻力,则两个小物体A.从抛出到落地动量的增量相同B.从抛出到落地重力做的功相同C.落地时的速度相同D.落地时重力做功的瞬时功率相同6.在行车过程中,如果车距不够,刹车不及时,汽车将发生碰撞,车里的人可能受到伤害,为了尽可能地减轻碰撞引起的伤害,人们设计了安全带.假定乘客质量为70 kg ,汽车车速为108 km/h (即30 m/s ),从开始刹车到车完全停止需要的时间为5 s ,安全带对乘客的作用力大小约为A .400 NB .600 NC .800 ND .1 000 N解析 根据牛顿运动定律得 F=ma=m t v ∆=70×530 N =420 N 7.一位质量为m 的运动员从下蹲状态向上起跳,经Δt 时间,身体伸直并刚好离开地面,速度为v .在此过程中A .地面对他的冲量为mv+mg Δt ,地面对他做的功为21mv 2B .地面对他的冲量为mv+mg Δt ,地面对他做的功为零C .地面对他的冲量为mv ,地面对他做的功为21mv 2D .地面对他的冲量为mv-mg Δt ,地面对他做的功为零解析(F-mg )Δt =mv ,故F Δt =mv+mg Δt ;,地面对运动员做功为零,这是因为地面对人的作用力沿力 B C2的方向没有位移. 8.静止在光滑水平面上的物体,受到水平拉力F 的作用,拉力F 随时间t 变化的图象如图所示,则A.0—4s 内物体的位移为零B.0—4s 内拉力对物体做功为零C. 4s 末物体的速度为零D.0—4s 内拉力对物体冲量为零9.如图甲所示,在光滑水平面上的两个小球发生正碰,小球的质量分别为m 1和m 2.图乙为它们碰撞前后的s-t 图象.已知m 1=0.1 kg ,由此可以判断A.碰前m 2静止,m 1向右运动B.碰后m 2和m 1都向右运动C.由动量守恒可以算出m 2=0.3 kgD.碰撞过程中系统损失了0.4 J 的机械能10.质量为M 的物块以速度V 运动,与质量为m 的静止物块发生正撞,碰撞后两者的动量正好相等,两者质量之比M/m 可能为A.2B.3C.4D. 5解析:设碰撞后两者的动量都为P,则总动量为2 P,根据K mE P 22=, M P m p M P 2224222+≥3≤m M ,D 11.如图,在足够大的光滑水平面上放有质量相等的物块A 和B ,其中A 物块连接一个轻弹簧并处于静止状态,物块B 以速度v 0向着物块A 运动.当物块与弹簧作用时,两物块在同一条直线上运动.则在物块A 、B 与弹簧相互作用的过程中,两物块A 和B 的v -t 图象正确的是12.如图,质量为m 的物块甲以3 m/s 的速度在光滑水平面上运动,有一轻弹簧固定其上,另一质量也为m 的物块乙以4 m/s 的速度与甲相向运动,则A.甲、乙两物块在弹簧压缩过程中,由于弹力作用,动量不守恒B.当两物块相距最近时,物块甲的速率为零C.当物块甲的速率为1 m/s 时,物块乙的速率可能为2 m/s ,也可能为0D.物块甲的速率可能达到5 m/s13.下列说法正确的是A .质点做自由落体运动,每秒内重力所做的功都相同B .质点做平抛运动,每秒内动量的增量都相同C .质点做匀速圆周运动,每秒内合外力的冲量都相同D .质点做简谐运动,每四分之一周期内回复力做的功都相同14.如图所示,质量m =60kg 的高山滑雪运动员,从A 点由静止开始沿滑雪道滑下,从B 点水平飞出后又落在与水平面成倾-1013角θ=37︒的斜坡上C 点.已知AB 两点间的高度差为h =25m ,B 、C 两点间的距离为s =75m ,已知sin370=0.6,取g =10m/s 2,求:(1)运动员从B 点水平飞出时的速度大小;(2)运动员从A 点到B 点的过程中克服摩擦力做的功.解:(1)由B 到C 平抛运动的时间为t竖直方向:h Bc =s sin37o =12gt 2 (1) 水平方向:s cos370=v B t (2)代得数据,解(1)(2)得v B =20m /s (3)(2)A 到B 过程,由动能定理有mgh AB +w f =12mv B 2 (4) 代人数据,解(3)(4)得 w f =-3000J 所以运动员克服摩擦力所做的功为3000J15.如图,一质量为M =1.2kg 的物块静止在桌面边缘,桌面离水平地面的高度为h =1.8m 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

爆炸反冲碰撞动量能量1.如图所示,在光滑水平面上质量分别为m A =2 kg 、m B =4 kg ,速率分别为v A =5 m/s 、v B =2 m/s 的A 、B 两小球沿同一直线相向运动( )A .它们碰撞前的总动量是18 kg·m/s,方向水平向右B .它们碰撞后的总动量是18 kg·m/s,方向水平向左C .它们碰撞前的总动量是2 kg·m/s,方向水平向右D .它们碰撞后的总动量是2 kg·m/s,方向水平向左解析:选C.它们碰撞前的总动量是2 kg·m/s,方向水平向右,A 、B 相碰过程中动量守恒,故它们碰撞后的总动量也是2 kg·m/s,方向水平向右,选项C 正确.2. 一枚火箭搭载着卫星以速率v 0进入太空预定位置,由控制系统使箭体与卫星分离.已知前部分的卫星质量为m 1,后部分的箭体质量为m 2,分离后箭体以速率v 2沿火箭原方向飞行,若忽略空气阻力及分离前后系统质量的变化,则分离后卫星的速率v 1为( )A .v 0-v 2B .v 0+v 2C .v 0-m 2m 1v 2D .v 0+m 2m 1(v 0-v 2)解析:选D.由动量守恒定律得(m 1+m 2)v 0=m 1v 1+m 2v 2得v 1=v 0+m 2m 1(v 0-v 2).3.甲、乙两球在水平光滑轨道上向同方向运动,已知它们的动量分别是p 1=5 kg·m/s,p 2=7 kg·m/s,甲从后面追上乙并发生碰撞,碰后乙球的动量变为10 kg·m/s,则二球质量m 1与m 2间的关系可能是下面的哪几种( )A .m 1=m 2B .2m 1=m 2C .4m 1=m 2D .6m 1=m 2解析:选C.甲、乙两球在碰撞过程中动量守恒,所以有:p 1+p 2=p 1′+p 2′,即:p 1′=2 kg·m/s.由于在碰撞过程中,不可能有其它形式的能量转化为机械能,只能是系统内物体间机械能相互转化或一部分机械能转化为内能,因此系统的机械能不会增加.所以有p 212m 1+p 222m 2≥p 1′22m 1+p 2′22m 2,所以有:m 1≤2151m 2,因为题目给出物理情景是“甲从后面追上乙”,要符合这一物理情景,就必须有p 1m 1>p 2m 2,即m 1<57m 2;同时还要符合碰撞后乙球的速度必须大于或等于甲球的速度这一物理情景,即p 1′m 1<p 2′m 2,所以m 1>15m 2.因此C 选项正确.4.(多选) 如图,大小相同的摆球a和b的质量分别为m和3m,摆长相同,摆动周期相同,并排悬挂,平衡时两球刚好接触,现将摆球a向左拉开一小角度后释放,若两球的碰撞是弹性的,下列判断正确的是( )A.第一次碰撞后的瞬间,两球的速度大小相等B.第一次碰撞后的瞬间,两球的动量大小相等C.第一次碰撞后,两球的最大摆角不相同D.发生第二次碰撞时,两球在各自的平衡位置解析:选AD.两球在碰撞前后,水平方向不受外力,故水平两球组成的系统动量守恒,由动量守恒定律有:mv0=mv1+3mv2;又两球碰撞是弹性的,故机械能守恒,即12mv20=12mv21+1 23mv22,解两式得:v1=-v02,v2=v02,可见第一次碰撞后的瞬间,两球的速度大小相等,选项A正确;因两球质量不相等,故两球碰后的动量大小不相等,选项B错;两球碰后上摆过程,机械能守恒,故上升的最大高度相等,因摆长相等,故两球碰后的最大摆角相同,选项C错;两球摆动周期相同,故经半个周期后,两球在平衡位置处发生第二次碰撞,选项D正确.5. (多选)在质量为M的小车中挂有一单摆,摆球的质量为m0,小车和单摆以恒定的速度v沿光滑水平地面运动,与位于正对面的质量为m的静止木块发生碰撞,碰撞的时间极短,在此碰撞过程中,下列哪些情况说法是可能发生的( )A.小车、木块、摆球的速度都发生变化,分别变为v1、v2、v3,满足(M+m0)v=Mv1+mv2+m0v3B.摆球的速度不变,小车和木块的速度变化为v1和v2,满足Mv=Mv1+mv2C.摆球的速度不变,小车和木块的速度都变为v1,满足Mv=(M+m)v1D.小车和摆球的速度都变为v1,木块的速度变为v2,满足(M+m0)v=(M+m0)v1+mv2解析:选BC.在小车M和木块发生碰撞的瞬间,摆球并没有直接与木块发生力的作用,它与小车一起以共同速度v匀速运动时,摆线沿竖直方向,摆线对球的拉力和球的重力都与速度方向垂直,因而摆球未受到水平力作用,球的速度不变,可以判定A、D项错误;小车和木块碰撞过程,水平方向无外力作用,系统动量守恒,而题目对碰撞后,小车与木块是否分开或连在一起,没有加以说明,所以两种情况都可能发生,即B 、C 选项正确.6.如图所示,光滑水平面上的木板右端,有一根轻质弹簧沿水平方向与木板相连,木板质量M =3.0 kg ,质量m =1.0 kg 的铁块以水平速度v 0=4.0 m/s ,从木板的左端沿板面向右滑行,压缩弹簧后又被弹回,最后恰好停在木板的左端,则在上述过程中弹簧具有的最大弹性势能为( )A .4.0 JB .6.0 JC .3.0 JD .20 J解析:选C.设铁块与木板速度相同时,共同速度大小为v ,铁块相对木板向右运动时,相对滑行的最大路程为L ,摩擦力大小为F f ,根据能量守恒定律得铁块相对于木板向右运动过程 12mv 20=F f L +12(M +m )v 2+E p 铁块相对于木板运动的整个过程 12mv 20=2F f L +12(M +m )v 2 又根据系统动量守恒可知,mv 0=(M +m )v 联立得到:E p =3.0 J ,故选C.7.如图所示A 、B 两个物体粘在一起以v 0=3 m/s 的速度向右运动,物体中间有少量炸药,经过O 点时炸药爆炸,假设所有的化学能全部转化为A 、B 两个物体的动能且两物体仍然在水平面上运动,爆炸后A 物体的速度依然向右,大小变为v A =2 m/s ,B 物体继续向右运动进入半圆轨道且恰好通过最高点D ,已知两物体的质量m A =m B =1 kg ,O 点到半圆最低点C 的距离x OC =0.25 m ,水平轨道的动摩擦因数μ=0.2,半圆轨道光滑无摩擦,求:(1)炸药的化学能E ; (2)半圆弧的轨道半径R .解析:(1)A 、B 在爆炸前后动量守恒,得2mv 0=mv A +mv B ,解得v B =4 m/s 根据系统能量守恒有:12(2m )v 20+E =12mv 2A +12mv 2B ,解得E =1 J. (2)由于B 物体恰好经过最高点,故有mg =m v 2D R对O 到D 的过程根据动能定理可得:-μmgx OC -mg ·2R =12mv 2D -12mv 2B联立解得R =0.3 m. 答案:(1)1 J (2) 0.3 m8.冰球运动员甲的质量为80.0 kg.当他以5.0 m/s 的速度向前运动时,与另一质量为100 kg 、速度为3.0 m/s 的迎面而来的运动员乙相撞.碰后甲恰好静止.假设碰撞时间极短,求:(1)碰后乙的速度的大小; (2)碰撞中总机械能的损失.解析:(1)设运动员甲、乙的质量分别为m 、M ,碰前速度大小分别为v 和v 1,碰后乙的速度大小为v 1′,由动量守恒定律得mv -Mv 1=Mv 1′①代入数据得v 1′=1.0 m/s ②(2)设碰撞过程中总机械能的损失为ΔE ,有 12mv 2+12Mv 21=12Mv 1′2+ΔE ③ 联立②③式,代入数据得 ΔE =1 400 J.答案:(1)1.0 m/s (2)1 400 J9.如图,质量分别为m A 、m B 的两个弹性小球A 、B 静止在地面上方,B 球距地面的高度h =0.8 m ,A 球在B 球的正上方.先将B 球释放,经过一段时间后再将A 球释放.当A 球下落 t =0.3 s 时,刚好与B 球在地面上方的P 点处相碰.碰撞时间极短,碰后瞬间A 球的速度恰为零.已知m B =3m A ,重力加速度大小g =10 m/s 2,忽略空气阻力及碰撞中的动能损失.求:(1)B 球第一次到达地面时的速度; (2)P 点距离地面的高度.解析:(1)设B 球第一次到达地面时的速度大小为v B ,由运动学公式有v B =2gh ①将h =0.8 m 代入上式,得v B =4 m/s ②(2)设两球相碰前、后,A 球的速度大小分别为v 1和v 1′(v 1′=0),B 球的速度分别为v 2和v 2′.由运动学规律可得v 1=gt ③由于碰撞时间极短,重力的作用可以忽略,两球相撞前、后的动量守恒,总动能保持不变.规定向下的方向为正,有m A v 1+m B v 2=m B v 2′④12m A v 21+12m B v 22=12m B v ′22⑤ 设B 球与地面相碰后的速度大小为v B ′,由运动学及碰撞的规律可得v B ′=v B ⑥设P 点距地面的高度为h ′,由运动学规律可得h ′=v B ′2-v 222g⑦联立②③④⑤⑥⑦式,并代入已知条件可得h ′=0.75 m ⑧答案:(1)4 m/s (2)0.75 m10.如图所示,固定的圆弧轨道与水平面平滑连接,轨道与水平面均光滑,质量为m 的物块B 与轻质弹簧拴接静止在水平面上,弹簧右端固定.质量为3m 的物块A 从圆弧轨道上距离水平面高h 处由静止释放,与B 碰撞后推着B 一起运动但与B 不粘连.求:(1)弹簧的最大弹性势能;(2)A 与B 第一次分离后,物块A 沿圆弧面上升的最大高度. 解析:(1)A 下滑与B 碰撞前,根据机械能守恒得 3mgh =12×3mv 21A 与B 碰撞,根据动量守恒得3mv 1=4mv 2弹簧最短时弹性势能最大,系统的动能转化为弹性势能 根据能量守恒得E pmax =12×4mv 22=94mgh(2)根据题意,A 与B 分离时A 的速度大小为v 2A 与B 分离后沿圆弧面上升到最高点的过程中,根据机械能守恒得3mgh ′=12×3mv 22解得h ′=916h答案:(1)94mgh (2)916h11. 如图所示,质量为M 的平板车P 高为h ,质量为m 的小物块Q 的大小不计,位于平板车的左端,系统原来静止在光滑水平地面上,一不可伸长的轻质细绳长为R ,一端悬于Q 正上方高为R 处,另一端系一质量为m 的小球(大小不计).今将小球拉至悬线与竖直位置成60°角,由静止释放,小球到达最低点时与Q 的碰撞时间极短,且无机械能损失,已知Q 离开平板车时速度大小是平板车速度的两倍,Q 与P 之间的动摩擦因数为μ,已知质量M ∶m =4∶1,重力加速度为g ,求:(1)小物块Q 离开平板车时,二者速度各为多大? (2)平板车P 的长度为多少?(3)小物块Q 落地时与小车的水平距离为多少?解析:(1)设小球与Q 碰前的速度为v 0,小球下摆过程机械能守恒:mgR (1-cos 60°)=12mv 20 v 0=gR小球与Q 进行弹性碰撞,质量又相等,二者交换速度.小物块Q 在平板车P 上滑动的过程中,Q 与P 组成的系统动量守恒:mv 0=mv 1+Mv 2其中v 2=12v 1,M =4m ,解得:v 1=gR3,v 2=gR6.(2)对系统由能量守恒:12mv 20=12mv 21+12Mv 22+μmgL ,解得:L =7R 18μ. (3)Q 脱离P 后做平抛运动,由h =12gt 2,解得:t =2h gQ 落地时二者相距:s =(v 1-v 2)t =2Rh 6. 答案:(1)gR3gR6 (2)7R 18μ (3)2Rh 6。

相关文档
最新文档