含有耦合电感的电路与变压器
合集下载
10章 含有耦合电感的电路

jω L2 (支路 支路3)L ± 同侧取 同侧取“ 支路 3=±M(同侧取“+”,异 异
R2
侧取“ 侧取“-”) (支路 1’=L1 m M,M前所取符 支路1)L 支路 , 前所取符 号与L 号与 3中的相反 (支路 2’=L2 m M,M前所取 支路2)L 支路 , 前所取 符号与L 符号与 3中的相反
反相串联无互感等效电路
R1 u1 u M L1 R1 L1-M u1 R2 u2 L2 u R2 L2-M u2
Z = Z1 + Z 2 = R1 + R2 + jω ( L1 + L2 − 2 M )
R1
L1 u1
2、顺向串联 、 每一耦合电感支路的阻抗为: 每一耦合电感支路的阻抗为:
Z1 = R1 + jω ( L1 + M )
两个耦合线圈的磁通链可表示为: 两个耦合线圈的磁通链可表示为:
ψ 1 = ψ 11 ± ψ 12
= L1i1±Mi2
ψ 2 = ±ψ 21 + ψ 22
= ±Mi1+L2i2 上式表明, 上式表明 , 耦合线圈中的磁通链与施感电流 线性关系 关系, 成 线性 关系 , 是各施感电流独立产生的磁通链叠 加的结果。 加的结果。
di di u2 = R2i + ( L2 −M ) dt dt di = R2i + ( L2 − M ) dt
无互感等效电路
R1 u1 u M L1 R1 L1-M u1 R2 u2 L2 u R2 L2-M u2
di u = u1 + u 2 = ( R1 + R2 )i + ( L1 + L2 − 2 M ) dt
L1 N1 L2 N2
电路分析基础第五版第10章

二、互感消去法(等效去耦法)
消去互感,变为无互感的电路计算,从而简化 电路的计算。
1、受控源替代去耦法
jM
I1
I2
+ +
U1
jL1
jL2
U2
I1
+
jL1
U1
jM I 2
I2
+
jL2
U
2
jM I 1
U1 jL1 I1 jMI2
U2 jL2 I2 jMI1
d2i dt
i 2 u 2
2
相量形式:
1
i1
U1 jL1 I1 jMI2
u1
U2 jL2 I2 jMI1
注意:
i 2 u 2
2
•互感元件的自感恒为正;
•互感元件的互感有正有负,与线圈的具体绕法及 两线圈的相互位置有关。
当每个电感元件中的自感磁链与互感磁链是互相 加强时(自感磁链与互感磁链同向),互感为正; 反之为负。(说法不同,正确理解)
+
U
L反L1L22M
等效电感不能为负值,
因此:L反0, M12(L1L2)
3、并联耦合电感的去耦等效
(1)同侧并联:同名端分别相联。
I
+
jM
U
jL1
jL2
I +
U
j L同
L同
L1L2 M2 L1 L2 2M
因为 L同 0 所以 L1L2M20
电路第十章含有耦合电感的电路

则,自感磁通和互感磁通方感向磁通方向相反,故1,3端
.. . . .. .. . . .. 一致,故1,4是同名端,(不2是,同名端,1,4是同名端,
3也是同名i1 端) i2 (2,3也是同名端i1 ) i2
1 23 4
1 23 4
同名端只与线圈的绕向有关,与电流方向无关。 只要知道线圈的绕向,就能标出同名端。
L L1L2 M2 L1 L2 2M
M2 L1L2
M L1L2 M L1 L2
2
几何平均值(小) 算术平均值(大)
除非两电感相同,一般:几何平均值< 算术平均值
∴用几何平均值求M更严格
∴互感M必须满足 M L1L2 的要求 ∴ M的最大值 Mmax L1L2
3.耦合系数 k M M max
最大值
i(t)
••
u ( t ) L1 L2
i(t)
u(t)
L1 -
di
M
dt +
L2
+
M
di
- dt
utL1d d ti Md d ti L2d d ti Md dti
L1
L2
2Mdi
dt
L
di dt
反接时,串联电感值为
LL1L22M
电感贮能 WL 12LiL2 0
即L一定为正值
L1L22M
M L1 L2 2
实际值
M L1 L 2
0k1
k 反应了磁通相耦合的程度
k=1 k→1 k<0.5 k=0
全耦合
线圈中电流产生的磁通全部与另一个线 圈交链达到使M无法再增加
紧耦合,强耦合
松耦合,弱耦合
无耦合
4.耦合电感的T型等效
.. . . .. .. . . .. 一致,故1,4是同名端,(不2是,同名端,1,4是同名端,
3也是同名i1 端) i2 (2,3也是同名端i1 ) i2
1 23 4
1 23 4
同名端只与线圈的绕向有关,与电流方向无关。 只要知道线圈的绕向,就能标出同名端。
L L1L2 M2 L1 L2 2M
M2 L1L2
M L1L2 M L1 L2
2
几何平均值(小) 算术平均值(大)
除非两电感相同,一般:几何平均值< 算术平均值
∴用几何平均值求M更严格
∴互感M必须满足 M L1L2 的要求 ∴ M的最大值 Mmax L1L2
3.耦合系数 k M M max
最大值
i(t)
••
u ( t ) L1 L2
i(t)
u(t)
L1 -
di
M
dt +
L2
+
M
di
- dt
utL1d d ti Md d ti L2d d ti Md dti
L1
L2
2Mdi
dt
L
di dt
反接时,串联电感值为
LL1L22M
电感贮能 WL 12LiL2 0
即L一定为正值
L1L22M
M L1 L2 2
实际值
M L1 L 2
0k1
k 反应了磁通相耦合的程度
k=1 k→1 k<0.5 k=0
全耦合
线圈中电流产生的磁通全部与另一个线 圈交链达到使M无法再增加
紧耦合,强耦合
松耦合,弱耦合
无耦合
4.耦合电感的T型等效
耦合电感_精品文档

线圈电流产生的磁通全部与耦合线圈交链Mmax =
;
K 近于1时称为紧耦合;K 值较小时称为松耦合;K=0 称
为无耦合。
上一页 返回
第二节 有耦合电感的正弦电路
含有耦合电感电路(简称互感电路)的正弦稳态计算可采用 相量法。分析时要注意耦合电感上的电压是由自感电压和互 感电压叠加而成的。根据电压、电流的参考方向及耦合电感 的同名端确定互感电压的方向是互感电路分析计算的难点。 由于耦合电感支路的电压不仅与本支路电流有关,还和与之 有耦合支路的电流有关,列写节点电压方程较困难,所以互 感电路的分析计算一般采用支路电流法(网孔法)。
第六章 耦 合 电 路
第一节 耦合电感 第二节 有耦合电感的正弦电路 第三节 空心变压器 第四节 理想变压器
第一节 耦合电感
一、互感
1. 互感现象 我们先观察下面这个实验。图6−1 所示的实验电路中,线
圈2 两端接一灵敏检流计。当开关S 闭合瞬间,可以观察到 检流计指针偏转一下之后又回到零位。发生这种现象的原因 是由于开关S 闭合的瞬间,线圈1 产生变化的磁通Φ 11,其 中的一部分磁通Φ 12与线圈2 交链,使线圈2 产生感应电动 势,因而产生感应电流使检流计指针偏转。S 闭合后,线圈 1 的电流不再发生变化,虽然仍有磁通与线圈2 交链,但该 磁通是不变化的,所以不产生感应电动势,没有电流流过检 流计,因而检流计的指针回到零位。
上一页 下一页 返回
第一节 耦合电感
在同频正弦稳态电路中,耦合电感的伏安关系可以用相量形 式表示,式(6−5)可表示为
(6−8)
例6−3 电路如图6−8 所示,已知R1=1 Ω,L1=L2=1 H, M=0.5 H,uS=10sin 4t。试求u2。
第十章含有耦合电感的电路-精选文档

d di u L dt dt
+
u _
在此电感元件中,磁链Ψ和感 应电压u均由流经本电感元件的电 流所产生,此磁链感应电压分别称 为自感磁链和自感电压。
2、互感:如图所示表示两个耦合电感,电流i1在线 圈1和2中产生的磁通分别为Φ11和Φ21,则Φ21≤Φ11。 这种一个线圈的磁通交链于另一线圈的现象,称为 磁耦合。电流i1称为施感电流。Φ11称为线圈1的自感 磁通,Φ21称为耦合磁通或互感磁通。如果线圈2的 匝数为N2,并假设互感磁通Φ21与线圈2的每一匝都 交链,则互感磁链为Ψ21=N2Φ21。
§10-1 互感
耦合电感:耦合元件,储能元件,记忆元件。
一、耦合电感:为互感线圈的理想化电路模型
1 、自感:对于线性非时变电感元件,当电流的 参考方向与磁通的参考方向符合右螺旋定则时, 磁链Ψ与电流I满足Ψ=Li,L为与时间无关的正实 常数。
根据电磁感应定律和线圈的绕向,若电压的参考 正极性指向参考负极性的方向与产生它的磁通的参 考方向符合右螺旋定则时,也就是在电压和电流关 联参考方向下,则
输入阻抗Z为
Z Z Z ( 8 j 4 ) 8 . 94 26 . 57 1 2
为: 50 0 V 令U ,解得 I
50 0 I U / Z A 5 . 59 26 . 57 A 8 . 94 26 . 57
第十章 含有耦合电感的电路
内容提要
本章主要介绍耦合电感中的磁耦合 现象、互感和耦合因数、耦合电感的同 名端和耦合电感的磁通链方程、电压电 流关系;还介绍含有耦合电感电路的分 析计算及空心变压器、理想变压器的初 步概念。
§10-1 互感 §10-2 含有耦合电感电路的计算 §10-3 空心变压器
电路分析第七章-含有耦合电感的电路

* --
(a)
+
i1 +
M **
u1u12L1
i2
+
L2u21
-
u2
--
-+
(b)
解:图(a)中
u1
=
L1
di1 dt
+
u12
u12
=
−M
di2 dt
∴u1
=
L1
di1 dt
−M
di2 dt
u2
=
L2
di2 dt
+ u21
u21
=
−M
di1 dt
∴u2
=
L2
di2 dt
−M
di1 dt
图(b)中
u1
若u21
=
−M
di1 dt
线圈1 线圈2
i1 ∆1’
*1
2*’
u21+2∆
1端与2’端互为同名端 1’端与2端互为同名端
N1
Φ1
N2
Φ2
i1
i2
1‘ - u1+ 1 2‘- u2+ 2
图(a)
N1
Φ1
N2
Φ2
i1
i2
1‘ - u1+ 1 2‘+ u2 - 2
图(b)
M
*
*
L1
L2
1‘
1 2‘
2
图(a)的电路符号
图(b)
u1
=
L1
di1 dt
+
M
di2 dt
u2
=
L2
di2 dt
+
M
第十一章 耦合电感和理想变压器

§11-5 理想变压器的VCR
一.理想变压器的概念:实际铁心变压器的理想化模型。 1、理想变压器满足三个条件: 1)变压器本身无损耗;这意味着绕线圈的金属导线无任何电 阻,做芯的铁磁材料的磁导率μ无穷大。 2)耦合系数k=1。 3)L1,L2,M趋于无穷大,但L1/L2为常数。 2、理想变压器的电路符号:理想变压器的定义式(VCR):
作业:P183 11-8
§11-4 耦合电感的去耦等效电路
对于在一个公共端钮相连接的一对耦合电感,如图(a)所示, 可以用三个电感组成的T形网络来作等效替换,如图(b)所示。 下面来推导这种网络等效替换的关系。 1.同侧连接——同名端相连时等效的推导:
图(a)所示耦合电感,其端钮的VCR为:
而在T形等效电路中,由KVL得:
比较 值应为
前面的系数,即可求得T形等效电路中各电感
2.异侧连接-异名端相连:
La L1 M L M b L L M 2 c
小结:上述的这种等效消除了原电路中的感应耦合——互 感,称为去耦等效。替换后的电路即可作为一般无互感电路 来分析计算,但使用范围有限,需记忆公式。
故得 由此可见,把电阻RL接在理想变压器的次级,变压器初级
端的输入电阻即为RL /n2。理想变压器起着改变电阻大小的作用, 把RL变换为RL/ n2 。
正弦稳态时,若次级所接阻抗为ZL(jω),则初级的输入阻 抗,或次级ZL 对初级的折合阻抗为
因此,理想变压器有改变电阻或阻抗的性质。
二.阻抗变换性质的应用
3、掌握理想变压器的变压、变流、变阻抗的三个主要
性能,熟练求解含有理想变压器的电路。
磁耦合线圈在电子工程、通信工程和测量仪 器等方面得到了广泛应用。为了得到实际耦合线 圈的电路模型,现在介绍一种动态双口元件—— 耦合电感,并讨论含耦合电感的电路分析。 在介绍耦合电感元件以前,下面先用示波
互感耦合电路—变压器(电路分析课件)

5.4.2 理想变压器的作用
理想变压器的作用
1、电压变换 2、电流变换 3、阻抗变换
5.4.2 理想变压器的作用
1、电压变换
如图所示为一铁芯变压器的示意图。N1、N2分别为初、次级
线圈1和2的匝数。由于铁芯的导磁率很高,一般可认为磁通全
部集中在铁芯中,并与全部线匝交链。若铁图7.29铁芯变压器
芯磁通为Φ,则根据电磁d感 应定律,有
理想变压器
5.4.1 理想变压器的条件
理想变压器是一种特殊的无 损耗、全耦合变压器。它作为 实际变压 器的理想化模型,是对 互感元件的一种理想化抽象,它 满足以下三个条件:
(1)耦合系数k=1,即无漏磁通。
(2)自感系数LHale Waihona Puke 、L2无穷大且 L1/L2等于常数。
(3)无损耗, 即不消耗能量,也不 储存能量。
所以 n2×100=900
变比为
n=3
2、电流变换
因为无损耗,又无磁化所需的无功
功率,所以原、副边的P、Q、S均相等
,即U1I1=U2I2
i1 +
i2 +
所以
u1
u2
I1 U2 = N2 1 I2 U1 N1 n
-
-
n∶1
初、次级绕组电流与匝数成反比
,I•1
与
•
I2
同相
5.4.2 理想变压器的作用
3、阻抗变换
设理想变压器的输入阻抗为Z1,输出 阻抗为ZL,则有
u1u1
N
N1
1ddtd
t
uu2 2
NN2
dd 2dt dt
+
i1
u1 -
N1
N2
i2
+
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
含有耦合电感的电路与变压器
一、互感?
当在一个线圈通一交流电时,另一个线圈中产生互感电压;
二、同名端?
反映两线圈之间互感电压与电感电流之间的关系;
1.磁通互相增强时,相应端子则为同名端;
2.不需要画出绕向和磁芯
三、耦合系数?
K=M/(/根号下L1L2)
四、互感电压的极性?
1.电流从同名端流入时,同名端处标注为+;
2.电流从异名端流入时,同名端处标注为-;
五、含有互感的电路的分析方法?
六、变压器?
1.定义:利用互感实现电能的传递的设备;
2.作用;变电压、变电流、变阻抗;
七、理想变压器?
1.线圈和磁芯无损耗;
2.线圈间全耦合,个线圈无漏磁;
3.磁芯的磁导率趋于无穷大;
4.电压比等于线圈比(电压比);
5.电流比等于线圈的反比取负号;
6.二次侧接上ZL,一次侧等效阻抗为Z L’=K2Z L
八、列方程计算法?
核心:KCL、KVL
1.串联:L=L1+L2+或-2M
异名端串联(顺接),相互增强(按回路看),取+2M
同名端串联(反接),相互削弱(按回路看),取-2M
2.并联L=(L1L2-M2)/(L1+L2-或+2M)
异名端并联,相互增强(按回路看),取+2M
同名端并联,相互削弱(按回路看),取-2M
九、消去互感计算法?
核心:由KCL式子移项可得在第三条支路上等效出一个电感,讲电感都等效成独立电感后再计算。
1.同名端相联时,互相削弱,原有基础上减去M,另一支路上
等效出M;
2.异名端相联时,互相增强,原有基础上加上M,另一支路上
等效出-M;。