西洋参冠瘿组织悬浮培养及其人参皂苷类成分的分离_英文_于荣敏
人参、西洋参和甘草组织培养研究

人参人参、、西洋参和甘草组织西洋参和甘草组织培养研究培养研究Studies on the tissue culture in Panaxginseng C. A. Meyer, Panax quinquefoliumL. and Glycyrrhiza uralensis Fisch.一级学科:化学工程与技术学科专业:应用化学研 究 生:王娟指导教师:高文远 教授天津大学药物科学与技术学院二零一二年六月独创性声明本人声明所呈交的学位论文是本人在导师指导下进行的研究工作和取得的研究成果,除了文中特别加以标注和致谢之处外,论文中不包含其他人已经发表或撰写过的研究成果,也不包含为获得天津大学或其他教育机构的学位或证书而使用过的材料。
与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意。
学位论文作者签名:签字日期:年月日学位论文版权使用授权书本学位论文作者完全了解天津大学有关保留、使用学位论文的规定。
特授权天津大学可以将学位论文的全部或部分内容编入有关数据库进行检索,并采用影印、缩印或扫描等复制手段保存、汇编以供查阅和借阅。
同意学校向国家有关部门或机构送交论文的复印件和磁盘。
(保密的学位论文在解密后适用本授权说明)学位论文作者签名:导师签名:签字日期:年月日签字日期:年月日摘要人参(Panax ginseng C. A. Meyer)、西洋参(Panax quinquefolium L.)和甘草(Glycyrrhiza uralensis Fisch.)属于大宗类药材,应用十分广泛。
本文建立了人参不定根、西洋参细胞和甘草细胞培养体系,并进行了反应器培养研究。
本文以5年生人参根为外植体诱导出愈伤组织,在附加IBA 5 mg·L-1的MS 培养基中,由愈伤组织诱导得到人参不定根。
采用5 L近球型鼓泡式反应器培养人参不定根40天后,生长速率达到50倍。
总皂苷含量在培养第30天达到最大值。
概述西洋参化学成分研究的近况_曹敏

概述西洋参化学成分研究的近况曹 敏常州市药品检验所 (常州 213003)摘 要:以国内外发表的文献为依据,将1990年以来国内外学者研究西洋参发现的化学成分进行介绍,对西洋参的深入研究和开发利用具有重要参考价值。
关键词:西洋参;化学成分中图分类号 R931.6 文献标识码 A 文章编号 1007-306(2004)02-25-02 西洋参(Panax quinquefolium L.)为五加科人参属植物。
原产于北美洲加拿大的蒙特利尔、魁北克和美国东部;近年来在我国部分地区引种成功。
西洋参为贵重药材,由于其独特的医疗保健作用,一直深受人们的青睐。
为了更有效地、深入地开发利用这一珍贵药材,多年来,国内外学者在多学科、多领域中对西洋参进行了大量卓有成效的研究工作,取得了可喜的进展。
现就近年来国内外学者对西洋参化学成份研究的新进展作一综述,为进一步研究、开发利用西洋参资源提供重要信息,对深入研究西洋参具有重要的参考价值。
1 皂苷类西洋参主含人参皂苷,从西洋参中获得的人参皂苷分属3个类型:其一母核结构为达玛烷(Damu-marane)型;其二母体结构为齐墩果烷(Oleanane)型;其三为奥克悌隆(Ocotillol)型。
1.1 地下部分Lemen-olivier L等[1]从法国产的西洋参根中提取得5种皂苷成分,分别为人参皂苷Rb1、Rd、Re、F11和Gypenoside XVII,其中性皂苷Rb1。
W.A.Court 等[2]用反相高效液相色谱法直接测定碱性水解后人参提取物和所有人参皂苷提取物。
MYoshika wa等[3]从西洋参根中分离出5种新的三萜糖苷型西洋参皂苷,它们的结构通过化学的和物理的方法被确证为: 3-O[-6-O-(E)-α-戊烯-β-D-吡喃葡萄糖基(1※2)-β-D-吡喃葡萄糖基]-20-O-(β-D-吡喃葡萄糖基)-2D(s)-原人参二醇(西洋参皂苷Ⅰ);3-O-[6-O-(E)-α-烯酰基-β-D-吡喃葡萄糖基(1※2)-β-D-吡喃葡萄糖基]-20-O-[β-D-吡喃葡萄糖基(1※6)-β-D-吡喃葡萄萄糖基]-20 (s)-原人参二醇(西洋参皂苷Ⅱ);3-O-[β-D-吡喃葡萄糖基(1※2)-6-O-炔-β-D-吡喃葡萄糖基]-26-O-(β-D-吡喃葡萄糖基)-20(s)-原人参二醇(西洋参皂苷Ⅲ);3-O-[β-D-吡喃葡萄糖基(1※2)-β-D-吡喃葡萄糖基]-20-O-[β-D-吡喃葡萄糖基(1※6)-β-D-吡喃葡萄糖基]3β,7β,20(s)-三羟基达玛-5,24-二烯(西洋参皂苷Ⅳ);3-O-[β-D-吡喃葡萄糖基(1※2)-β-D-吡喃葡萄糖基]-20-O-[α-D-吡喃葡萄糖基(1※2)-β-D-吡喃葡萄糖基(1※6)-β-D-吡喃葡萄糖基]-20(s)-原人参二醇(西洋参皂苷Ⅴ)。
真菌诱导子对悬浮培养西洋参细胞的生理效应

真菌诱导子对悬浮培养西洋参细胞的生理效应刘长军;侯嵩生;李新明【期刊名称】《植物科学学报》【年(卷),期】1996(014)003【摘要】报道了不同真菌诱导子对悬浮培养的西洋参(Panaxquinquefolium)细胞生长、皂甙和多糖合成,以及细胞内和培养液中过氧化物酶活性的生理效应。
悬浮培养的西洋参细胞经刺盘孢菌(Colletotrichumnicoltianae)丝体诱导子处理后,总皂甙产率可由对照的296mg/L增加到679mg/L(约占细胞干重的(16.3%),比对照提高约1.3倍,而且总皂甙的85%排放在培养液中;经黑曲霉(Aspergillusnigran)诱导子处理后,细胞多糖含量可达到11.79%(细胞干重),比对照增加1倍多。
初步纯化的刺盘孢菌丝体诱导子和尖孢镰刀菌(Fusuriumoxysporum)滤液诱导子在诱导处理前期能明显促进西洋参细胞生长,同时细胞内及培养液中过氧化物酶活性显著增加;随时间延长,细胞生长和酶活性逐步受到抑制。
【总页数】7页(P240-246)【作者】刘长军;侯嵩生;李新明【作者单位】不详;不详【正文语种】中文【中图分类】Q949.763.2【相关文献】1.真菌诱导子对悬浮培养南方红豆杉细胞次生代谢的影响 [J], 张长平;李春;元英进2.西洋参悬浮培养过程中的生理生化特征研究 [J], 徐卫辉;宋佩伦3.真菌诱导子对悬浮培养南方红豆杉细胞态势及紫杉醇合成的影响 [J], 张长平;李春;元英进;孙安慈;胡昌4.前体和真菌诱导子对大豆悬浮培养细胞中异黄酮积累的影响 [J], 刘瑞; 胡焕焕; 石晓卫; 丰慧根5.真菌诱导子对新疆紫草悬浮培养细胞的生长和紫草素合成的影响 [J], 刘长军;侯崇生因版权原因,仅展示原文概要,查看原文内容请购买。
UPLC Orbitrap HRMS 法分析西洋参蒸参弃液浓缩物中皂苷类成分

UPLC Orbitrap HRMS 法分析西洋参蒸参弃液浓缩物中皂苷类成分张勇;黄鑫;李帅坪;刘淑莹【摘要】采用超高效液相色谱‐四极杆静电场轨道阱高分辨质谱(UPLC Orbitrap HRMS )技术测定西洋参蒸参弃液浓缩物中15种人参皂苷单体成分含量。
采用Thermo Scientific Syncronis C18色谱柱(100 mm ×2.1 mm ×1.7μm),以乙腈‐0.1%甲酸水溶液为流动相,使用电喷雾电离源(ESI),四极杆静电场轨道阱质量分析器,高分辨质谱仪采集数据。
结果表明,人参皂苷 Rg1、Rg2、Rg3、Rb1、Rb2、Rc、Rd、Re、Rh1、Rh2、Rk1、Ro、F1、F2和伪人参皂苷F11在线性范围内均存在良好的线性关系,48 h内稳定性实验RSD 值均小于5%,平均加样回收率为94.38%~102.10%,RSD值不大于3%。
西洋鲜参在不同蒸制温度和蒸制时间下得到9组蒸参弃液,通过分析其浓缩物中15种人参皂苷单体化合物的含量,并比较各成分含量的变化情况,总结了4种类型人参皂苷的化学转化规律。
该方法简便、准确、灵敏度高、专属性强、重复性好,适用于西洋参蒸参弃液浓缩物中皂苷成分含量的测定,可为开发蒸参弃液提供有效的检测手段。
%A method was applied to determine the contents of 15 ginsenosides in steamed Panax quinquefoliums L .liquid waste concentrates by ultra‐performance liquid c hroma‐tography‐Orbitrap high resolution mass spectrometry (UPLC Orbitrap HRMS ) .The sample was separated on Thermo Scientific Syncronis C18 column (100 mm × 2.1 mm × 1.7 μm) with the gradient elution of acetonitril‐0.1% formic acid as mobile phases ,and the flow rate was 0.2 mL/min .The column temperature was set at 35 ℃ .The electros‐pray ionization (ESI) and the Orbitrap massanalyzer were used with high resolution mass data collection .Ginsenosides Rg1 、Rg2 、Rg3 、Rb1 、Rb2 、Rc、Rd、Re、Rh1 、Rh2 、Rk1 、Ro、F1 、F2 and pseudo ginsenoside F11 show good linearrelationship ,respectively . The average RSD value of stability test is less than 5% within 48 h .The average sample recovery was in the range of94.38%‐102.10% ,and the RSD value is less than 3% . The c ontents of 15 ginsenosides in steamed Panax quinquefoliums L .liquid waste con‐centrates under different temperatures and times were determined and compared .For the protopanaxdiol (PPD) type ginsenosides ,with the rising of steaming temperature and time ,the contents of Rb1 ,Rb2 ,Rc ,Rd and F2 decreased gradually .While the con‐tents of Rg3 ,Rh2 ,Rk1 and Rd increased firstly and then decreased or decreased firstly and then increased .The ginsenoside transformation could explain the content more or less .The protopanaxtriol (PPT ) ,oleanane and ocotillol types ginsenosides presented the similar conversion pathway .The chemical conversion of four types of ginsenosides were summarized .This method is simple ,accurate ,sensitive ,specific and has good repeatability ,w hich could be used to determine the contents of ginsenosides in steamed Panax quinque f oliums L .liquid waste and proved to be effective for detection of the steamed Panax quinquefoliums L .liquid waste concentrates .The steamed Panax quin‐quefoli ums L .liquid waste concentrates includes a variety of ginsenosides ,of which the minor ginsenosides have higher bioactivities .So the steamed Panax quinque foliums L . liquid waste is of great value to develop .It also provides raw materials for medicine and health products .【期刊名称】《质谱学报》【年(卷),期】2017(038)001【总页数】8页(P52-59)【关键词】超高效液相色谱-四极杆静电场轨道阱高分辨质谱(UPLC Orbitrap HRMS );西洋参蒸参弃液;人参皂苷【作者】张勇;黄鑫;李帅坪;刘淑莹【作者单位】长春中医药大学,吉林省人参科学研究院,吉林长春 130117;长春中医药大学,吉林省人参科学研究院,吉林长春 130117;长春中医药大学,吉林省人参科学研究院,吉林长春130117;长春中医药大学,吉林省人参科学研究院,吉林长春 130117; 中国科学院长春应用化学研究所长春质谱中心,吉林长春130022【正文语种】中文【中图分类】O657.63西洋参为五加科人参属植物Panax quinquefolium L.的干燥根[1],又名洋参、花旗参,原产于美国和加拿大[2]。
西洋参叶中20_s_人参皂苷_R_省略_2和人参皂苷Rh_3的分离与鉴定_丛登立

应用SPB-1701柱较为理想。
根据本文11种中药材和7种中成药以及我们对其它样品中有机氯农药残留量测定结果,我国绝大部分中药材与中成药中总滴滴涕和六六六的含量均在0.1μg·g-1以下,如果总滴滴涕限量标准为0.01μg·g-1(GB15517.1-1996)则有相当大的比例将超过标准。
我国国家标准规定茶叶中总六六六最大限量为0.4mg·kg-1,总滴滴涕为0.2mg·kg-1,蔬菜中五氯硝基苯为0.2mg·kg-1;1993年日本原生省规定茶叶中总六六六为0.2mg·kg-1,总滴滴涕为0.1 mg·kg-1[6]等,我们建议,我国中药材和中成药中总六六六,总滴滴涕,五氯硝基苯和艾氏剂最大允许限量标准分别为0.1,0.1,0.1,0.02mg·kg-1。
参考文献[1]王会丽,陈建民,张曙明.有机氯农药残留量的气相色谱检测方法研究.中草药,1998,29:381.[2]王会丽,陈建民,张曙明.黄芪、甘草中有机氯农药残留量的气相色谱检测.药物分析杂志,1998,18:325.[3]中国预防医学科学院标准处编.食品卫生国家标准汇编(4).北京:中国标准出版社,1997:263.[4]国家技术监督局.人参加工产品分等质量标准.1995.[5]S teinw andter H.Universal s-min on-line method for extractingand isolating pesticide res idues and industrial chemicals.Fres en ius Z Ana l Chem.1985,332:754.[6]庄元忌主编.全国食品和饲料中农药兽药残留量大全.北京:中国对外经济贸易出版社,1995.(收稿:1999-05-11)西洋参叶中20(s)-人参皂苷-Rh1,-Rh2和人参皂苷-Rh3的分离与鉴定丛登立 宋长春 徐景达(长春130021白求恩医科大学基础医学院)摘要 目的:从西洋参叶中分离、鉴定20(s)-人参皂苷-Rh1,-Rh2和人参皂苷-Rh3,为了深入研究它们的生理活性。
西洋参特有成分--拟人参皂苷F11的分离、鉴定与含量测定

西洋参特有成分--拟人参皂苷F11的分离、鉴定与含量测定李向高;张连学;孟祥颖;侯集瑞;张晶【期刊名称】《吉林农业大学学报》【年(卷),期】2005(027)006【摘要】为了筛选西洋参的特有成分,以利对西洋参生药及其制品的定性鉴别和含量测定,为研制开发新药提供理论依据,本试验采用大孔树脂法和硅胶柱层析分离法对西洋参甲醇提取物进行分离纯化,将所得单体应用质谱、13C-核磁共振谱、电子轰击质谱(EL-MS)鉴定,并用高效薄层层析法比较了人参、西洋参和三七的甲醇提取物,用薄层扫描法对西洋参各部位拟人参皂苷F11的含量进行了测定.结果表明:西洋参特有皂苷成分为拟人参皂苷F11,在西洋参的花蕾、花柄、果肉、茎叶和根中的含量依次为2.34%,1.93%,1.54%,0.97%和0.28%.【总页数】4页(P645-648)【作者】李向高;张连学;孟祥颖;侯集瑞;张晶【作者单位】吉林农业大学中药材学院,长春,130118;吉林农业大学中药材学院,长春,130118;吉林农业大学中药材学院,长春,130118;吉林农业大学中药材学院,长春,130118;吉林农业大学中药材学院,长春,130118【正文语种】中文【中图分类】R284.2【相关文献】1.国产西洋参花蕾化学成分的研究Ⅰ.人参皂苷的分离、鉴定及含量测定 [J], 孟祥颖;李向高;于洋2.西洋参芦头中人参皂苷的分离鉴定 [J], 张崇禧;鲍建才;刘刚;丛登立;李向高;郑友兰3.转基因西洋参冠瘿组织培养基中人参皂苷类成分的分离鉴定 [J], 张爱丰;朱建华;于荣敏4.西洋参冠瘿组织悬浮培养及其人参皂苷类成分的分离 [J], 于荣敏;金钱星;孙辉;叶文才;赵昱5.国产西洋参化学成分的研究——人参皂甙的分离鉴定 [J], 郑友兰;李向高;张崇禧;郭生桢因版权原因,仅展示原文概要,查看原文内容请购买。
HPLC-PAD法测定西洋参类保健食品中10种皂苷的含量

HPLC-PAD法测定西洋参类保健食品中10种皂苷的含量吴晓云ꎬ刁飞燕ꎬ李秀慧ꎬ刘春霖ꎬ李启艳(山东省食品药品检验研究院ꎬ山东济南250101)摘要:目的㊀建立同时测定西洋参类保健食品中人参皂苷Rg1㊁Rg2㊁Rg3㊁Rb1㊁Rb2㊁Rb3㊁Rc㊁Rd㊁Re㊁Rf含量的高效液相色谱-二极管阵列检测法(HPLC-PAD)ꎮ方法㊀采用KromasilC18(4.6mmˑ250mmꎬ5μm)色谱柱ꎻ以乙腈(A)-水(B)为流动相进行梯度洗脱ꎻ流速1.0mL min-1ꎻ检测波长203nmꎻ柱温35ħꎮ结果㊀10种人参皂苷的浓度在其各自线性范围内ꎬ与峰面积呈良好的线性关系ꎬr值均ȡ0.99ꎮ该方法平均回收率为93.0%~101.8%ꎬRSD均小于4.0%(n=6)ꎮ结论㊀本法准确可靠㊁灵敏度高㊁重现性好ꎬ可作为西洋参类保健食品的质量控制方法ꎮ关键词:高效液相色谱-二极管阵列检测法ꎻ保健食品ꎻ西洋参ꎻ人参皂苷中图分类号:R927.2㊀文献标识码:A㊀文章编号:2095-5375(2020)06-0336-005doi:10.13506/j.cnki.jpr.2020.06.006Simultaneousdeterminationof10ginsenosidesinhealthfoodofPanaxQuinquefoliumbyHPLC-PADWUXiaoyunꎬDIAOFeiyanꎬLIXiuhuiꎬLIUChunlinꎬLIQiyan(ShandongInstituteforFoodandDrugControlꎬJinan250101ꎬChina)Abstract:Objective㊀ToestablishanHPLC-PADmethodforthedeterminationof10ginsenosides(ginsenosideRg1ꎬRg2ꎬRg3ꎬRb1ꎬRb2ꎬRb3ꎬRcꎬRdꎬReandRf)inhealthfoodofPanaxquinquefolium.Methods㊀TheanalysiswascarriedoutonananalyticalcolumnKromasilC18(4.6mmˑ250mmꎬ5μm)withgradientelutionbyacetonitrile(A)-water(B)ꎬatthedetectionwavelengthof203nmandaflowrateof1.0mL min-1.Thecolumntemperaturewas35ħ.Results㊀Allcali ̄brationcurvesshowedgoodlinearitywithintheirlinearranges(rȡ0.99).Theaveragerecoverieswerebetween93.0%~101.8%ꎬRSD<4.0%(n=6).Conclution㊀ThismethodwasaccurateꎬhighlysensitiveandreproducibleꎬandcanbeusedtocontrolthequalityofhealthfoodofPanaxQuinquefolium.Keywords:HPLC-PADꎻHealthfoodꎻPanaxQuinquefoliumꎻGinsenoside㊀㊀西洋参为五加科人参属植物ꎬ是名贵的中药材ꎬ人参皂苷是其主要活性成分ꎬ主要有人参皂苷Rg1㊁Rb1㊁Rb2㊁Rc㊁Rd和Re等ꎮ以西洋参为原料的保健食品具有缓解体力疲劳ꎬ增强免疫力㊁抗氧化和抗肿瘤等作用[1]ꎮ目前ꎬ西洋参类保健食品的剂型有硬胶囊㊁软胶囊㊁片剂和口服溶液等ꎬ主要以总皂苷作为标志性成分ꎬ总皂苷的测定主要采用香草醛-高氯酸或硫酸显色后用紫外分光光度法测定[2]ꎬ该方法存在专属性差ꎬ操作复杂和干扰因素多等缺点ꎮ为此ꎬ徐灿辉等[3]改进了西洋参类保健食品中人参皂苷测定方法ꎬ建立了西洋参类保健食品中7种参皂苷含量高效液相色谱(HPLC)测定的方法ꎮ此外ꎬ人参皂苷测定方法还有超高效液相色谱(UP ̄LC)[4]㊁高效液相色谱-质谱联用法(HPLC-MS)[5-6]等ꎮ在众多资料中ꎬ主要研究西洋参根茎叶提取物中人参皂苷含量ꎬ但对西洋参类保健食品中10种人参皂苷含量测定的报道较少ꎮ本试验通过参考西洋参药材中皂苷测定的有关文献[7-9]ꎬ建立高效液相色谱法同时测定多种剂型西洋参类保健食品中10种人参皂苷ꎬ为质量标准的提升提供依据ꎮ1㊀试验部分1.1㊀仪器㊀液相色谱仪(Agilent1260高效液相色谱仪ꎬ美国安捷伦公司)ꎬ配二极管阵列检测器㊀作者简介:吴晓云ꎬ女ꎬ主管药师ꎬ研究方向:保健食品化妆品检验ꎬE-mail:wuxiaoyun823@126.com㊀通信作者:李启艳ꎬ女ꎬ博士研究生ꎬ副主任药师ꎬ研究方向:保健食品化妆品检验ꎬTel:0531-81216708ꎬE-mail:152****8118@163.com(PAD)ꎻ电子天平(MettlerToledoMSꎬ梅特勒-托利多)ꎻ数控超声波清洗器(KQ-500DE型ꎬ昆山市超声仪器有限公司)ꎻ恒温水浴锅(北京永光明)ꎮ1.2㊀试药与供试品㊀乙腈(色谱纯ꎬHoneywell)ꎻ甲醇(色谱纯ꎬHoneywell)ꎻ超纯水ꎻ正丁醇(分析纯ꎬ国药集团)ꎻ氨水(分析纯ꎬ国药集团)ꎮ标准品:人参皂苷Rb1㊁Rb2㊁Rb3㊁Rg1㊁Rg3㊁Rd㊁Re由中国食品药品检定研究院提供ꎬ含量分别为95.9%㊁93.8%㊁97.0%㊁96.3%㊁100%㊁94.4%㊁97.4%ꎬ人参皂苷Rg2㊁Rc㊁Rf由上海甄准生物科技有限公司提供ꎬ含量分别为98.02%㊁99.11%㊁99.62%ꎮ供试品均由市场购得ꎬ名称与剂型见表1ꎮ表1㊀12种供试品的名称和剂型名称剂型S01康富来牌西洋参口服液口服溶液S02金日牌西洋参口服液口服溶液S03新光牌西洋参口服液口服溶液S04日圣牌西洋参氨基酸口服液口服溶液S05无限能牌西洋参胶囊硬胶囊S06雪佳牌西洋参珍珠胶囊硬胶囊S07康富丽牌洋参淫羊藿软胶囊软胶囊S08福来了牌西洋参含片片剂S09喜之源牌西洋参含片片剂S10金日牌西洋参含片片剂S11康富来牌洋参含片片剂S12百合康牌螺旋藻洋参片片剂2 方法与结果2.1㊀色谱条件㊀色谱柱:KromasilC18(4.6mmˑ250mmꎬ5μm)ꎻ流动相:乙腈(A)-水(B)ꎬ梯度洗脱(0~40minꎬ17%Aң19%Aꎻ40~60minꎬ19%Aң29%Aꎻ60~75minꎬ29%Aꎻ75~100minꎬ29%Aң40%Aꎻ100~105minꎬ40%Aң17%A)ꎻ流速1.0mL min-1ꎻ检测波长203nmꎻ柱温35ħꎻ进样量:10μLꎮ2.2㊀对照品储备液及对照品混合工作液配制㊀分别精密称定人参皂苷Rg1㊁Rg2㊁Rg3㊁Rb1㊁Rb2㊁Rb3㊁Rc㊁Rd㊁Re㊁Rf对照品适量ꎬ置于25mL量瓶中ꎬ用甲醇溶解并定容ꎬ制成人参皂苷单体浓度分别为2.409㊁2.141㊁0.04712㊁1.947㊁1.758㊁2.138㊁2.250㊁2.062㊁2.077㊁2.008mg mL-1的对照品储备液ꎮ分别取10种人参皂苷对照品储备液适量ꎬ加甲醇稀释制成6个浓度的混合对照品工作液ꎮ2.3㊀供试品溶液的制备2.3.1㊀片剂㊁胶囊剂供试品溶液的制备㊀片剂㊁胶囊剂ꎬ取内容物研磨混匀后ꎬ片剂2gꎬ胶囊剂1gꎬ精密称定ꎬ置于100mL锥形瓶中ꎬ精密加水饱和正丁醇50mLꎬ密塞ꎬ放置过夜ꎬ超声处理(功率250Wꎬ频率50kHz)30minꎬ滤过ꎬ弃去初滤液ꎬ精密量取续滤液20mLꎬ用氨试液洗涤两次ꎬ每次20mLꎬ正丁醇提取液蒸干后ꎬ残渣加甲醇适量使溶解ꎬ作为供试品溶液ꎮ2.3.2㊀口服溶液供试品溶液的制备㊀口服溶液ꎬ精密量取8.0mL供试品至分液漏斗中ꎬ用水饱和正丁醇振摇提取3次ꎬ每次10mLꎬ合并正丁醇提取液ꎬ用氨试液洗涤2次ꎬ每次10mLꎬ正丁醇提取液蒸干后ꎬ残渣加甲醇适量使溶解ꎬ作为供试品溶液ꎮ2.4㊀线性关系考察㊀分别取6个浓度的混合对照品工作液ꎬ进样10μLꎬ记录峰面积ꎬ以对照品浓度X(μg mL-1)为横坐标ꎬ对照品的峰面积Y为纵坐标ꎬ绘制标准曲线ꎬ求得回归方程ꎮ得到10种人参皂苷在相应线性范围内均具有良好的线性ꎬ相关系数都在0.99以上ꎬ结果见表2ꎮ表2㊀标准曲线方程的结果成分标准曲线方程相关系数(r)线性范围/μg mL-1Rg1Rg2Rg3Rb1Rb2Rb3RcRdReRfY=1.770X+4.613Y=3.084X+2.021Y=2.381X-0.3584Y=2.377X+29.67Y=2.433X+1.319Y=2.520X+2.210Y=2.806X+3.629Y=2.303X-12.93Y=2.856X+6.063Y=3.982X+2.2570.99990.99990.99990.99980.99990.99990.99990.99980.99990.99994.818~240.94.282~214.11.178~47.123.894~194.73.516~175.84.276~213.84.500~225.04.124~206.24.154~207.74.016~200.82.5㊀试样重复性试验㊀准确量取6份口服溶液供试品(S01)8.0mL至分液漏斗中ꎬ以下按 2.3.2 项下方法操作ꎬ制备供试品溶液ꎮ准确称取6份胶囊剂供试品(S05)1gꎬ6份片剂供试品(S08)2gꎬ置于100mL锥形瓶中ꎬ以下按 2.3.1 项下方法操作ꎬ制备供试品溶液ꎮ分别取3种剂型供试品溶液10μL注入液相色谱仪ꎬ以保留时间定性ꎬ测定峰面积ꎬ计算供试品中10种人参皂苷的含量ꎮ3种剂型供试品中人参皂苷含量RSD(n=6)均小于3%ꎬ结果表明方法重复性良好ꎬ结果见表3ꎮ2.6㊀系统适应性考察㊀取10种人参皂苷混合对照品工作液10μL进样ꎬ计算10种人参皂苷的理论板数ꎮ得到人参皂苷Rg3㊁Rg1㊁Re㊁Rf㊁Rg2㊁Rb1㊁Rc㊁Rb2㊁Rb3㊁Rd的理论板数分别为103427㊁50732㊁104490㊁157284㊁120457㊁82876㊁253440㊁260991㊁410628㊁239554ꎬ分离度分别为5.4㊁1.6㊁32.6㊁15.1㊁2.2㊁4.0㊁4.8㊁1.6㊁8.0ꎮ对于供试品ꎬ虽然存在基质干扰影响分离度ꎬ但是3种剂型供试品中10种人参皂苷均能达到基线分离ꎬ分离度均能达到1.5以上ꎮ表3㊀重复性试验结果剂型口服溶液(S01)胶囊剂(S05)片剂(S08)含量平均值/mg mL-1RSD(%)含量平均值/mg g-1RSD(%)含量平均值/mg g-1RSD(%)Rg30.0202.60.9352.40.2112.3Rg10.0402.04.6731.90.1222.5Re0.0511.719.3252.10.2341.7Rf0.0212.9----Rg20.2960.62.6521.30.2171.4Rb10.4350.648.6260.70.4241.2Rc0.1591.011.8421.11.7461.7Rb20.1201.22.1611.61.4711.5Rb30.0542.63.6542.33.0302.5Rd0.4810.821.5001.30.8291.8㊀注: - 表示未检出或低于定量限2.7㊀精密度试验㊀取10种人参皂苷混合对照品工作液10μL连续进样5次ꎬ以测得的峰面积响应值作评价标准ꎬ得到10种人参皂苷的RSD(n=5)均小于3.0%ꎬ表明在本方法仪器条件下ꎬ仪器精密度良好ꎮ2.8㊀稳定性试验㊀分别取供试品S01㊁S05㊁S08ꎬ按 2.3 项下方法操作ꎬ得到供试品溶液ꎬ室温下放置24hꎬ分别在0㊁2㊁4㊁8㊁12㊁24h取10μL进样ꎬ得到10种人参皂苷峰面积RSD(n=6)都在3.0%以内ꎬ表明供试品溶液在24h内稳定ꎮ2.9㊀回收率试验㊀准确量取6份已知含量的供试品(S01)4.0mL至分液漏斗中ꎬ分别精密加入人参皂苷对照品储备液适量(对照品加入量与供试品中各人参皂苷含量之比为1ʒ1)ꎬ以下按 2.3.2 项下方法操作ꎬ即可得到加标溶液ꎮ准确称取已知含量的供试品(S05)0.5gꎬ供试品(S08)1gꎬ各6份ꎬ分别精密加入人参皂苷对照品储备液适量(对照品加入量与供试品中各人参皂苷含量之比为1ʒ1)ꎬ置于100mL锥形瓶中ꎬ以下按 2.3.1 项下方法操作ꎬ即可得到加标溶液ꎮ取10μL注入液相色谱仪ꎬ以保留时间定性ꎬ测定峰面积ꎬ得到10种人参皂苷的平均加样回收率(n=6)ꎬRSD均小于4.0%ꎬ结果见表4ꎮ表4㊀回收率结果剂型成分口服溶液(S01)胶囊剂(S05)片剂(S08)试样平均含量/mg平均回收率(%)RSD(%)试样平均含量/mg平均回收率(%)RSD(%)试样平均含量/mg平均回收率(%)RSD(%)Rg30.08096.32.10.46893.31.90.21197.92.5Rg10.16098.23.32.33799.12.80.12295.02.6Re0.20496.63.29.666100.33.10.234101.83.6Rf0.08498.81.0-101.21.5-101.33.4Rg21.18494.41.01.32793.71.70.217100.42.1Rb11.74096.41.524.32396.51.40.42595.52.4Rc0.63694.41.35.92398.22.51.75096.22.6Rb20.48096.02.31.08193.92.41.47497.52.8Rb30.21693.02.51.828100.12.63.036101.23.2Rd1.92493.31.510.75498.62.20.83194.02.4㊀注: - 表示未检出或低于定量限2.10㊀检出限与定量限㊀S/N=3时ꎬ得到检出限LODꎬ人参皂苷Rg1㊁Rg2㊁Rg3㊁Rb1㊁Rb2㊁Rb3㊁Rc㊁Rd㊁Re㊁Rf检出限分别为0.0024㊁0.0021㊁0.0029㊁0.0019㊁0.0018㊁0.0021㊁0.0022㊁0.0021㊁0.0021㊁0.0020μgꎻS/N=10时ꎬ得到定量限LOQꎬ定量限分别为0.0060㊁0.0054㊁0.0074㊁0.0050㊁0.0044㊁0.0053㊁0.0056㊁0.0052㊁0.0052㊁0.0050μgꎮ2.11㊀供试品的测定㊀取12批供试品ꎬ按照按 2.3 制备供试品溶液ꎬ每批平行处理2份ꎬ按上述色谱条件进行测定ꎬ将峰面积代入 2.4 线性回归方程计算含量ꎬ结果见图1~2及表5ꎮ表5㊀供试品中10种成分含量测定结果含量/mg mL-1或mg g-1编号S01S02S03S04S05S06S07S08S09S10S11S12Rg30.0200.0090.0100.0780.9350.1690.4940.2110.2120.2750.4170.489Rg10.0400.0710.015-4.6730.7671.7220.1220.2090.6740.8930.436Re0.0510.2400.066-19.3251.4184.1270.2340.7093.0853.8091.350Rf0.021--0.019-0.025----0.016-Rg20.2960.0620.147-2.6520.5451.0240.2170.1130.0840.2390.261Rb10.4350.6650.631-48.6261.3540.4070.4240.1026.7778.633-Rc0.1590.1200.083-11.8420.6560.6751.7460.6372.0662.7660.093Rb20.1200.0390.019-2.1610.3611.9871.4710.3820.3390.4870.536Rb30.0540.0950.023-3.6540.3696.7583.0301.5650.5900.8342.229Rd0.4810.2730.238-21.5001.4986.0160.8290.9763.2033.7523.154合计1.681.571.230.10115.377.1623.218.284.9117.0921.858.55㊀注: - 表示未检出或低于定量限㊀1.Rg3(20.0min)ꎻ2.Rg1(45.0min)ꎻ3.Re(45.8min)ꎻ4.Rf(65.9min)ꎻ5.Rg2(77.6min)ꎻ6.Rb1(80.0min)ꎻ7.Rc(83.6min)ꎻ8.Rb2(86.9min)ꎻ9.Rb3(87.8min)ꎻ10.Rd(93.0min)图1㊀10种人参皂苷对照品图谱㊀1.Rg3(20.0min)ꎻ2.Rg1(45.0min)ꎻ3.Re(45.8min)ꎻ4.Rf(65.9min)ꎻ5.Rg2(77.6min)ꎻ6.Rb1(80.0min)ꎻ7.Rc(83.6min)ꎻ8.Rb2(86.9min)ꎻ9.Rb3(87.8min)ꎻ10.Rd(93.0min)图2㊀供试品S01中10种人参皂苷图谱3 讨论3.1㊀前处理考察㊀由于保健食品剂型种类多ꎬ而每种剂型的基质比较复杂ꎬ导致10种人参皂苷更难同时分离ꎮ首先ꎬ通过比较3种不同的提取试剂ꎬ水饱和正丁醇㊁甲醇和乙醇ꎬ最终得到水饱和正丁醇提取效率最高ꎮ其次ꎬ选用水饱和正丁醇分别采用回流提取㊁液-液萃取㊁浸泡放置过夜超声提取和直接超声提取4种提取方式进行比较ꎬ结果表明:对于片剂和胶囊剂ꎬ浸泡过夜超声提取与回流提取得到皂苷含量最高ꎬ又因为前者操作简单ꎬ且提取的多糖等杂质较少ꎬ最终采用浸泡过夜超声提取ꎻ对于口服溶液ꎬ回流提取与液-液萃取都能得到较高总皂苷含量ꎬ优先选取重现性好且操作较简单的处理方法ꎬ因此采用水饱和正丁醇振摇多次萃取ꎮ3.2㊀流动相及梯度的选择㊀本文对甲醇-水ꎬ乙腈-水和乙腈-0.1%磷酸溶液3种不同流动相进行比较ꎬ结果表明ꎬ人参皂苷在低波长范围内检测时ꎬ乙腈比甲醇背景噪音低ꎬ可获得较好的分离效果ꎬ并且乙腈与水混合黏度小ꎬ可以有效降低系统压力ꎬ而加入磷酸对整体分离情况没有明显改善且磷酸盐对色谱柱损耗大ꎬ最终选择乙腈-水作为最佳流动相ꎮ10种人参皂苷中Rg1和ReꎬRb2和Rb3较难分离ꎮ人参皂苷Rg1和Re极性非常相似ꎬ较难分离ꎬ且供试品在人参皂苷Rg1和Re附近有杂质干扰ꎬ最终选择合适梯度ꎬ在45min左右达到基线分离ꎮRb2和Rb3是同分异构体ꎬ并且两者含量很低ꎬ容易包裹在杂质峰中ꎬ本试验在保证峰形和柱效的前提下完成了两种皂苷的基线分离ꎮ故最终采用梯度洗脱使每种皂苷达到较好分离效果ꎮ3.3㊀样品测定结果分析㊀由表5可见ꎬ12批供试品10种皂苷含量之和差异很大ꎬ含量最高的为硬胶囊ꎬ片剂和软胶囊次之ꎬ口服溶液最低ꎮ每批供试品中ꎬ单种人参皂苷占10种皂苷比例各不相同ꎬ经过分析发现ꎬRb1㊁Rc㊁Rd㊁Re4种所占比例最大ꎬ7批供试品含这4种皂苷比例为67.0%~88.5%ꎬ4批供试品的比例为39.0%~53.8%ꎬ1种供试品(S04)比例为0ꎮ对于供试品(S04)ꎬ根据«保健食品检验与评价技术规范»(2003年版)中规定的紫外分光光度法进行总皂苷检测ꎬ得到总皂苷含量为80mg 100mL-1ꎮ本文建立的HPLC-PAD法可对西洋参类保健食品中皂苷成分进行初步鉴定ꎬ最终用紫外分光光度法进行总皂苷检测ꎮ4 结论本文共收集口服溶液㊁片剂和胶囊剂12批西洋参类保健食品ꎬ通过测定其线性范围㊁系统适用性㊁重复性㊁精密度㊁稳定性㊁检出限㊁定量限和回收率试验ꎬ结果令人满意ꎮ试验表明ꎬ在本文供试品制备方法和色谱条件下ꎬ人参皂苷Rg3㊁Rg1㊁Re㊁Rf㊁Rg2㊁Rb1㊁Rc㊁Rb2㊁Rb3㊁Rd能够达到完全分离ꎬ所建立的方法操作简便ꎬ重复性好ꎬ可以用来对以西洋参为原料的保健食品进行质量控制ꎮ参考文献:[1]㊀尚金燕ꎬ李桂荣ꎬ邵明辉ꎬ等.西洋参的药理作用研究进展[J].人参研究ꎬ2016ꎬ28(6):49-51.[2]杜金凤ꎬ宋鉴达ꎬ朱传翔ꎬ等.比色法测定人参保健饮料中人参总皂苷含量[J].现代食品ꎬ2017ꎬ6(11):79-80. [3]徐灿辉ꎬ何维为.西洋参保健食品中7种人参皂苷的高效液相色谱法测定[J].食品与药品ꎬ2015ꎬ17(4):273-277.[4]崔勇ꎬ李青ꎬ刘思洁ꎬ等.固相萃取-超高效液相色谱法同时测定人参中11种人参皂苷的含量[J].中国卫生检验杂志ꎬ2012ꎬ22(3):475-477.[5]黄艳菲ꎬ刘永恒ꎬ李艳丹ꎬ等.HPLC-MSn法测定加拿大原产地西洋参不同入药部位的人参皂苷含量[J].中国实验方剂学杂志ꎬ2013ꎬ19(11):86-91.[6]张海江ꎬ蔡小军ꎬ程翼宇.高效液相色谱-电喷雾质谱法鉴别人参㊁西洋参和三七的皂苷提取物[J].中国药学杂志ꎬ2006ꎬ41(5):391-394.[7]毕福钧ꎬ钟顺好ꎬ顾利红.RRLC法与HPLC法在红参和西洋参人参皂苷含量测定中的分析比较[J].药物分析杂志ꎬ2010ꎬ30(9):1720-1724.[8]张崇禧ꎬ鲍建才ꎬ李向高ꎬ等.HPLC法测定人参㊁西洋参和三七不同部位中人参皂苷的含量[J].药物分析杂志ꎬ2005ꎬ25(10):1190-1194.[9]薛燕ꎬ闻莉.西洋参根及茎叶皂苷提取物中12种主要皂苷成分的分析研究[J].药物分析杂志ꎬ2009ꎬ29(1):79-81.(上接第335页)参考文献:[1]㊀DUMORTIERGꎬGROSSIORDJLꎬAGNELYFꎬetal.AReviewofPoloxamer407PharmaceuticalandPharmaco ̄logicalCharacteristics[J].PharmResꎬ2006ꎬ23(12):2709-2728.[2]国家药典委员会.中华人民共和国药典2015年版(四部)[S].北京:中国医药科技出版社ꎬ2015:530. [3]JIAOJ.Polyoxyethylatednonionicsurfactantsandtheirapplicationintopicaloculardrugdelivery[J].AdvDrugDelivRevꎬ2008ꎬ60(15):1663-1673.[4]SMITHCMꎬHEBBELRPꎬTUKEYDPꎬetal.PluronicF-68reducestheendothelialadherenceandimprovestherheologyofligandedsickleerythrocytes[J].Bloodꎬ1987ꎬ69(6):1631-1636.[5]ARMSTRONGJ.Inhibitionofredbloodcell-inducedplateletaggregationinwholebloodbyanonionicsurfac ̄tantꎬpoloxamer188(RheothRxinjection)[J].ThrombResꎬ1995ꎬ79(5-6):437-450.[6]HOPPENSTEADTDꎬEMANUELEMꎬMOLNARJꎬetal.Effectofpurifiedpoloxamer188andvariousdextransonerythrocytesedimentationrateinhealthysubjectsandpa ̄tientswithsicklecelldisease(1139.6)[J].FasebJꎬ2013ꎬ122(21):4764.[7]WANGTꎬCHENXꎬWANGZꎬetal.Poloxamer-188CanAttenuateBlood–BrainBarrierDamagetoExertNeuro ̄protectiveEffectinMiceIntracerebralHemorrhageModel[J].JMolNeurosciꎬ2015ꎬ55(1):240-250.[8]GUJHꎬGEJBꎬLIMꎬetal.Poloxamer188ProtectsNeu ̄ronsagainstIschemia/ReperfusionInjurythroughPreser ̄vingIntegrityofCellMembranesandBloodBrainBarrier[J].PLoSOneꎬ2013ꎬ8(4):e61641.[9]MOGHIMISMꎬHUNTERAC.Poloxamersandpoloxam ̄inesinnanoparticleengineeringandexperimentalmedicine[J].TrendsBiotechnolꎬ2000ꎬ18(10):412-420.[10]陆伟ꎬ朱友ꎬ别振英ꎬ等.顶空-气相色谱-质谱联用法同时测定食品包装纸中的环氧乙烷㊁环氧丙烷㊁环氧氯丙烷和二氧六环[J].食品安全质量检测学报ꎬ2016ꎬ7(10):4174-4178.。
西洋参冠瘿组织悬浮培养及其人参皂苷类成分的分离

西洋参冠瘿组织悬浮培养及其人参皂苷类成分的分离于荣敏;金钱星;孙辉;叶文才;赵昱【期刊名称】《生物工程学报》【年(卷),期】2005(021)005【摘要】对西洋参冠瘿组织悬浮培养生长特征进行了考察,并对其悬浮培养物中的人参皂苷类成分进行了提取、分离和鉴定.研究得到了培养物最大生物量收获时间[18.62 g/L(dry weight)]及其中最高人参皂苷累积时间(620.4 mg/L on the 27th day).培养基中碳源、磷、氨基氮、硝基氮的利用率分别为91.8%,100%,81%和97%.利用现代分离纯化方法从培养物中分离得到了4种人参皂苷类成分,利用理化及谱学技术分别鉴定为假人参皂苷F11(pseudoginsenoside F11,1),人参皂苷Rd(ginsenoside Rd,Ⅱ),人参皂苷Rb1(ginsenoside Rb1,Ⅲ)和人参皂苷Rb3(ginsenoside Rb3,Ⅳ).%The growth characteristics and ginsenosides isolation of the suspension-cultured crown gall of Panax quinquefolium were studied. The result showed that the maximum biomass of cultures was 18.6g/L(dry weight) and the content of ginsenosides reached its maximum level of 620.4 mg/L on the 27th day. The utilization rates of sugar, phosphorus, nitrogen in NH4 + and nitrogen in NO3- were 91.8%, 100%, 81% and 97%, respectively. Four compounds were isolated from the suspensioncultured crown gall and their structures were elucidated as pseudoginsenoside F11 ( Ⅰ ), ginsenoside Rd ( Ⅱ ), ginsenoside Rb1( Ⅲ ) and ginsenoside Rb3 ( Ⅳ ).【总页数】5页(P754-758)【作者】于荣敏;金钱星;孙辉;叶文才;赵昱【作者单位】暨南大学药学院,广州,510632;暨南大学药学院,广州,510632;中国药科大学中药学院,南京,210009;暨南大学药学院,广州,510632;中国药科大学中药学院,南京,210009;浙江大学药学院,杭州,310031【正文语种】中文【中图分类】R915;S567.5【相关文献】1.转基因西洋参冠瘿组织培养基中人参皂苷类成分的分离鉴定 [J], 张爱丰;朱建华;于荣敏2.西洋参冠瘿组织培养及其人参皂苷Re和人参皂苷Rg1的产生 [J], 于荣敏;宋永波;张辉;叶文才;张荫麟;姚新生3.西洋参中8种人参皂苷类成分的UPLC-MS/MS定量分析 [J], 赵瑛;谢海龙;王冬雪;张文君;阎新佳4.西洋参不同部位人参皂苷类成分研究 [J], 逄世峰;李亚丽;许世泉;孙成贺;赵景辉;王英平5.西洋参破壁饮片中8种人参皂苷类成分双标多测法的建立 [J], 于现花;刘军玲;金传山;张亚中;栗进才因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
21卷5期2005年9月生 物 工 程 学 报Chinese Jou rnal o f Biotechnology Vol.21 No.5September 2005Received:March 25,2005;Accepted:May 25,2005.This work was supported by the grants from Minis try of Education of China (No.104180),Natural Sciences Foundation of Guangdong (No.31891)and Chi nese Traditional Medicine Adminis tration of Guangdong,China (No.103041).*Corres ponding author.Yu Rong -M in:Tel:86-20-85228205;E -mail:rongminyu99@;ZHAO Yu:Tel:86-571-87217313;Email:dryuzhao@hot mail.c om国家教育部科学技术研究重点项目基金(No.104180),广东省自然科学基金(No.31891),广东省中医药局科研计划项目基金(No.103041)资助。
The Growth Characteristics and Ginsenosides Isolation of Suspension -cultured Crown Gall of Panax quinque folium西洋参冠瘿组织悬浮培养及其人参皂苷类成分的分离YU Rong -Min 1*,JIN Qian -Xing 1,SUN Hui 2,YE Wen -Cai 1,2and Z HAO Yu 3*于荣敏1*,金钱星1,孙 辉2,叶文才1,2,赵 昱3*1.暨南大学药学院,广州 5106322.中国药科大学中药学院,南京 2100093.浙江大学药学院,杭州 3100311.De pa rtmen t o f Ph ytoche mistry an d Pha rma cognosy ,Colle ge o f Pha rma cy ,Jin an Un ive rsity ,Gua n gzh ou 510632,Ch ina2.De pa rtmen t o f Ph ytoche mistry ,Ch in a Ph arma ce utica l Un ive rsity ,Nan jin g 210009,Ch in a3.De pa rtmen t o f Trad ition al Ch in ese Med icine an d Na tu ra l Drug Re sea rch ,College o f Pha rmac eutic al Scien ces ,Zh e jian g Un ive rsity ,Han g zhou 310031,China摘 要 对西洋参冠瘿组织悬浮培养生长特征进行了考察,并对其悬浮培养物中的人参皂苷类成分进行了提取、分离和鉴定。
研究得到了培养物最大生物量收获时间[18162g P L(dry weight)]及其中最高人参皂苷累积时间(62014mg P L on the 27th day)。
培养基中碳源、磷、氨基氮、硝基氮的利用率分别为9118%,100%,81%和97%。
利用现代分离纯化方法从培养物中分离得到了4种人参皂苷类成分,利用理化及谱学技术分别鉴定为假人参皂苷F 11(pseudoginsenoside F 11,Ñ),人参皂苷Rd(ginsenoside Rd,Ò),人参皂苷Rb 1(ginsenoside Rb1,Ó)和人参皂苷Rb 3(ginsenoside Rb 3,Ô)。
关键词西洋参,冠瘿组织,悬浮培养,人参皂苷,分离中图分类号 R915;S56715 文献标识码 A 文章编号1000-3061(2005)05-0754-05Abstract The growth characterist ics and ginsenoside s isola t ion of the suspension -cultured crown gall of Panax quinque f olium were studied.The result showed that the ma ximum biomass of cultures was 1816g P L(dry weight)and the conte nt of ginsenoside s reached its maximum level of 62014mg P L on the 27t h day.The utilization ra tes of sugar,phosphorus,nitrogen in NH 4+and nitrogen in NO 3-were 9118%,100%,81%and 97%,respectively.Four compounds were isolated fro m the suspe nsion -cultured cro wn gall and their structures were elucida ted as pse udoginsenoside F 11(Ñ),ginsenoside Rd (Ò),ginsenoside Rb 1(Ó)and ginsenoside Rb 3(Ô).Key words cro wn gall,ginsenosides,isolation,Pana x quinque f olium ,suspension c ulturesPanax quinque f o lium has been widely used for its therapeutic effec ts[1].Ho we ver,the field cultivation of the plant is a ti me-consuming and labor-intensive process:it takes over six yea rs for its harvest,during which great care is needed since the growth is subjec t to se veral c onditions,such as soil,cli mate,pathogens and pests.In addition,the plant has fallen short of supply for a long period due to a grea t demand on the market.The major ac tive constitue nts of P.quinque f o lium are ginsenosides,a diverse group of steroidal saponins[2].The use of plant biotec hnology,suc h as cell culture and transgenic technique s,has been c onsidered as a cos-t effective approach to produc tion of ginsenosides in la rge quantities. Crown gall,a kind of irregula r tissue caused by the Agrobacterium tume f aciens pathogen,is capable of introducing and re plicating its own DNA into the plant.s nuclear pared with callus and cell culture,the c rown gall cultures gro w faster,produces more active c onstituents and are free of phytohormone appe nded. Therefore,crown gall cultures ma y be an effec tive method of producing useful secondary me tabolites in some of valuable medicinal plants.The produc tion of sec ondary metabolites by c rown gall cultures has been studied in many plants[3].Our previous re search has sho wed that the cro wn gall cultures of P.quinque f olium c ould produce ginsenosides by using phytohor mone-free solid MS(Murashige and Skoog.s) medium[4].In the present paper,the gro wth characte ristics and ginsenosides isola t ion and structural elucidation of the suspension-cultured cro wn gall were carried out.Othe rwise, the concentrations of residual suga r,phosphorus,nitrogen in NH4+and nitrogen in NO3-in the media during the culture period were measured.The structures of four compounds were elucidated by physicoche mical and spectral me thods as peudoginsenoside F11(Ñ),ginsenoside Rd(Ò), ginsenoside Rb1(Ó)and ginsenoside Rb3(Ô).All of the m were firstly isola ted from the cro wn gall cultures of P.quinque f o lium.1MATERIALS AND METHODS111Cell cultivationThe cro wn gall tumors were induced by the direc t infection of sterile stems of P.quinque f olium L.with A. tume f aciens C58,and were adapted to culture in phy tohormone-free MS liquid medium.The pH value of all media was adjusted to5170before steriliza tion.The e xperi ments we re conducted using250mL Erlenme yer flasks c ontaining50mL of MS medium,inoc ula ted with410g of fresh weight biomass and inc uba ted at25e on an orbital shaker at110r P min in the darkness.Five flasks were harvested regula rly over a period of30d for the measurement of biomass,sugar,phosphorus,nitroge n and ginsenosides. 112Measurement of major nu tr ients in medium The c oncentration of residual suga r in the medium wa s dete rmined acc ording to the method of pheno-l concentrated sulfuric acid[5].The residual nitrogen in NH4+and NO3-in the medium was measured using pheno-l hypochlorite reac tion[6]and resorcinol me thod[7],respectively. Phosphorus of PO43-in the medium was dete rmined using ascorbic acid method[8].113Determination of cells weightThe cell suspensions we re filtered and washed several times with sufficie nt amount of distilled wa ter.The cells were weighed after being dried to a consta nt weight at a temperature belo w50e.114Assay of gin senosidesFor sa mple preparation,110g of po wdered crown gall c ultures was e xtrac ted with20mL of me thanol,using an ultrasonic bath for30min afte r degreasing with30mL of ether. Afte r filtra t ion and evaporation to dryness,the residue wa s dissolved in20mL of wate r and e xtracted with20mL of n-BuOH saturated with wa ter.The n-BuOH extraction wa s e vaporated to dryness,and the residue was dissolved in10mL of methanol for analysis.The content of total ginsenoside s wa s dete rmined by UV-spectrophotometry[9].The authentic ginsenosides were obtained from Institute of Drugs and Biological Products Identification of China.115Extraction and isolation of ginsenosid es from the crown gall culturesThe crown gall cultures(470g,dry weight of the biomass)were soaked for12h at roo m te mperature and e xtracted four times with95%e thanol to afford60g of crude e xtracts.The e xtracts we re dissolved in methanol and filte red.The methanol solution wa s then subjec ted to column c hroma tography on silica gel with gradie nt elution of c hloroform P pound I was obtained fro m the section in the rate of99%:1%and fractions A and B were 65%:35%and60%:40%respectively.Furthe r isolation was carried out by using prepa ra t ive HPLC(GI LSON)on a Lichrospher o R100Rp-18e(5L m)c olumn(Merk)a t room temperature.The eluting solvent was75%methanol,and the755YU Rong-Min et al:The Growth Characteristics and Ginsenosides Isolation of Suspension-cultured Crown Gall of Pana x quinque f oliumflow ra te was 110mL P min.The effluent fro m the outle t of the c olumn was monitored with a UV de tector at 203nm.By this method,compound Òwas obtained from frac tion A and c ompounds Óand Ôfrom fraction B.116 S tru ctural elucidationThe structures of four c ompounds isolated from the cro wn gall cultures were elucidated on the basis of 1H -NMR and13C -NMR spectra using Advance DMX500and Advance400MHz spectrometer (Bruker)with tetra methylsilane as an internal standard and ES-I MS spectra using a Finigan LCQ Advantage MAX (Thermo)spec trome ter.2 RES ULTS AND DISC USSIONAs sho wn in Figure 1,the suspension cultures sho wed a lag phase from 0to 6d,an exponential phase from 7to 21d and a stationary phase from 22to 27d afte r subc ulture.The biomass reached a peak of 18162g P L(dry weight)on the 27t h day,as almost 6ti mes as the a mount of inoculum.The c ontent of total ginse nosides fluctuated be tween 2165and 3131mg per 100mg dry weight.The conce ntra t ion of total ginsenosides inc reased slowly at the beginning of cultivation and reac hed a maximal value of 62014mg #L -1on the 27t hday.Fig.1 Time course of growth (w )and production oftotal ginsenosides(u )during cultivation of suspended crown gall of P .quinque foliumTo unde rstand the gro wth c haracteristics of suspensioncultures of P .quinque f olium ,the dyna mic changes in the c oncentra tions of re sidual sugar,phosphorus (PO 43-),nitrogen (N H 4+and NO 3-)in the media were investigated (Figure 2A and Figure 2B).The results showed that a rapid depletion of sugar in the medium (1114g #L -1per day)happened during the e xponent ial phase.At the end of thec ultiva t ion,there still was 2116g #L -1(sugar)left in the medium.For each gram dry weight of c rown gall,1148g of suga r was consumed,which was about 50%lo wer than that in callus suspension culture [10].Phosphorus was taken up rapidly and was depleted from the medium by the 25th day.The re sults of our experiments sho wed that the ut ilization of suga r and phosphorus was 9118%and 100%,respectively.Similar results we re reported in callus suspension cultures of P .quinque f olium [11].Fig.2 Changes of phosphorus(A ,u ),residual sugar(A,s ),NO 3-(B,w )and NH 4+(B,p )during cultivation ofsuspended crown gall of P .quinque foliumAs shown in Figure 2B,the deple tion of nitrogen in NH 4+and NO 3-was very differe nt.The deple t ion of nitrate was si milar to that of sugar.But the concentra t ion of NH 4+c hanged slightly during initial 18d,and rapidly declined to 3141mmol P L within 6d.These results suggest that ni trate and ammonium have different effects on primary and secondary metabolism of the cro wn gall c ultures.In other words,NH 4+was unnecessary to the gro wth of cro wn gall,but promoted the production of ginsenoside s.756Chinese J ournal o f Biotechnology 生物工程学报 2005,Vol 121,No 15These results were similar to those in large-scale cell culture of P.quinque f olium[12],but opposite to those insolid culture of the sa me crown gall(data not sho wn). Further investigation on the effects of nitrogen source is under way in our laboratory.During the whole cultivation,the utilization of NH4+and NO3-was81%a nd97%, respectively.The information obtained from this e xpe riment is c onsidered to be very important for the large scale produc tion of ginsenosides by plant biotec hnology.The structural identification of compounds was carried out by using ES-I MS,1H-NMR and13C-NMR spec tra.Compound I was c olorless po wder,m.p.205~207e. ES-I MS m P z:80013[M-1]-(C42H71O14,calcd.80010), 65314[M-C6H12O4]-,49112[M-C6H11O4-C6H12O5]-. 13C-NMR(C5D5N)D ppm:78143(CH,C-3),74114(CH, C-6),86159(C,C-20),26184(C H3,C-21),32164 (CH2,C-22),28166(CH2,C-23),85150(CH,C-24), 70119(C,C-25),27106(CH3,C-26),27163(CH3,C-27),32132(CH3,C-28),16177(CH3,C-29),101168 (CH,6-B-D-glc-C1),101186(CH,6-B-D-glc-A-L-rha-C1),18164(C H3,6-B-D-glc-A-L-rha-C6).Those da ta were c onsistent with literature[13].Therefore,compound I was identified as pseudoginsenoside F111CompoundÒwas colorless powder,m.p.206~ 209e.ES-I MS m P z:94613[M-1]-(C48H81O18,calcd. 94611),78313[M-C6H12O5]-,62113,45914113C-N MR (C5D5N)D ppm:88191(CH,C-3),18139(CH2,C-6), 83142(C,C-20),22135(CH3,C-21),36109(CH2,C-22),23119(CH2,C-23),125185(CH,C-24),130181 (C,C-25),25173(CH3,C-26),16157(CH3,C-27), 28106(CH3,C-28),16125(CH3,C-29);105109(CH, 3-B-D-glc-C1),106103(CH,3-B-D-glc-B-D-glc-C1), 98125(CH,20-B-D-glc-C1).Those da ta were c onsistent with literature[14].The refore,c ompoundÒwas identified as ginsenoside Rd.CompoundÓwas colorless powder,m.p.197~ 198e.ES-I MS m P z:110814[M-1]-(C54H91O23,calcd. 110813),94517[M-C6H12O5]-,78313,62112,45913113C-NMR(C5D5N)D ppm:88194(CH,C-3),18132 (CH2,C-6),83140(C,C-20),22137(CH3,C-21), 36116(CH2,C-22),23118(CH2,C-23),125187(CH, C-24),130196(C,C-25),25178(CH3,C-26),16157(CH3,C-27),28106(CH3,C-28),16124(CH3,C-29); 105108(CH,3-B-D-glc-C1),106102(CH,3-B-D-glc-B-D-glc-C1),98105(CH,20-B-D-glc-C1),105135(CH, 20-B-D-glc-B-D-glc-C1).Those data were c onsistent with literature[14](1993).The re fore,compoundÓwa s ide ntified as ginsenoside Rb11CompoundÔwas colorle ss powder,m.p.197-199e. ES-I MS m P z:107811[M-1]-(C53H89O22,calcd. 107813),94516[M-C5H8O4]-,91518[M-C6H12O5]-, 78313,62112,45914113C-NMR(C5D5N)D ppm:88197 (CH,C-3),18139(CH2,C-6),83137(C,C-20),22124 (CH3,C-21),36113(CH2,C-22),23112(CH2,C-23), 125191(CH,C-24),130191(C,C-25),25178(CH3,C-26),16157(CH3,C-27),28106(CH3,C-28),16123 (CH3,C-29),105108(CH,3-B-D-glc-C1),105196(CH, 3-B-D-glc-B-D-glc-C1),98107(CH,20-B-D-glc-C1), 105181(CH,20-B-D-glc-B-D-xy-l C1),66187(CH2,20-B-D-glc-B-D-xy-l C5).Those data we re consistent with literature[14](1993)and therefore co mpoundÔwa s ide ntified as ginsenoside Rb31Acknowledgement The authors are indebted to Prof. Leeann Song,Canadian foreign expe rt of Jinan University,for the revision of our manusc ript in English.R EFERENC ES(参考文献)[1]Huang KC.The Pharmacol ogy of Chines e Herbs.10th edn.CRCPress,Boca Raton,FL.1999[2]Attele,AS,Wu JA,Yuan CS.Gi nseng pharmacology:mul tiplecons ti tuents and mul tiple ac tions.Biochem Pharmcol,1999,58:1658-1693[3]G hsoh B,Mukherjee S,Jha S.Genetic transformation of Arte misiaauuna by Agrobacte rium tume fac ie ns and artemisi nin s ynthesis intransformed cultures.Plant Sc ienc e,1997,122:193-199[4]Yu R M(于荣敏),Song YB(宋永波),Zhang H(张辉)et al.Study on the c ulture of crown gall from Panax quinque folium and theproducti on of its secondary metabolites ginsenosi de Re and Rg11Chinese Journal o f Biote chnolo gy(生物工程学报),2003,19:372-375[5]Ts oulpha P,D oran PM.Solasodine produc tion from sel-f i mmobilisedSolanum aviculare cells.Journal o f Biote chnolo gy,1991,19:99-100[6]Weatherburn MW.Pheno-l hypochl orite reaction for determination ofammonia.Analytical Chemist ry,1967,39:971-974[7]Velghe N,Claeys A.Rapid spec tro-photometric de termi nation ofni trate in mineral waters with resorcinol.Analyst,1985,110:313-314[8]Chen PS,Toribara TY,Warner H.M icro-determinationphosphorus.Analytical Chemistry,1956,28:1756-1758757YU Rong-Min et al:The Growth Characteristics and Ginsenosides Isolation of Suspension-cultured Crown Gall of Pana x quinque f olium[9]Liu S,Zhong JJ.Phosphate effect on production of ginseng s aponinand pol ysacchari de by cell s uspension cultures of Panax ginseng andPanax quinque folium.Proce ss Bioc hemistry,1998,33:69-74 [10]Xu WH(徐卫辉),Song PL(宋佩伦).Studies on the physio-bi oche mical of American ginseng(Panax quinque folium L.).Ac taSc i Nat U ni v Nom Hunan(湖南师范大学自然科学学报),1993,16:350-354[11]Zhong JJ,Bai Y,Wang SJ.Effects of plant gro wth regulators oncell growth and gi nsenosi de saponin producti on by s uspensioncultures of Panax quinque f olium.Journal o f Biotec hnology,1996,45:227-234[12]Zhou LG(周立刚),Zheng GZ(郑光植).Study on mass cul ture ofPanax quinque folium cells.Chinese Journal o f Biotec hnology(生物工程学报),1990,6:316-321[13]Tang JL(唐纪琳),Li J(李静),Wei YD(卫永弟).Isol ation andidentification of s aponins from flowerbuds of Panax quinque foliumL.Chine se Traditional and He rbal Drugs(中草药),2000,31:496-498[14]Ma XY(马兴元),Wang GS(王广树).Triterpenoid s aponins fromaerial parts of Panax quinque folium L.Chinese PharmaceuticalJournal(中国药学杂志),1993,28:718-720科学出版社生命科学编辑部新书推介5临床微生物学手册6(Manual of Clinical Microbiology,7th ed)(上下册)1美2默里(Murray,P.R.)等著徐建国等译2005年6月出版ISB N7-03-014011-7定价: 260.00元本书英文版由国际杰出的临床微生物学家编写,美国微生物学会出版,是临床微生物学领域的经典杰作。