【精品】2016年湖北省十堰市丹江口市八年级上学期期中数学试卷带解析答案
八年级(上)期中数学试卷(含答案解析)

八年级(上)期中数学试卷一、选择题:(本题满分36分,每小题3分)1.以下列长度的三条线段为边,能组成三角形的是()A.3,3,3 B.3,3,6 C.3,2,5 D.3,2,62.下列图案是几种名车的标志,在这几个图案中不是轴对称图形的是()A. B. C. D.3.五边形的内角和是()A.180°B.360°C.540°D.600°4.下列图形中有稳定性的是()A.正方形B.直角三角形C.长方形D.平行四边形5.如图,△ABC中,BD是∠ABC的角平分线,DE∥BC,交AB于E,∠A=60°,∠BDC=95°,则∠BED的度数是()A.35°B.70°C.110°D.130°6.已知:如图,AC=CD,∠B=∠E=90°,AC⊥CD,则不正确的结论是()A.∠A与∠D互为余角B.∠A=∠2C.△ABC≌△CED D.∠1=∠27.下列说法正确的是()A.形状相同的两个三角形全等 B.面积相等的两个三角形全等C.完全重合的两个三角形全等 D.所有的等边三角形全等8.点M(1,2)关于x轴对称的点的坐标为()A.(﹣1,﹣2)B.(﹣1,2)C.(1,﹣2)D.(2,﹣1)9.下列图形中对称轴最多的是()A.等腰三角形B.正方形C.圆形 D.线段10.若等腰三角形的周长为26cm,一边为11cm,则腰长为()A.11cm B.7.5cm C.11cm或7.5cm D.以上都不对11.如图:DE是△ABC中AC边的垂直平分线,若BC=8厘米,AB=10厘米,则△EBC的周长为()厘米.A.16 B.18 C.26 D.2812.如图,在CD上求一点P,使它到OA,OB的距离相等,则P点是()A.线段CD的中点B.OA与OB的中垂线的交点C.OA与CD的中垂线的交点D.CD与∠AOB的平分线的交点二、填空题(本题满分24分,每小题4分)13.如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3=°.14.已知点P在线段AB的垂直平分线上,PA=6,则PB=.15.已知,如图,∠ACD=130°,∠A=∠B,那么∠A的度数是°.16.已知A(﹣1,﹣2)和B(1,3),将点A向平移个单位长度后得到的点与点B关于y轴对称.17.如图,AC=AD,BC=BD,则△ABC≌△;应用的判定方法是(简写).18.如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带去配,这样做的数学依据是.三、解答题(本大题满分50分)19.如图,已知△ABC中,AB=AC,AD平分∠BAC,请补充完整过程,说明△ABD≌△ACD的理由.∵AD平分∠BAC∴∠=∠(角平分线的定义)在△ABD和△ACD中∴△ABD≌△ACD.20.已知:如图,A、C、F、D在同一直线上,AF=DC,AB=DE,BC=EF,求证:△ABC≌△DEF.21.已知:如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,求证:AF=DE.22.已知:BE⊥CD,BE=DE,BC=DA,求证:△BEC≌△DAE.23.已知:如图,已知△ABC,分别画出与△ABC关于x轴、y轴对称的图形△A1B1C1和△A2B2C2.24.如图,AC和BD相交于点O,且AB∥DC,OC=OD,求证:OA=OB.参考答案与试题解析一、选择题:(本题满分36分,每小题3分)1.以下列长度的三条线段为边,能组成三角形的是()A.3,3,3 B.3,3,6 C.3,2,5 D.3,2,6【考点】三角形三边关系.【分析】三角形的三条边必须满足:任意两边之和>第三边,任意两边之差<第三边.【解答】解:A中,3+3>3,能构成三角形;B中,3+3=6,不能构成三角形;C中,3+2=5,不能构成三角形;D中,3+2<6,不能构成三角形.故选A.【点评】本题主要考查对三角形三边关系的理解应用.判断是否可以构成三角形,只要判断两个较小的数的和<最大的数就可以.2.下列图案是几种名车的标志,在这几个图案中不是轴对称图形的是()A. B. C. D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解,如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:根据轴对称图形定义可知:A、不是轴对称图形,符合题意;B、是轴对称图形,不符合题意;C、是轴对称图形,不符合题意;D、是轴对称图形,不符合题意.故选A.【点评】掌握轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.五边形的内角和是()A.180°B.360°C.540°D.600°【考点】多边形内角与外角.【专题】常规题型.【分析】直接利用多边形的内角和公式进行计算即可.【解答】解:(5﹣2)•180°=540°.故选:C.【点评】本题主要考查了多边形的内角和定理,是基础题,熟记定理是解题的关键.4.下列图形中有稳定性的是()A.正方形B.直角三角形C.长方形D.平行四边形【考点】三角形的稳定性.【分析】根据三角形具有稳定性可得答案.【解答】解:直角三角形有稳定性,故选:B.【点评】此题主要考查了三角形的稳定性,是需要识记的内容.5.如图,△ABC中,BD是∠ABC的角平分线,DE∥BC,交AB于E,∠A=60°,∠BDC=95°,则∠BED的度数是()A.35°B.70°C.110°D.130°【考点】平行线的性质.【分析】由三角形的外角性质得出∠ABD=35°,由角平分线的定义求出∠ABC=2∠ABD=70°,再由平行线的性质得出同旁内角互补∠BED+∠ABC=180°,即可得出结果.【解答】解:∵∠BDC=∠A+∠ABD,∴∠ABD=95°﹣60°=35°,∵BD是∠ABC的角平分线,∴∠ABC=2∠ABD=70°,∵DE∥BC,∴∠BED+∠ABC=180°,∴∠BED=180°﹣70°=110°.故选C.【点评】本题考查了平行线的性质、三角形的外角性质;熟练掌握平行线的性质,运用三角形的外角性质求出∠ABD的度数是解决问题的关键.6.已知:如图,AC=CD,∠B=∠E=90°,AC⊥CD,则不正确的结论是()A.∠A与∠D互为余角B.∠A=∠2C.△ABC≌△CED D.∠1=∠2【考点】全等三角形的判定与性质.【分析】先根据角角边证明△ABC与△CED全等,再根据全等三角形对应边相等,全等三角形的对应角相等的性质对各选项判断后,利用排除法求解.【解答】解:∵AC⊥CD,∴∠1+∠2=90°,∵∠B=90°,∴∠1+∠A=90°,∴∠A=∠2,在△ABC和△CED中,,∴△ABC≌△CED(AAS),故B、C选项正确;∵∠2+∠D=90°,∴∠A+∠D=90°,故A选项正确;∵AC⊥CD,∴∠ACD=90°,∠1+∠2=90°,故D选项错误.故选D.【点评】本题主要考查全等三角形的性质,先证明三角形全等是解决本题的突破口,也是难点所在.做题时,要结合已知条件与全等的判定方法对选项逐一验证.7.下列说法正确的是()A.形状相同的两个三角形全等 B.面积相等的两个三角形全等C.完全重合的两个三角形全等 D.所有的等边三角形全等【考点】全等图形.【分析】根据全等形的概念:能够完全重合的两个图形叫做全等形,以及全等三角形的判定定理可得答案.【解答】解:A、形状相同的两个三角形全等,说法错误,应该是形状相同且大小也相同的两个三角形全等;B、面积相等的两个三角形全等,说法错误;C、完全重合的两个三角形全等,说法正确;D、所有的等边三角形全等,说法错误;故选:C.【点评】此题主要考查了全等图形,关键是掌握全等形的概念.8.点M(1,2)关于x轴对称的点的坐标为()A.(﹣1,﹣2)B.(﹣1,2)C.(1,﹣2)D.(2,﹣1)【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.【解答】解:点M(1,2)关于x轴对称的点的坐标为(1,﹣2),故选:C.【点评】解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.9.下列图形中对称轴最多的是()A.等腰三角形B.正方形C.圆形 D.线段【考点】轴对称的性质.【分析】依据轴对称图形的概念,即在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,据此即可进行选择.【解答】解:A、因为等腰三角形分别沿底边的中线所在的直线对折,对折后的两部分都能完全重合,则等腰三角形是轴对称图形,底边的中线所在的直线就是对称轴,所以等腰三角形有1条对称轴;B、因为正方形沿对边的中线及其对角线所在的直线对折,对折后的两部分都能完全重合,则正方形是轴对称图形,对边的中线及其对角线所在的直线就是其对称轴,所以正方形有4条对称轴;C、因为圆沿任意一条直径所在的直线对折,对折后的两部分都能完全重合,则圆是轴对称图形,任意一条直径所在的直线就是圆的对称轴,所以说圆有无数条对称轴.D、线段是轴对称图形,有两条对称轴.故选:C.【点评】本题考查了轴对称图形的性质,解答此题的主要依据是:轴对称图形的定义及其对称轴的条数.10.若等腰三角形的周长为26cm,一边为11cm,则腰长为()A.11cm B.7.5cm C.11cm或7.5cm D.以上都不对【考点】等腰三角形的性质.【分析】分边11cm是腰长与底边两种情况讨论求解.【解答】解:①11cm是腰长时,腰长为11cm,②11cm是底边时,腰长=(26﹣11)=7.5cm,所以,腰长是11cm或7.5cm.故选C.【点评】本题考查了等腰三角形的性质,难点在于要分情况讨论.11.如图:DE是△ABC中AC边的垂直平分线,若BC=8厘米,AB=10厘米,则△EBC的周长为()厘米.A.16 B.18 C.26 D.28【考点】线段垂直平分线的性质.【分析】利用线段垂直平分线的性质得AE=CE,再等量代换即可求得三角形的周长.【解答】解:∵DE是△ABC中AC边的垂直平分线,∴AE=CE,∴AE+BE=CE+BE=10,∴△EBC的周长=BC+BE+CE=10厘米+8厘米=18厘米,故选B.【点评】本题考查了线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.12.如图,在CD上求一点P,使它到OA,OB的距离相等,则P点是()A.线段CD的中点B.OA与OB的中垂线的交点C.OA与CD的中垂线的交点D.CD与∠AOB的平分线的交点【考点】角平分线的性质.【分析】利用角的平分线上的点到角的两边的距离相等可知CD与∠AOB的平分线的交点.【解答】解:利用角的平分线上的点到角的两边的距离相等可知CD与∠AOB的平分线的交P.故选D.【点评】本题主要考查了角平分线上的一点到两边的距离相等的性质.做题时注意题目要求要满足两个条件①到角两边距离相等,②点在CD上,要同时满足.二、填空题(本题满分24分,每小题4分)13.如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3=135°.【考点】全等三角形的判定与性质.【分析】观察图形可知∠1与∠3互余,∠2是直角的一半,利用这些关系可解此题.【解答】解:观察图形可知:△ABC≌△BDE,∴∠1=∠DBE,又∵∠DBE+∠3=90°,∴∠1+∠3=90°.∵∠2=45°,∴∠1+∠2+∠3=∠1+∠3+∠2=90°+45°=135°.故填135.【点评】此题综合考查角平分线,余角,要注意∠1与∠3互余,∠2是直角的一半,特别是观察图形的能力.14.已知点P在线段AB的垂直平分线上,PA=6,则PB=6.【考点】线段垂直平分线的性质.【分析】直接根据线段垂直平分线的性质进行解答即可.【解答】解:∵点P在线段AB的垂直平分线上,PA=6,∴PB=PA=6.故答案为:6.【点评】本题考查的是线段垂直平分线的性质,熟知垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.15.已知,如图,∠ACD=130°,∠A=∠B,那么∠A的度数是65°.【考点】三角形的外角性质.【分析】直接根据三角形内角与外角的性质解答即可.【解答】解:∵∠ACD是△ABC的外角,∴∠ACD=∠A+∠B,∵∠ACD=130°,∠A=∠B,∴∠A==65°.【点评】本题比较简单,考查的是三角形外角的性质,即三角形的外角等于不相邻的两个内角的和.16.已知A(﹣1,﹣2)和B(1,3),将点A向上平移5个单位长度后得到的点与点B关于y轴对称.【考点】关于x轴、y轴对称的点的坐标.【分析】熟悉:关于y轴对称的点,纵坐标相同,横坐标互为相反数;把一个点左右平移,则横坐标是左减右加,把一个点上下平移,则纵坐标是上加下减.【解答】解:根据平面直角坐标系中对称点的规律可知,点B关于y轴对称的点为(﹣1,3),又点A(﹣1,﹣2),所以将点A向上平移5个单位长度后得到的点(﹣1,3).【点评】解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.平移时坐标变化规律:把一个点左右平移,则横坐标是左减右加,把一个点上下平移,则纵坐标是上加下减.17.如图,AC=AD,BC=BD,则△ABC≌△ABD;应用的判定方法是(简写)SSS.【考点】全等三角形的判定.【分析】此题不难,关键是找对对应点,即A对应A,B对应B,C对应D,即可.【解答】解:∵AC=AD,BC=BD,AB=AB(公共边),∴△ABC≌△ABD(SSS).【点评】本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,本题要用SSS.18.如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带③去配,这样做的数学依据是两个角及它们的夹边对应相等的两个三角形全等.【考点】全等三角形的应用.【分析】已知三角形破损部分的边角,得到原来三角形的边角,根据三角形全等的判定方法,即可求解.【解答】解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.故答案为:③;两个角及它们的夹边对应相等的两个三角形全等.【点评】此题主要考查了全等三角形的判定方法的开放性的题,要求学生将所学的知识运用于实际生活中,要认真观察图形,根据已知选择方法.三、解答题(本大题满分50分)19.如图,已知△ABC中,AB=AC,AD平分∠BAC,请补充完整过程,说明△ABD≌△ACD的理由.∵AD平分∠BAC∴∠BAD=∠CAD(角平分线的定义)在△ABD和△ACD中∴△ABD≌△ACD SAS.【考点】全等三角形的判定;等腰三角形的性质.【专题】推理填空题.【分析】根据角平分线的定义及全等三角形的判定定理,填空即可.【解答】解:∵AD平分∠BAC∴∠BAD=∠CAD(角平分线的定义),在△ABD和△ACD中,,∴△ABD≌△ACD(SAS).【点评】本题考查了全等三角形的判定,解答本题的关键是掌握全等三角形的判定定理及角平分线的定义.20.已知:如图,A、C、F、D在同一直线上,AF=DC,AB=DE,BC=EF,求证:△ABC≌△DEF.【考点】全等三角形的判定.【专题】证明题.【分析】首先根据AF=DC,可推得AF﹣CF=DC﹣CF,即AC=DF;再根据已知AB=DE,BC=EF,根据全等三角形全等的判定定理SSS即可证明△ABC≌△DEF.【解答】证明:∵AF=DC,∴AF﹣CF=DC﹣CF,即AC=DF;在△ABC和△DEF中∴△ABC≌△DEF(SSS).【点评】本题考查了全等三角形全等的判定,熟练掌握各判定定理是解题的关键.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.21.已知:如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,求证:AF=DE.【考点】全等三角形的判定与性质.【专题】证明题.【分析】要证明AF=DE,可以证明它们所在的三角形全等,即证明△ABF≌△DEC,已知两边(由BE=CF得出BF=CE,AB=DC)及夹角(∠B=∠C),由SAS可以证明.【解答】证明:∵BE=CF,∴BE+EF=CF+EF,即BF=CE,又∵AB=DC,∠B=∠C,∴△ABF≌△DCE,∴AF=DE.【点评】本题考查了全等三角形的判定及性质;证明两边相等时,如果这两边不在同一个三角形中,通常是证明它们所在的三角形全等来证明它们相等,是一种很重要的方法.22.已知:BE⊥CD,BE=DE,BC=DA,求证:△BEC≌△DAE.【考点】全等三角形的判定.【专题】证明题.【分析】根据已知得出Rt△CEB和Rt△AED,利用HL定理得出即可.【解答】证明:∵BE⊥CD,∴∠CEB=∠AED=90°,∴在Rt△CEB和Rt△AED中,∴Rt△CEB≌Rt△AED(HL).【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.23.已知:如图,已知△ABC,分别画出与△ABC关于x轴、y轴对称的图形△A1B1C1和△A2B2C2.【考点】作图-轴对称变换.【分析】根据关于坐标轴对称的点的坐标特点画出图形即可.【解答】解:如图所示.【点评】本题考查的是作图﹣轴对称变换,熟知关于坐标轴对称的点的坐标特点是解答此题的关键.24.如图,AC和BD相交于点O,且AB∥DC,OC=OD,求证:OA=OB.【考点】等腰三角形的判定与性质;平行线的性质.【分析】根据OC=OD得,△ODC是等腰三角形;根据AB∥DC,得出对应角相等,求得△AOB是等腰三角形,证明最后结果.【解答】证明:∵OC=OD,∴△ODC是等腰三角形,∴∠C=∠D,又∵AB∥DC,∴∠A=∠C,∠B=∠D,∴∠A=∠B,∴△AOB是等腰三角形,∴OA=OB.【点评】本题主要考查了等腰三角形的判定和平行线的性质:两直线平行,内错角相等.。
湖北省十堰市2016-2017学年八年级上学期期末考试数学试卷(扫描版)

十堰市2016~2017学年度上学期期末调研考试八年级数学试题参考答案及评分说明一、选择题1.C 2.D 3.B 4.B 5.C 6.D 7.C 8.B 9.C 10.A二、填空题11. 1.5×10-6; 12.95°; 13.19cm ; 14. -1; 15.12°; 16.3三、解答题17.(1)解:原式=322223x x y xy x y xy y -++-+ ………………………………………2分33x y =+ ……………………………………………………………………4分(2)解:原式=2222(2)2x xy y x y x -++-÷2(22)2x xy x =-÷ ……………………………………………………2分x y =-………………………………………………………………………4分18(1)解:原式=22(49)a x y - ……………………………………………………………2分(23)(23)a x y x y =+- ………………………………………………4分(2)解:原式=22(96)y x xy y --+ ……………………………………………………2分2(3)y x y =-- ……………………………………………………………4分19.解:方程两边同乘以2(3)x +得:42(3)7x x ++= ……………………………………2分 解这个整式方程得:16x =……………………………………………………4分 检验:当16x =时,2(3)0x +≠………………………………………………………5分 ∴16x =是原方程的解…………………………………………………………………6分 20.解:原式=2(2)(2)(1)(2)(2)4x x x x x x x x +----⋅-- …………………………………………2分 24(2)(2)4x x x x x --=⋅-- 2x x-=…………………………………………………………………………5分 当1x =-时,原式1231--==-………………………………………………7分 21.证明:在△ABF 与△DCE 中 ∵A D AB DC B C ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABF ≌△DCE (ASA) ……………………………………………………………………4分 ∴BF =CE …………………………………………………………………………………5分 ∴BF -EF =CE -EF ,∴BE =CF …………………………7分22. (1)11117554513252222ABC S =⨯-⨯⨯-⨯⨯-⨯⨯= ……………………………………………………………3分 (2)如图 ………………………………………………2分111(2,4),(3,1),(2,1)A B C ---……………………………5分23.解:设施工队原计划每天铺设管道x 米……………………………………………………1分 根据题意列方程得:150015002(120%)x x=++ ………………………………………………4分 解这个方程得:125x = ……………………………………………………………………6分 经检验:125x =是原方程的解且符合题意 …………………………………………………7分 答:施工队原计划每天铺设管道125米…………………………………………………………8分24.(1)证明:∵ △ABC 和△ADE 都是等边三角形,C 1B 1A 1∴AB=AC,AD=AE,∠BAC =∠DAE=60°.∴∠BAC-∠DAC =∠DAE-∠DAC,即∠BAD =∠CAE.在△ABD与△ACE中∵AB ACBAD CAE AD AE=⎧⎪∠=∠⎨⎪=⎩∴△ABD≌△ACE(SAS)∴BD=CE……………………………………………………………………………………………4分(2)解:△APQ是等边三角形,理由如下………………………………………………………1分∵P是BD中点,Q是CE中点,BD=CE,∴BP=CQ .∵△ABD≌△ACE∴∠ABP=∠ACQ .在△ABP与△ACQ中∵AB ACABP ACQBP CQ=⎧⎪∠=∠⎨⎪=⎩∴△ABP≌△ACQ(SAS),∴AP=AQ,∠BAP=∠CAQ,∴∠BAP+∠CAP =∠CAQ+∠CAP,∴∠P AQ=∠BAC=60°∴△APQ是等边三角形…………………………………………………………………………6分25.(1)解:过C作CM⊥y轴于M.∵CM⊥y轴,∴∠BMC=∠AOB=90°,∴∠ABO+∠BAO=90°∵∠ABC=90°,∴∠CBM+∠ABO=90°,∴∠CBM=∠BAO在△BCM与△ABO中∵BMC AOBCBM BAO BC AB∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BCM≌△ABO (AAS) ,∴CM=BO=1,BM=AO=4,∴OM=3,∴C(-1,-3) ……………………………………………………………………………4分(2)在B点运动过程中,BE长保持不变,值为2,理由如下:…………………………1分过C作CM⊥y轴于M,由(1)可知:△BCM≌△ABO,∴CM=BO,BM=OA=4.∵△BDO是等腰直角三角形,∴BO=BD, ∠DBO=90°,∴CM=BD, ∠DBE=∠CME=90°,在△DBE与△CME中,∵DBE CMEDEB CEM BD MC∠=∠⎧⎪∠=∠⎨⎪=⎩∴△DBE≌△CME(AAS) ∴BE=EM∴BE=122BM=…………………………………………………………………………6分MM说明:以上各题若有其他解法,请参照评分说明给分.。
湖北省丹江口市八年级数学11月教学质量监测(期中)试题

湖北省丹江口市2016-2017学年八年级数学11月教学质量监测(期中)试题2016年11月质量检测评分标准一、1.B 2.C 3.B 4.B 5.B 6.B 7.D 8.A 9.B 10.A二、11.AB=AD 或∠B=∠D 或∠C=∠E12、0 13、54 14、45° 15、216.(7,7),(14,8),(6,14)(对1个给1分,错1个本题不得分)三、17.(1)1 ………………………………….…………………………..4分(2)42x ………………………………….…………………………..8分 18.5a ²-ab -7b²; ………………………………….…………………………..4分值为-21. ………………………………….…………………………..6分19.连接AD ,证△ADB ≌△ADC (SSS ) 或连接BC ,利用等腰三角形的性质可证得∠B=∠C 。
……………………….…………………………..6分(作辅助线的1分))20.(1)略.…………………….…………………………..2分(错一个点此问不得分)(2)相互平行,三个交点均在y 轴上 ;…………… 4分(答对一问给1分)(3)略 ………………………………….…………………………..7分21.(1)(2x+y )(x+y )=2x ²+3xy+y ² 分(2)如右图(作法多样,此图仅做参考) 分 21题图 22.证得∠A=∠CBD …………………………….…………………………..2分证得△ABE ≌△BCD (ASA ) ……………….…………………………..5分CD =9cm ……………………….…………………………..7分23.(1)y =14………………………………….…………………………..4分 (2)25 ………………………………….…………………………..8分24.解:(1)证明:∵EF ⊥EB ,∴∠FEB =90°=∠BAF ,∵∠AFE=90°-∠A OF ,∠ABE=90°-∠BOE ,∠EOB=∠AOF ,∴∠AFE=∠ABE ; ……………………………………………………………………2分(2)△EBF 为等腰直角三角形,如图24(1),过作EM ⊥AE 交AB 于M ,在等腰直角三角形ABC 中,∠BAC =45°,∴∠EAM=∠AME =45°,∴EA=EM ,…………………………………………………………3分∵∠FAE =45°+90°=135°,∠EMB =180°-45°=135°,∴∠FAE=∠EMB ,…………………………………………………………4分在△AEP 和△MBP 中FAE EMBAFE EBMAE ME ∠=∠∠=∠=⎧⎪⎨⎪⎩,∴△AFE ≌△MBE (AAS ),…………………………………………………………5分 ∴EF=EB ,∠FEA=∠BEM ,∴∠BEF=∠MEA =90°,∴△BEF 为等腰直角三角形;…………………………………………………………6分(3)成立;如图24(2),过E 作EM ⊥AB 延长线于点M ,……………………………………7分 易得∠EMB=∠EAB =45°=∠EAF ,∴EM=EA ,∵∠FEB+∠FAB =90°+90°=180°,∴∠EFA+∠ABE =180°,又∵∠EBM+∠EBA =180°,∴∠EBM =∠EFA ,……………………………………………8分 在△EBM 和△EFA 中EMB EAFEBM EFAME AE ∠=∠∠=∠=⎧⎪⎨⎪⎩∴△EBM ≌△EFA (AAS ),∴EB=EF .∠FEA=∠BEM ,∴∠BEF=∠MEA =90°,∴△BEF 为等腰直角三角形. …………………………………………………………10分25. (1)∵(a-b -8)2≥0,|2a+b -4|≥0,(a-b -8)2+|2a+b -4|=0∴a-b -8=0,2a+b -4=0,解得,a=4,b=-4∴A (0,4),B (-4,0),∵B ,C 关于y 轴对称,∴C (4,0) ……………………………………3分(2) EM 与FM 的大小关系是始终相等的。
湖北省十堰市八年级上学期数学期中试卷

湖北省十堰市八年级上学期数学期中试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)下列四个图形中,线段BE是△ABC的高的是()A .B .C .D .2. (2分) (2019八上·宁晋期中) 如图,在中,,的平分线交于点D,若,,则的度数为()A . 70°B . 85°C . 95°D . 105°3. (2分) (2019八上·荣昌期中) 下列结论错误的是()A . 全等三角形对应边上的中线相等B . 两个直角三角形中,两个锐角相等,则这两个三角形全等C . 全等三角形对应边上的高相等D . 两个直角三角形中,斜边和一个锐角对应相等,则这两个三角形全等4. (2分) (2019七上·东坡月考) 如图,OC是∠AOB的平分线,OD平分∠AOC,且∠COD=25°,则∠AOB =()A . 100°B . 75°C . 50°D . 20°5. (2分) (2018八下·道里期末) 如图,在▱ABCD中,对角线AC和BD相交于点O,AC⊥BC,若AB=10,AC=6,S△AOD=()A . 48B . 24C . 12D . 86. (2分)已知点A(a,-2)和B(3,b)关于x轴对称,应当满足条件()A . a=2,b=3B . a=3,b=2C . a=-3,b=2D . a=2,b=-37. (2分) (2018八上·青岛期末) 如图,在△ABC和△DBE中,BC=BE,还需再添加两个条件才能使△ABC≌△DBE,则不能添加的一组条件是()A . AB=DB,∠ A=∠ DB . DB=AB,AC=DEC . AC=DE,∠C=∠ED . ∠ C=∠ E,∠ A=∠ D8. (2分)(2019·定兴模拟) 已知等腰三角形的底边长为a ,底边上的高为h ,用直尺和圆规作这个等腰三角形时,甲同学的作法是:先作底边BC=a ,再作BC的垂直平分线MN交BC于点D ,并在DM上截取DA=h ,最后连结AB、AC ,则△ABC即为所求作的等腰三角形;乙同学的作法是:先作高AD=h ,再过点D作AD的垂线MN ,并在MN上截取BC=a ,最后连结AB、AC ,则△ABC即为所求作的等腰三角形.对于甲乙两同学的作法,下列判断正确是()A . 甲正确,乙错误B . 甲错误,乙正确C . 甲、乙均正确D . 甲、乙均错误9. (2分)如图,在正方形ABCD中,AB=1,E , F分别是边BC , CD上的点,连接EF、AE、AF ,过A作AH⊥EF于点H. 若EF=BE+DF,那么下列结论:①AE平分;②FH=FD;③∠EAF=45°;④;⑤△CEF的周长为2.其中正确结论的个数是A . 2B . 3C . 4D . 510. (2分) (2018八上·自贡期末) 如图,把长方形纸片ABCD沿对角线折叠,设重叠部分为△EBD,那么,有下列说法:①△EBD是等腰三角形,EB=ED;②折叠后∠ABE和∠CBD一定相等;③折叠后得到的图形是轴对称图形;④△EBA和△EDC一定是全等三角形.其中正确的是()A . ①②③B . ①③④C . ①②④D . ①②③④11. (2分)(2020·郑州模拟) 如图所示,在Rt△ABC中,∠C=90°,按以下步骤作图:①以点A为圆心,以小于AC的长为半径作弧,分别交AC、AB于点M,N;②分别以点M,N为圆心,以大于MN的长为半径作弧,两弧相交于点O;③作射线OA,交BC于点E,若CE=6,BE=10.则AB的长为()A . 11B . 12C . 18D . 2012. (2分) (2016八上·蓬江期末) 如图,若△OAD≌△OBC,且∠O=65°,∠C=20°,则∠OAD=()A . 20°B . 65°C . 86°D . 95°二、填空题 (共6题;共9分)13. (2分) (2020九上·宁都期末) 如图,已知菱形ABCD中,∠B=60°,点E在边BC上,∠BAE=25°,把线段AE绕点A逆时针方向旋转,使点E落在边CD上,那么旋转角的度数为________.14. (1分) (2018八上·兰州期末) 若一次函数与函数的图象关于X轴对称,且交点在X轴上,则这个函数的表达式为:________.15. (2分) (2019七下·温州期中) 如图,△BEF是由△ABC平移所得,点A,B,E在同一直线上,若∠C=20°,∠A=92°,则∠E=________度.16. (1分) (2015八上·大连期中) 已知:如图,Rt△ABC中,∠C=90°,沿过点B的一条直线BE折叠△ABC,使点C恰好落在AB边的中点D处,则∠A=________度.17. (1分) (2016九上·姜堰期末) ⊙O的半径为5,弦BC=8,点A是⊙O上一点,且AB=AC,直线AO与BC 交于点D,则AD的长为________.18. (2分) (2020九下·江岸月考) 如图,△ABC中,∠ABC=30º,BC=4,AB= ,将边AC绕着点A逆时针旋转120º得到AD,则BD的长为________.三、解答题 (共6题;共39分)19. (15分) (2019八上·牡丹期中) 如图,在正方形网格中,每个小正方形的边长都为1,点A ,点B在网格中的位置如图所示.(1)建立适当的直角坐标系,使点A ,点B的坐标分别为(1,﹣3),(4,﹣2);(2)若点C的坐标为(﹣1,﹣1),在平面直角坐标系中画出△ABC;(3)在图中作出△ABC关于x轴对称的图形△A1B1C1 .20. (5分)在各个内角都相等的多边形中,一个外角等于一个内角的.求多边形的边数.21. (5分)(2017·揭西模拟) 如图,某校数学兴趣小组为测得大厦AB的高度,在大厦前的平地上选择一点C,测得大厦顶端A的仰角为30°,再向大厦方向前进80米,到达点D处(C,D,B三点在同一直线上),又测得大厦顶端A的仰角为45°,请你计算该大厦的高度.(精确到0.1米,参考数据:≈1.414,≈1.732)22. (2分) (2018八上·钦州期末) 如图,已知AB=DC,AC=DB.求证:∠1=∠2.23. (2分)(2019·梅列模拟) 如图,AE∥FD , AE=FD , B、C在直线EF上,且BE=CF ,(1)求证:△ABE≌△DCF;(2)试证明:以A、B、D、C为顶点的四边形是平行四边形.24. (10分)如图①、②、③中,点E、D分别是正△ABC、正四边形ABCM、正五边形ABCMN中以C点为顶点的相邻两边上的点,且BE=CD,DB交AE于P点.(1)分别求图①,图②和图③中,∠APD的度数.(2)根据前面探索,你能否将本题推广到一般的正n边形情况?若能,写出推广问题和结论;若不能,请说明理由.参考答案一、单选题 (共12题;共24分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:二、填空题 (共6题;共9分)答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:三、解答题 (共6题;共39分)答案:19-1、答案:19-2、答案:19-3、考点:解析:答案:20-1、考点:解析:答案:21-1、考点:解析:答案:22-1、考点:解析:答案:23-1、答案:23-2、考点:解析:答案:24-1、答案:24-2、考点:解析:第21 页共21 页。
湖北省 八年级(上)期中数学试卷-(含答案)

八年级(上)期中数学试卷一、选择题(本大题共8小题,共24.0分)1.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A. B. C. D.2.如果三角形的两边长分别为3和5,第三边长是偶数,则第三边长可以是()A. 2B. 3C. 4D. 83.一个多边形的内角和是外角和的2倍,这个多边形是()A. 四边形B. 五边形C. 六边形D. 八边形4.如图,已知∠1=∠2,AC=AD,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED成立的条件有()A. 4个B. 3个C. 2个D. 1个5.如图,△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ABD=24°,则∠ACF的度数为()A.B.C.D.6.如图,在四边形ABCD中,∠A=90°,AD=3,BC=5,对角线BD平分∠ABC,则△BCD的面积为()A.B. 8C. 15D. 无法确定7.如图,∠DAE=∠ADE=15°,DE∥AB,DF⊥AB,若AE=8,则DF等于()A. 5B. 4C. 3D. 28.如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,△PMN周长的最小值是5cm,则∠AOB的度数是()A. B. C. D.二、填空题(本大题共7小题,共21.0分)9.若点M(2,a+3)与点N(2,2a-15)关于x轴对称,则a2+3= ______ .10.将一副直角三角板ABC和EDF如图放置(其中∠A=60°,∠F=45°).使点E落在AC边上,且ED∥BC,则∠CEF的度数为______ .11.如图,已知Rt△ABC≌Rt△DEC,连结AD,若∠1=20°,则∠B的度数是______ .12.如图,若△ACD的周长为7cm,DE为AB边的垂直平分线,则AC+BC=cm.13.如图,∠A=65°,∠B=75°,将纸片的一角折叠,使点C落在△ABC外,若∠1=20°,则∠2的度数为______.14.如图,已知:∠MON=30°,点A1、A2、A3在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为______ .15.用一条宽相等的足够长的纸条,打一个结,如图(1)所示,然后轻轻拉紧、压平就可以得到如图(2)所示的正五边形ABCDE,其中∠BAC=______度.三、计算题(本大题共1小题,共11.0分)16.已知:∠MON=40°,OE平分∠MON,点A、B、C分别是射线OM、OE、ON上的动点(A、B、C不与点O重合),连接AC交射线OE于点D.设∠OAC=x°.(1)如图①,若AB∥ON,则:①∠ABO的度数是____; ②当∠BAD=∠ABD时,x=____;当∠BAD=∠BDA时,x=____;(2)如图②,若AB⊥OM,则是否存在这样的x的值,使得△ADB中有两个相等的角?若存在,求出x的值;若不存在,说明理由.四、解答题(本大题共7小题,共64.0分)17.两个大小不同的等腰直角三角形三角板如图①所示放置,图②是由它抽象出的几何图形,B,C,E在同一条直线上,连结DC.求证:△BAE≌△CAD.18.如图,在△ABC中,∠A=46°,CE是∠ACB的平分线,点B、C、D在同一条直线上,FD∥EC,∠D=42°,求∠B的度数.19.如图,E、F分别是等边三角形ABC的边AB,AC上的点,且BE=AF,CE、BF交于点P.(1)求证:CE=BF;(2)求∠BPC的度数.20.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.21.如图,D、E、F、B在一条直线上,AB=CD,∠B=∠D,BF=DE求证:(1)AE=CF;(2)AE∥CF(3)∠AFE=∠CEF.22.已知:如图,Rt△ABC中,∠ACB=90°,AC=BC,点D为AB边上一点,且不与A、B两点重合,AE⊥AB,AE=BD,连接DE、DC.(1)求证:△ACE≌△BCD;(2)猜想:△DCE是______ 三角形;并说明理由.23.如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠CAB=50°,∠C=60°,求∠DAE和∠BOA的度数.答案和解析1.【答案】A【解析】解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选A.根据轴对称图形的概念求解.本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.【答案】C【解析】解:由题意,令第三边为X,则5-3<X<5+3,即2<X<8,∵第三边长为偶数,∴第三边长是4或6.∴三角形的第三边长可以为4.故选C.根据三角形三边关系,可令第三边为X,则5-3<X<5+3,即2<X<8,又因为第三边长为偶数,所以第三边长是4,6.问题可求.此题主要考查了三角形三边关系,熟练掌握三角形的三边关系是解决此类问题的关键.3.【答案】C【解析】解:设所求正n边形边数为n,由题意得(n-2)•180°=360°×2解得n=6.则这个多边形是六边形.故选:C.此题可以利用多边形的外角和和内角和定理求解.本题考查多边形的内角和与外角和、方程的思想.关键是记住内角和的公式与外角和的特征:任何多边形的外角和都等于360°,n边形的内角和为(n-2)•180°.4.【答案】B【解析】解:已知∠1=∠2,AC=AD,由∠1=∠2可知∠BAC=∠EAD,加①AB=AE,就可以用SAS判定△ABC≌△AED;加③∠C=∠D,就可以用ASA判定△ABC≌△AED;加④∠B=∠E,就可以用AAS判定△ABC≌△AED;加②BC=ED只是具备SSA,不能判定三角形全等.其中能使△ABC≌△AED的条件有:①③④故选:B.∠1=∠2,∠BAC=∠EAD,AC=AD,根据三角形全等的判定方法,可加一角或已知角的另一边.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.做题时要根据已知条件在图形上的位置,结合判定方法,进行添加.5.【答案】A【解析】解:∵BD平分∠ABC,∴∠DBC=∠ABD=24°,∵∠A=60°,∴∠ACB=180°-60°-24°×2=72°,∵BC的中垂线交BC于点E,∴BF=CF,∴∠FCB=24°,∴∠ACF=72°-24°=48°,故选:A.根据角平分线的性质可得∠DBC=∠ABD=24°,然后再计算出∠ACB的度数,再根据线段垂直平分线的性质可得BF=CF,进而可得∠FCB=24°,然后可算出∠ACF的度数.此题主要考查了线段垂直平分线的性质,以及三角形内角和定理,关键是掌握线段垂直平分线上任意一点,到线段两端点的距离相等.6.【答案】A【解析】解:如图,过点D作DE⊥BC于点E.∵∠A=90°,∴AD⊥AB.∴AD=DE=3.又∵BC=5,∴S△BCD=BC•DE=×5×3=7.5.故选:A.如图,过点D作DE⊥BC于点E.利用角平分的性质得到DE=AD=3,然后由三角形的面积公式来求△BCD的面积.本题考查了角平分线的性质.角的平分线上的点到角的两边的距离相等.7.【答案】B【解析】解:如图,过D作于G,∵∠DAE=∠ADE=15°,∴∠DEG=∠DAE+∠ADE=15°+15°=30°,DE=AE=8,过D作DG⊥AC于G,则DG=DE=×8=4,∵DE∥AB,∴∠BAD=∠ADE,∴∠BAD=∠CAD,∵DF⊥AB,DG⊥AC,∴DF=DG=4.故选:B.过D作DG⊥AC于G,根据三角形的一个外角等于和它不相邻的两个内角的和求出∠DEG=30°,再根据直角三角形30°角所对的直角边等于斜边的一半求出DG的长度是4,又DE∥AB,所以∠BAD=∠ADE,所以AD是∠BAC的平分线,根据角平分线上的点到角的两边的距离相等,得DF=DG.本题主要考查三角形的外角性质,直角三角形30°角所对的直角边等于斜边的一半的性质,平行线的性质和角平分线上的点到角的两边的距离相等的性质,熟练掌握性质是解题的关键.8.【答案】B【解析】解:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,如图所示:∵点P关于OA的对称点为D,关于OB的对称点为C,∴PM=DM,OP=OD,∠DOA=∠POA;∵点P关于OB的对称点为C,∴PN=CN,OP=OC,∠COB=∠POB,∴OC=OP=OD,∠AOB=∠COD,∵△PMN周长的最小值是5cm,∴PM+PN+MN=5,∴DM+CN+MN=5,即CD=5=OP,∴OC=OD=CD,即△OCD是等边三角形,∴∠COD=60°,∴∠AOB=30°;故选:B.分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,由对称的性质得出PM=DM,OP=OC,∠COA=∠POA;PN=CN,OP=OD,∠DOB=∠POB,得出∠AOB=∠COD,证出△OCD是等边三角形,得出∠COD=60°,即可得出结果.本题考查了轴对称的性质、最短路线问题、等边三角形的判定与性质;熟练掌握轴对称的性质,证明三角形是等边三角形是解决问题的关键.9.【答案】19【解析】解:∵点M(2,a+3)与点N(2,2a-15)关于x轴对称,∴a+3+2a-15=0,解得:a=4,∴a2+3=19,故答案为:19.根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得a+3+2a-15=0,再解方程即可.此题主要考查了关于x轴对称点的坐标,关键是掌握点的坐标的变化规律.10.【答案】15°【解析】解:∵∠A=60°,∠F=45°,∴∠1=90°-60°=30°,∠DEF=90°-45°=45°,∵ED∥BC,∴∠2=∠1=30°,∠CEF=∠DEF-∠2=45°-30°=15°.故答案为:15°.根据直角三角形两锐角互余求出∠1,再根据两直线平行,内错角相等求出∠2,然后根据∠CEF=45°-∠2计算即可得解.本题考查了平行线的性质,直角三角形两锐角互余的性质是基础题,熟记性质是解题的关键.11.【答案】65°【解析】解:∵Rt△ABC≌Rt△DEC,∴AC=CD,∴△ACD是等腰直角三角形,∴∠CAD=45°,∴∠DEC=∠1+∠CAD=20°+45°=65°,由Rt△ABC≌Rt△DEC的性质得∠B=∠DEC=65°.故答案为:65°.根据Rt△ABC≌Rt△DEC得出AC=CD,然后判断出△ACD是等腰直角三角形,根据等腰直角三角形的性质可得∠CAD=45°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠DEC,然后根据全等三角形的性质可得∠B=∠DEC.本题考查了全等三角形的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.12.【答案】7【解析】【分析】此题主要考查线段的垂直平分线的性质等几何知识;利用垂直平分线的性质后进行线段的等量代换是正确解答本题的关键.由已知条件,根据垂直平分线的性质得到AD=BD,进行等量代换后可得答案.【解答】解:∵DE为AB边的垂直平分线∴DA=DB∵△ACD的周长为7cm∴AD+AC+CD=AC+BC=7.故答案为7.13.【答案】100°【解析】【分析】本题考查了折叠前后两图形全等,即对应角相等,对应线段相等,也考查了三角形的内角和定理以及外角性质.先根据三角形的内角和定理可求出∠C=180°-∠A-∠B=180°-65°-75°=40°;再根据折叠的性质得到∠C′=∠C=40°,最后利用三角形的内角和定理以及外角性质计算即可.【解答】解:∵∠A=65°,∠B=75°,∴∠C=180°-∠A-∠B=180°-65°-75°=40°,∵将三角形纸片的一角折叠,使点C落在△ABC外,∴∠C′=∠C=40°,∴∠3=∠1+∠C′=60°,∴∠4=120°,∵∠A+∠B+∠4+∠2=360°,∴∠2=100°.故答案为100°.14.【答案】32【解析】解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°-120°-30°=30°,又∵∠3=60°,∴∠5=180°-60°-30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2=16,以此类推:A6B6=32B1A2=32.故答案是:32.根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2…进而得出答案.此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2进而发现规律是解题关键.15.【答案】36【解析】解:∵∠ABC==108°,△ABC是等腰三角形,∴∠BAC=∠BCA=36度.利用多边形的内角和定理和等腰三角形的性质即可解决问题.本题主要考查了多边形的内角和定理和等腰三角形的性质.n边形的内角和为:180°(n-2).16.【答案】(1)20°;120;60.(2)①当点D在线段OB上时,∵OE是∠MON的角平分线,∴∠AOB=∠MON=20°,∵AB⊥OM,∴∠AOB+∠ABO=90°,∴∠ABO=70°,若∠BAD=∠ABD=70°,则x=20,若∠BAD=∠BDA=(180°-70°)=55°,则x=35,若∠ADB=∠ABD=70°,则∠BAD=180°-2×70°=40°,∴x=50.②当点D在射线BE上时,因为∠ABE=110°,且三角形的内角和为180°,所以只有∠BAD=∠BDA=35°,此时x=125.综上可知,存在这样的x的值,使得△ADB中有两个相等的角,且x=20、35、50、125.【解析】解:(1)①∵∠MON=40°,OE平分∠MON,∴∠AOB=∠BON=20°,∵AB∥ON,∴∠ABO=20°.②∵∠BAD=∠ABD,∴∠BAD=20°,∵∠AOB+∠ABO+∠OAB=180°,∴∠OAB=140°,∴∠OAC=∠OAB-∠BAD=120°.∵∠BAD=∠BDA,∠ABO=20°,∴∠BAD=80°,∵∠AOB+∠ABO+∠OAB=180°,∴∠OAC=∠OAB-∠BAD=60°.故答案为:①20°,②120,60.(2)根据D点在线段OB和在射线BE上两种情况来讨论,具体解答请参看答案.利用角平分线的性质求出∠ABO的度数是关键,分类讨论的思想.本题考查了三角形的内角和定理和三角形的外角性质的应用,注意:三角形的内角和等于180°,三角形的一个外角等于和它不相邻的两个内角之和.17.【答案】证明:∵△ABC,△DAE是等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=90°.∠BAE=∠DAC=90°+∠CAE,在△BAE和△DAC中,∴△BAE≌△CAD(SAS).【解析】根据等腰直角三角形的性质和全等三角形的判定定理SAS可以得出:△BAE≌△CAD.本题主要考查全等三角形的判定与性质及等腰三角形的性质;充分利用等腰直角三角形的性质是解答本题的关键.18.【答案】解:∵FD∥EC,∠D=42°,∴∠BCE=∠D=42°,∵CE是∠ACB的平分线,∴∠ACB=2∠BCE=84°,∵∠A=46°,∴∠B=180°-84°-46°=50°.【解析】根据平行线的性质得出∠BCE的度数,进而利用角平分线的定义解答即可.此题考查平行线的性质,关键是根据平行线的性质得出∠BCE的度数.19.【答案】(1)证明:如图,∵△ABC是等边三角形,∴BC=AB,∠A=∠EBC=60°,∴在△BCE与△ABF中,,∴△BCE≌△ABF(SAS),∴CE=BF;(2)解:∵由(1)知△BCE≌△ABF,∴∠BCE=∠ABF,∴∠PBC+∠PCB=∠PBC+∠ABF=∠ABC=60°,即∠PBC+∠PCB=60°,∴∠BPC=180°-60°=120°.即:∠BPC=120°.【解析】(1)欲证明CE=BF,只需证得△BCE≌△ABF;(2)利用(1)中的全等三角形的性质得到∠BCE=∠ABF,则由图示知∠PBC+∠PCB=∠PBC+∠ABF=∠ABC=60°,即∠PBC+∠PCB=60°,所以根据三角形内角和定理求得∠BPC=120°.本题考查了全等三角形的判定与性质、等边三角形的性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.20.【答案】(1)证明:∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=ED,∠DEA=∠C=90°,∵在Rt△ACD和Rt△AED中∴Rt△ACD≌Rt△AED(HL);(2)解:∵DC=DE=1,DE⊥AB,∴∠DEB=90°,∵∠B=30°,∴BD=2DE=2.【解析】(1)根据角平分线性质求出CD=DE,根据HL定理求出另三角形全等即可;(2)求出∠DEB=90°,DE=1,根据含30度角的直角三角形性质求出即可.本题考查了全等三角形的判定,角平分线性质,含30度角的直角三角形性质的应用,注意:角平分线上的点到角两边的距离相等.21.【答案】解:(1)∵BF=DE,∴BF+EF=DE+EF,即BE=DF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS),∴AE=CF;(2)由(1)知:△ABE≌△CDF,∴∠AEB=∠CFD,∴AE∥CF;(3)在△ABF和△CDE中,,∴△ABF≌△CDE(SAS),∴∠AFB=∠DEC,∴∠AFE=∠CEF.【解析】(1)易证BE=DF,即可求证△ABE≌△CDF,即可解题;(2)根据(1)中的△ABE≌△CDF可得∠AEB=∠CFD,即可解题(3)根据全等三角形的性质得到∠AFB=∠DEC,根据邻补角的定义即可得到结论.本题考查了全等三角形的判定,考查了全等三角形对应角相等的性质,本题中求证△ABE≌△CDF是解题的关键.22.【答案】等腰直角【解析】(1)证明:∵∠ACB=90°,AC=BC,∴∠B=∠2=45°.∵AE⊥AB,∴∠1+∠2=90°.∴∠1=45°.∴∠1=∠B.在△ACE和△BCD中,∵∴△ACE≌△BCD(SAS).(2)猜想:△DCE是等腰直角三角形;理由说明:∵△ACE≌△BCD,∴CE=CD,∠3=∠4.∵∠4+∠5=90°,∴∠3+∠5=90°.即∠ECD=90°.∴△DCE是等腰直角三角形.(1)由已知可得△ABC是等腰直角三角形,由AE⊥AB即可得到∠1=∠B,从而可利用SAS判定△ACE≌△BCD.(2)根据已知可猜想其为等腰直角三角形,由第一问可得CE=CD,∠3=∠4,根据等角的性质可推出∠ECD=90°,从而即得到了答案.此题主要考查学生对全等三角形的判定方法及等腰直角三角形的判定的综合运用.23.【答案】解:∵∠CAB=50°,∠C=60°∴∠ABC=180°-50°-60°=70°,又∵AD是高,∴∠ADC=90°,∴∠DAC=180°-90°-∠C=30°,∵AE、BF是角平分线,∴∠CBF=∠ABF=35°,∠EAF=25°,∴∠DAE=∠DAC-∠EAF=5°,∠AFB=∠C+∠CBF=60°+35°=95°,∴∠BOA=∠EAF+∠AFB=25°+95°=120°,∴∠DAC=30°,∠BOA=120°.故∠DAE=5°,∠BOA=120°.【解析】先利用三角形内角和定理可求∠ABC,在直角三角形ACD中,易求∠DAC;再根据角平分线定义可求∠CBF、∠EAF,可得∠DAE的度数;然后利用三角形外角性质,可先求∠AFB,再次利用三角形外角性质,容易求出∠BOA.本题考查了三角形内角和定理、角平分线定义、三角形外角性质.关键是利用角平分线的性质解出∠EAF、∠CBF,再运用三角形外角性质求出∠AFB.。
八年级第一学期学期中考试数学试卷(附带答案)

八年级第一学期学期中考试数学试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________注意事项:本试题共6页,满分为150分.考试时间为120分钟.答卷前,请考生务必将自己的姓名、座号和准考证号填写在答题卡上,并同时将考点、姓名、准考证号和座号填写在试卷规定的位置上.答选择题时,必须使用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;答非选择题时,用0.5mm 黑色签字笔在答题卡上题号所提示的答题区域作答.答案写在试卷上无效.考试结束后,将本试卷和答题卡一并交回.第I 卷(选择题共40分)一.选择题(本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只 有一项是符合题目要求的.) 1.4的算术平方根是( )A.±2B.2C.﹣2D.±16 2.下列各数中,是无理数的是( )A.3.1415926B.√4C.√﹣83D.π 3.下列各点在第二象限的是( )A.(﹣√3,0)B.(﹣2,1)C.(0,﹣1)D.(2,﹣1) 4.下列运算正确的是( )A.√2+√3=√5B.3√3-√3=3C.√3×√5=√15D.√24+√6=45.已知点(-1,y 1),(3,y 2)在一次函数y=2x+1的图象上,则y 1,y 2的大小关系是( ) A.y 1<y 2 B.y 1=y 2 C.y 1>y 2 D.不能确定6.已知(k ,b )为第四象限内的点,则一次函数y =kx -b 的图象大致( )A. B. C. D.7.已知{x =1y =﹣1是方程x -my=3的解,那么m 的值( )A.2B.﹣2C.4D.﹣48.我国古代《算法统宗》里有这样一首诗:"我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空."诗中后两句的意思是:如果每一间客房住7人,那么有7人无房住:如果每一间客房住9人,那么就空出一间客房,设该店有客房x 间、房客y 人,下列方程组中正确的是( ) A.{7x +7=y9(x -1)=y B.{7x +7=y 9(x +1)=y C.{7x -7=y 9(x -1)=y D.{7x -7=y9(x +1)=y9.如图,△ABC 是直角三角形,点C 在数轴上对应的数为﹣2,且AC=3,AB=1,若以点C 为圆心,CB 为半径画弧交数轴于点M ,则A 和M 两点间的距离为( )A.0.4B.√10-2C.√10-3D.√5-1(第9题图) (第10题图)10.甲、乙两车从A 城出发匀速行驶至B 城,在整个行驶过程中,甲、乙两车离开A 城的距 离y (千米)与甲车行驶的时间1(小时)之间的函数关系如图所示,则下列结论:①A 、B 两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t =54或154.其中正确的结论有( ) A.1个 B.2个 C.3个 D.4个第II 卷(非选择题共110分)二.填空题:(本大题共6个小题,每小题4分,共24分) 11.电影票上"8排5号"记作(8,5),则"6排7号"记作 . 12.。
2015-2016年湖北省十堰市丹江口市八年级下学期期中数学试卷带答案解析

2015-2016学年湖北省十堰市丹江口市八年级(下)期中数学试卷一、选择题(每一道小题都给出代号为A、B、C、D的四个选项,其中有且只有一个选项符合题目要求,把符合题目要求的选项的代号直接填在答题框内相应题号的方框中,不选、错选或一个方框内写的代号超过一个,一律得0分,共10小题,每小题3分,本大题满分30分)1.(3分)已知正比例函数y=2x,当x=﹣1时,函数y的值是()A.2 B.﹣2 C.﹣0.5 D.0.52.(3分)一次函数y=kx+b的图象如图所示,则k、b的值为()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<03.(3分)一次函数y=kx+b的图象如图所示,那么方程kx+b=0的解是()A.x=1 B.x=2 C.x=D.x=﹣24.(3分)下列各组数中,不是勾股数的是()A.5,12,13 B.8,15,17 C.3,4,5 D.13,14,155.(3分)在四边形ABCD中,AD∥BC,下列条件不能得出四边形ABCD是平行四边形的是()A.∠A=∠C B.∠B+∠D=180°C.AB∥CD D.AD=BC6.(3分)如图所示,AB=BC=CD=DE=1,BC⊥AB,DC⊥AC,DE⊥AD,则AE=()A.1 B.C.D.27.(3分)菱形具有而矩形不具有的性质是()A.对角相等B.对角线互相平分C.四边相等D.四角相等8.(3分)如图,平行四边形ABCD中,对角线AC、BD交于点O,点E是BC的中点.若OE=3cm,则AB的长为()A.3cm B.6cm C.9cm D.12cm9.(3分)某校八年级同学到距学校6千米的郊外春游,一部分同学步行,另一部分同学骑自行车,沿相同路线前往.如图,a,b分别表示步行和骑车的同学前往目的地所走的路程y(千米)与所用时间x(分钟)之间的函数图象,则下列判断错误的是()A.骑车的同学比步行的同学晚出发30分钟B.步行的速度是6千米/小时C.骑车的同学从出发到追上步行的同学用了20分钟D.骑车的同学和步行的同学同时到达目的地10.(3分)如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF;②∠DAF=15°;③AC垂直平分EF;④BE+DF=EF;⑤S△CEF=2S△ABE,其中正确结论有()A.2个 B.3个 C.4个 D.5个二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)若函数y=(m+3)x2m﹣1﹣5是关于x的一次函数,则m的值为.12.(3分)在平面直角坐标系中,把直线y=2x向下平移3个单位,所得直线的解析式为.13.(3分)如图,正方形ABCD的边长为4cm,则图中阴影部分的面积为cm2.14.(3分)若四边形ABCD为平行四边形,请补充条件(一个即可)使四边形ABCD为矩形.15.(3分)如图,已知正方形ABCD的边长为1,连接AC、BD,CE平分∠ACD 交BD于点E,则DE=.16.(3分)以正方形ABCD的边BC为边做等边△BCE,则∠AED的度数为.三、解答题(本大题有9小题,共72分)17.(7分)如图,▱ABCD中,延长AD到F,延长CB到E,使BE=DF,连接AE、CF.求证:四边形ABCF是平行四边形.18.(7分)如图,平行四边形ABCD中,DB=CD,∠C=70°,AE⊥BD于E.试求∠DAE的度数.19.(7分)如图,甲乙两船从港口A同时出发,甲船以16海里/时速度向北偏东40°航行,乙船向南偏东50°航行,3小时后,甲船到达C岛,乙船到达B岛.若C、B两岛相距60海里,问乙船的航速是多少?20.(7分)某广电局与长江证券公司联合推出光电宽带网业务,用户通过宽带网可以享受新闻点播、影视欣赏、股市大户室等项服务,用户缴纳每月上网费y (元)与上网时间x(小时)的函数关系用如图所示的折线表示.(1)若小明家四月上网45小时,应交上网费元.(2)求用户缴纳每月上网费y(元)与上网时间x(小时)的函数关系式;(3)若小聪家某月交上网费70元,问该月上网时间是多少小时?21.(7分)如图,正方形网格中的每个小正方形=边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画图.(1)在图甲中,画出一个平行四边形,使其面积为6;(2)在图乙中,画出一个正方形,使其面积为5.22.(7分)四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于H,求DH的长.23.(8分)如图,在正方形ABCD中,点E在射线AB上,点F在射线AD上.(1)若CE⊥CF,求证:CE=CF;(2)若CE=CF,则CE⊥CF是否成立?若成立,请给出证明,若不成立,请画图说明.24.(10分)如图,点A、B的坐标分别为(0,2),(1,0),直线y=﹣3与坐标轴交于C、D两点.(1)求直线AB:y=kx+b与CD交点E的坐标;(2)直接写出不等式kx+b>x﹣3的解集;(3)求四边形OBEC的面积;(4)利用勾股定理证明:AB⊥CD.25.(12分)如图,矩形ABCD中,AD=4,AB=3,将此矩形折叠,使点B与点D 重合,折痕为EF,连接BE、DF,以B为原点建立平面直角坐标系.(1)试判断四边形BFDE的形状,并说明理由;(2)求直线EF的解析式;(3)在直线EF上是否存在一点P使它到x轴、y轴的距离相等?若存在,求出点P的坐标;若不存在,请说明理由.2015-2016学年湖北省十堰市丹江口市八年级(下)期中数学试卷参考答案与试题解析一、选择题(每一道小题都给出代号为A、B、C、D的四个选项,其中有且只有一个选项符合题目要求,把符合题目要求的选项的代号直接填在答题框内相应题号的方框中,不选、错选或一个方框内写的代号超过一个,一律得0分,共10小题,每小题3分,本大题满分30分)1.(3分)已知正比例函数y=2x,当x=﹣1时,函数y的值是()A.2 B.﹣2 C.﹣0.5 D.0.5【解答】解:对于正比例函数y=2x,当x=﹣1时,函数值y=﹣2×1=﹣2.故选:B.2.(3分)一次函数y=kx+b的图象如图所示,则k、b的值为()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0【解答】解:∵一次函数y=kx+b的图象过一、三象限,∴k>0,∵函数的图象与y轴的正半轴相交,∴b>0.故选:A.3.(3分)一次函数y=kx+b的图象如图所示,那么方程kx+b=0的解是()A.x=1 B.x=2 C.x=D.x=﹣2【解答】解:∵一次函数y=kx+b的图象与x轴的交点为(2,0),∴当x=2时,kx+b=0,∴方程kx+b=0的解是x=2.故选:B.4.(3分)下列各组数中,不是勾股数的是()A.5,12,13 B.8,15,17 C.3,4,5 D.13,14,15【解答】解:A、52+122=132,是勾股数,此选项错误;B、82+152=172,是勾股数,此选项错误;C、32+42=52,是勾股数,此选项错误;D、132+142≠152,不是勾股数,此选项正确;故选:D.5.(3分)在四边形ABCD中,AD∥BC,下列条件不能得出四边形ABCD是平行四边形的是()A.∠A=∠C B.∠B+∠D=180°C.AB∥CD D.AD=BC【解答】解:A、∵AD∥BC,∴∠A+∠B=180°,∠D+∠C=180°,∵∠A=∠C,∴∠D=∠B,∴四边形ABCD是平行四边形,故此选项不合题意;B、∵AD∥BC,∴∴∠A+∠B=180°,∵∠B+∠D=180°,∴∠A=∠D,不能判定四边形ABCD是平行四边形,故此选项符合题意;C、根据两组对边分别平行的四边形是平行四边形可得四边形ABCD是平行四边形,故此选项不符合题意;D、根据一组对边平行且相等的四边形是平行四边形可得四边形ABCD是平行四边形,故此选项不符合题意;故选:B.6.(3分)如图所示,AB=BC=CD=DE=1,BC⊥AB,DC⊥AC,DE⊥AD,则AE=()A.1 B.C.D.2【解答】解:∵BC⊥AB,CD⊥AC,AC⊥DE,∴∠B=∠ACD=∠ADE=90°,∵AB=BC=CD=DE=1,∴由勾股定理得:AC==;AD==;AE==2.故选:D.7.(3分)菱形具有而矩形不具有的性质是()A.对角相等B.对角线互相平分C.四边相等D.四角相等【解答】解:A、矩形、菱形的对角线都是相等的,故错误.B、矩形、菱形的对角线都是互相平分的,故错误.C、菱形的四边相等,矩形的四边不一定相等,故正确.D、矩形的四角相等,菱形的四角不一定相等,菱形不具有这个性质,故错误.故选:C.8.(3分)如图,平行四边形ABCD中,对角线AC、BD交于点O,点E是BC的中点.若OE=3cm,则AB的长为()A.3cm B.6cm C.9cm D.12cm【解答】解:∵四边形ABCD是平行四边形,∴OA=OC;又∵点E是BC的中点,∴BE=CE,∴AB=2OE=2×3=6(cm)故选:B.9.(3分)某校八年级同学到距学校6千米的郊外春游,一部分同学步行,另一部分同学骑自行车,沿相同路线前往.如图,a,b分别表示步行和骑车的同学前往目的地所走的路程y(千米)与所用时间x(分钟)之间的函数图象,则下列判断错误的是()A.骑车的同学比步行的同学晚出发30分钟B.步行的速度是6千米/小时C.骑车的同学从出发到追上步行的同学用了20分钟D.骑车的同学和步行的同学同时到达目的地【解答】解:骑车的同学比步行的同学晚出发30分钟,所以A正确;步行的速度是6÷1=6千米/小时,所以B正确;骑车的同学从出发到追上步行的同学用了50﹣30=20分钟,所以C正确;骑车的同学用了54﹣30=24分钟到目的地,比步行的同学提前6分钟到达目的地,故选:D.10.(3分)如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF;②∠DAF=15°;③AC垂直平分EF;④BE+DF=EF;⑤S△CEF=2S△ABE,其中正确结论有()A.2个 B.3个 C.4个 D.5个【解答】解:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠BCD=∠D=∠BAD=90°.∵△AEF等边三角形,∴AE=EF=AF,∠EAF=60°.∴∠BAE+∠DAF=30°.在Rt△ABE和Rt△ADF中,,Rt△ABE≌Rt△ADF(HL),∴BE=DF(故①正确).∠BAE=∠DAF,∴∠DAF+∠DAF=30°,即∠DAF=15°(故②正确),∵BC=CD,∴BC﹣BE=CD﹣DF,即CE=CF,∵AE=AF,∴AC垂直平分EF.(故③正确).设EC=x,由勾股定理,得EF=x,CG=x,AG=AEsin60°=EFsin60°=2×CGsin60°=x,∴AC=,∴AB=,∴BE=﹣x=,∴BE+DF=x﹣x≠x,(故④错误),=x2,∵S△CEFS△ABE=x2,∴2S=x2=S△CEF,(故⑤正确).△ABE综上所述,正确的有4个,故选:C.二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)若函数y=(m+3)x2m﹣1﹣5是关于x的一次函数,则m的值为1.【解答】解:∵函数y=(m+3)x2m﹣1﹣5是关于x的一次函数,∴2m﹣1=1,m+3≠0.解得:m=1.故答案为:1.12.(3分)在平面直角坐标系中,把直线y=2x向下平移3个单位,所得直线的解析式为y=2x﹣3.【解答】解:原直线的k=2,b=0;向下平移3个单位长度得到了新直线,那么新直线的k=2,b=0﹣3=﹣3,∴新直线的解析式为y=2x﹣3.故答案为:y=2x﹣3.13.(3分)如图,正方形ABCD的边长为4cm,则图中阴影部分的面积为8cm2.【解答】解:依题意有S=×4×4=8cm2.阴影故答案为:8.14.(3分)若四边形ABCD为平行四边形,请补充条件∠A=90°(一个即可)使四边形ABCD为矩形.【解答】解:添加条件∠A=90°,理由是:∵四边形ABCD是平行四边形,∠A=90°,∴四边形ABCD是矩形,故答案为:∠A=90°.15.(3分)如图,已知正方形ABCD的边长为1,连接AC、BD,CE平分∠ACD交BD于点E,则DE=﹣1.【解答】解:过E作EF⊥DC于F,∵四边形ABCD是正方形,∴AC⊥BD,∵CE平分∠ACD交BD于点E,∴EO=EF,在Rt△COE和Rt△CFE中,∴Rt△COE≌Rt△CFE(HL),∴CO=FC,∵正方形ABCD的边长为1,∴AC=,∴CO=AC=,∴CF=CO=,∴EF=DF=DC﹣CF=1﹣,∴DE==﹣1,另法:因为四边形ABCD是正方形,∴∠ACB=45°=∠DBC=∠DAC,∵CE平分∠ACD交BD于点E,∴∠ACE=∠DCE=22.5°,∴∠BCE=45°+22.5°=67.5°,∵∠CBE=45°,∴∠BEC=67.5°,∴BE=BC,∵正方形ABCD的边长为1,∴BC=1,∴BE=1,∵正方形ABCD的边长为1,∴AC=,∴DE=﹣1,故答案为:﹣1.16.(3分)以正方形ABCD的边BC为边做等边△BCE,则∠AED的度数为150°或30°.【解答】解:如图(1)∠ABE=90°+60°=150°,AB=BE,∴∠AEB=15°=∠DEC,∴∠AED=30°如图(2)BE=BA,∠ABE=30°,∴∠BEA=75°=∠CED∴∠AED=360°﹣75°﹣75°﹣60°=150°.故答案为30或150.三、解答题(本大题有9小题,共72分)17.(7分)如图,▱ABCD中,延长AD到F,延长CB到E,使BE=DF,连接AE、CF.求证:四边形ABCF是平行四边形.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC且AD=BC,又∵F在AD的延长线上,E在CB的延长线上,且BE=DF,∴AD+DF=CB+BE,即AF=CE,∴AF∥EC,∴四边形AECF是平行四边形(一组对边平行且相等的四边形是平行四边形).18.(7分)如图,平行四边形ABCD中,DB=CD,∠C=70°,AE⊥BD于E.试求∠DAE的度数.【解答】解:在△DBC中,∵DB=CD,∠C=70°,∴∠DBC=∠C=70°,又∵在▱ABCD中,AD∥BC,∴∠ADB=∠DBC=70°,又∵AE⊥BD,∴∠DAE=90°﹣∠ADB=90°﹣70°=20°.19.(7分)如图,甲乙两船从港口A同时出发,甲船以16海里/时速度向北偏东40°航行,乙船向南偏东50°航行,3小时后,甲船到达C岛,乙船到达B岛.若C、B两岛相距60海里,问乙船的航速是多少?【解答】解:根据题意,得∠CAB=180°﹣40°﹣50°=90°,∵AC=16×3=48(海里),BC=60海里,∴在直角三角形ABC中,根据勾股定理得:AB===36(海里).则乙船的速度是36÷3=12海里/时.20.(7分)某广电局与长江证券公司联合推出光电宽带网业务,用户通过宽带网可以享受新闻点播、影视欣赏、股市大户室等项服务,用户缴纳每月上网费y (元)与上网时间x(小时)的函数关系用如图所示的折线表示.(1)若小明家四月上网45小时,应交上网费58元.(2)求用户缴纳每月上网费y(元)与上网时间x(小时)的函数关系式;(3)若小聪家某月交上网费70元,问该月上网时间是多少小时?【解答】(1)∵x=45<50,由图象知,y=58,故答案为:58;(2)当x≤50时,y=58当x>50时,设y与x的关系式是y=kx+b由题意得:,解这个方程组得,此时y与x的关系式是y=1.2x﹣2∴y与x的关系式是y=;(3)∵70>50,∴当y=70时,1.2x﹣2=70,解得:x=60,答:小聪家某,该月交上网费70元,该月上网时间是60小时.21.(7分)如图,正方形网格中的每个小正方形=边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画图.(1)在图甲中,画出一个平行四边形,使其面积为6;(2)在图乙中,画出一个正方形,使其面积为5.【解答】解:(1)如图甲,四边形ABCD为所作;(2)如图乙,四边形DEFG为所作.22.(7分)四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于H,求DH的长.【解答】解:∵四边形ABCD是菱形,AC=8cm,BD=6cm,∴AC⊥BD,OA=AC=4cm,OB=BD=3cm,∴Rt△AOB中,AB===5,∵DH⊥AB,∵菱形ABCD的面积S=AC•BD=AB•DH,×6×8=5DH,∴DH=.23.(8分)如图,在正方形ABCD中,点E在射线AB上,点F在射线AD上.(1)若CE⊥CF,求证:CE=CF;(2)若CE=CF,则CE⊥CF是否成立?若成立,请给出证明,若不成立,请画图说明.【解答】(1)证明:∵四边形ABCD是正方形∴CB=CD,∠ABC=∠BCD=∠D=90°∵CE⊥CF∴∠ECF=90°∴∠BCE=∠DCF=90°﹣∠BCF在△BCE和△DCF中,,∴△BCE≌△DCF,∴CE=CF.(2)若CE=CF,则CE⊥CF不一定成立当点E在线段AB上,且点F在AD延长线上或当点E在AB延长线上,且点F在线段AD上时CE⊥CF成立,证明如下:∵四边形ABCD是正方形∴CB=CD,∠ABC=∠BCD=∠D=90°∵CE⊥CF∴∠ECF=90°∴∠BCE=∠DCF=90°﹣∠BCF在△BCE和△DCF中,,∴△BCE≌△DCF,∴CE=CF;当点E在线段AB上,且点F在线段AD上或当点E在线段AB延长线上,且点F 在AD延长线上时,CE⊥CF不成立,如图如下:.24.(10分)如图,点A、B的坐标分别为(0,2),(1,0),直线y=﹣3与坐标轴交于C、D两点.(1)求直线AB:y=kx+b与CD交点E的坐标;(2)直接写出不等式kx+b>x﹣3的解集;(3)求四边形OBEC的面积;(4)利用勾股定理证明:AB⊥CD.【解答】解:(1)由题意得,解得,故直线AB的解析式是y=﹣2x+2,则解得,故点E的坐标是(2,﹣2);(2)由图象可知,x<2时,y=kx+b的图象在y=﹣3的图象的上方,故不等式kx+b>x﹣3的解集是x<2;(3)y=﹣3,当x=0时,y=﹣3,当y=0时,x=6,则点C的坐标是(0,﹣3),点D的坐标是(6,0)四边形OBEC的面积=△DOC的面积﹣△DBE的面积=×6×3﹣×5×2=4;(4)过点E作EF⊥y轴于点F,AE2=AF2+EF2=42+22=20,CE2=CF2+EF2=22+12=5,AC2=52=25,∴AE2+CE2=AC2,∴△ACE是直角三角形,且∠AEC=90°∴AB⊥CD.25.(12分)如图,矩形ABCD中,AD=4,AB=3,将此矩形折叠,使点B与点D 重合,折痕为EF,连接BE、DF,以B为原点建立平面直角坐标系.(1)试判断四边形BFDE的形状,并说明理由;(2)求直线EF的解析式;(3)在直线EF上是否存在一点P使它到x轴、y轴的距离相等?若存在,求出点P的坐标;若不存在,请说明理由.【解答】解:(1)四边形BFDE是菱形,理由如下:由题意可知:DE=BE,DF=BF,∠DEF=∠BEF,∵四边形ABCD是矩形,∴AD∥BC,∴∠DEF=∠BFE,∴∠BEF=∠BFE,∴BE=BF,∴BE=BF=DF=DE,∴四边形BFDE是菱形;(2)设AE=x,∵AD=4,AB=3,∴BE=DE=4﹣x,在Rt△ABE中,∠BAE=90°,∴AB2+AE2=BE2,∴32+x2=(4﹣x)2,解得:x=,∴AE=,BF=,∴E点的坐标是(,3),点F的坐标是(,0),设直线EF的解析式为y=kx+b,可得方程组和,解这个方程组得,∴直线EF的解析式是y=﹣x+;(3)存在,理由为:设点P的坐标为(x,y)则点P到x、y轴的距离分别为|y|、|x|,令|x|=|y|,得到y=x或y=﹣x,联立方程组和,解得:和,则在直线EF上存在两个到坐标轴的距离相等点P,坐标分别是(,),(,﹣).赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征:l运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为EM FB2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。
湖北省十堰市八年级上学期数学期中考试试卷

湖北省十堰市八年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共10分)1. (1分) (2015八下·鄂城期中) 以下列线段为边,能组成直角三角形的是()A . 6cm,12cm,14cmB . cm,1cm, cmC . 1.5cm,2cm,2.5cmD . 2cm,3cm,5cm2. (1分) (2019八上·泗阳期末) 下列各式中,正确的是A .B .C .D .3. (1分) (2017八上·南宁期中) 点M(1,2)关于x轴对称的点的坐标为()A . (-1,-2)B . (-1,2)C . (1,-2)D . (2,-1)4. (1分)(2016·福田模拟) 二次函数y=ax2+bx+c的图象如图所示,则一次函数y=ax+b与反比例函数y=的大致图象是()A .B .C .D .5. (1分)(2017·抚州模拟) 实数的值在()A . 0和1之间B . 1和2之间C . 2和3之间D . 3和4之间6. (1分) (2019七下·昭通期末) 在平面直角坐标系中,点(2018,﹣)所在的象限是()A . 第一象限B . 第二象限C . 第三象限D . 第四象限7. (1分) (2017八下·宁波月考) 若在实数范围内有意义,则的取值范围是()A .B .C .D .8. (1分) x是(−)2的平方根,y是64的立方根,则x+y=()A . 3B . 7C . 3,7D . 1,79. (1分)(2018·肇庆模拟) 函数y= 的自变量x的取值范围是()A . x>-1B . x≠-1C . x≠1D . x<-110. (1分)(2018·重庆) 根据如图所示的程序计算函数y的值,若输入的x值是4或7时,输出的y值相等,则b等于()A . 9B . 7C . ﹣9D . ﹣7二、填空题 (共8题;共8分)11. (1分) (2016七下·萧山开学考) 若a、b互为相反数,m、n互为倒数,则2015a+2014b+mnb的值为________.12. (1分) a,b满足,分解因式(x2+y2)﹣(axy+b)=________.13. (1分) (2019八上·丹东期中) 在平静的湖面上,有一朵红莲,高出水面1 m,一阵风吹来,红莲被吹到一边,花朵贴到水面,已知红莲移动的水平距离为2 m,则这里的水深是________m.14. (1分) (2020八上·岑溪期末) 点P(2,-3)关于x轴对称的点P′的坐标是________.15. (1分) (2019八上·揭阳期中) 已知点P(m,2)在第一象限,那么点B(3,﹣m)在第________象限.16. (1分) (2016八下·洪洞期末) 在y=5x+a-2中,若y是x的正比例函数,则常数a= ________ .17. (1分) (2019八下·如皋期中) 直线y=-2x-6与两坐标轴围成的三角形的面积为________.18. (1分) (2017七上·乐清月考) 两个形状、大小相同的大长方形内放入四个如图③的小长方形后得图①、图②,已知大长方形的长为a,则图①阴影部分的周长与图②阴影部分的周长的差是________.(用含a的代数式表示)三、解答题 (共8题;共20分)19. (4分)计算①3 + ﹣2 ﹣2②2 (4 ﹣3 +2 )③(﹣)2+2 ×3④(3 +2 )(3 ﹣2 ).20. (2分)解方程组:.21. (1分) (2017七下·石城期末) 计算:(1)计算:﹣;(2)已知是方程2x﹣ay=8的一个解,求a的值.22. (2分)(2018·日照) “低碳生活,绿色出行”的理念已深入人心,现在越来越多的人选择骑自行车上下班或外出旅游.周末,小红相约到郊外游玩,她从家出发0.5小时后到达甲地,玩一段时间后按原速前往乙地,刚到达乙地,接到妈妈电话,快速返回家中.小红从家出发到返回家中,行进路程y(km)随时间x(h)变化的函数图象大致如图所示.(1)小红从甲地到乙地骑车的速度为________km/h;(2)当1.5≤x≤2.5时,求出路程y(km)关于时间x(h)的函数解析式;并求乙地离小红家多少千米?23. (1分)(2018·龙岩模拟) 如图,在每个小正方形的边长为1的网格中,均为格点.(1)仅用不带刻度的直尺作,垂足为,并简要说明道理;(2)连接,求的周长.24. (2分) (2016九上·临沭期中) 某公司研发了一款成本为60元的保温饭盒,投放市场进行试销售,按物价部门规定,其销售单价不低于成本,但销售利润不高于65%,市场调研发现,保温饭盒每天的销售数量y(个)与销售单价x(元)满足一次函数关系;当销售单价为70元时,销售数量为160个;当销售单价为80元时,销售数量为140个(利润率= )(1)求y与x之间的函数关系式;(2)当销售单价定为多少元时,公司每天获得利润最大,最大利润为多少元?25. (3分)(2011·柳州) 如图,一次函数y=﹣4x﹣4的图象与x轴、y轴分别交于A、C两点,抛物线y=x2+bx+c的图象经过A、C两点,且与x轴交于点B.(1)求抛物线的函数表达式;(2)设抛物线的顶点为D,求四边形ABDC的面积;(3)作直线MN平行于x轴,分别交线段AC、BC于点M、N.问在x轴上是否存在点P,使得△PMN是等腰直角三角形?如果存在,求出所有满足条件的P点的坐标;如果不存在,请说明理由.26. (5分)(2013·绍兴) 某市出租车计费方法如图所示,x(km)表示行驶里程,y(元)表示车费,请根据图象回答下面的问题:(1)出租车的起步价是多少元?当x>3时,求y关于x的函数关系式.(2)若某乘客有一次乘出租车的车费为32元,求这位乘客乘车的里程.参考答案一、单选题 (共10题;共10分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共20分)19-1、20-1、21-1、21-2、22-1、22-2、23-1、23-2、24-1、24-2、25-1、25-2、25-3、26-1、26-2、第11 页共11 页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015-2016学年湖北省十堰市丹江口市八年级(上)期中数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)下列美丽图案,是轴对称图形的个数是()A.1个 B.2个 C.3个 D.4个2.(3分)已知a m=5,a n=6,则a m+n的值为()A.11 B.30 C.D.3.(3分)下列计算错误的是()A.(﹣2x)3=﹣2x3B.﹣a2•a=﹣a3C.(﹣x)9+(﹣x)9=﹣2x9D.(﹣2a3)2=4a6 4.(3分)根据下列已知条件,能唯一画出△ABC的是()A.AB=3,BC=4,AC=8 B.AB=4,BC=3,∠A=30°C.∠A=60°,∠B=45°,AB=4 D.∠C=90°,AB=65.(3分)计算(x+3y)2﹣(3x+y)2的结果是()A.8x2﹣8y2B.8y2﹣8x2 C.8(x+y)2D.8(x﹣y)26.(3分)若(2x﹣1)0=1,则x的取值范围是()A.x≥﹣B.x≠C.x≤﹣D.x≠﹣7.(3分)如图,在CD上求一点P,使它到OA,OB的距离相等,则P点是()A.线段CD的中点B.OA与OB的中垂线的交点C.OA与CD的中垂线的交点D.CD与∠AOB的平分线的交点8.(3分)△ABC中,AB=AC=4,∠B=15°,则△ABC的面积为()A.4 B.8 C.16 D.329.(3分)计算()2014×1.52015×(﹣1)2016的结果是()A.B.C.﹣ D.﹣10.(3分)如图,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,两边PE、PF分别交AB、AC于点E、F,当∠EPF在△ABC内绕顶点P 旋转时(点E不与A、B重合),给出以下四个结论:①AE=CF;②△EPF是等腰直角三角形;③2S=S△ABC;④BE+CF=EF.上述结论中始终正确的有()四边形AEPFA.4个 B.3个 C.2个 D.1个二、填空题(共6小题,每小题3分,满分18分)11.(3分)如图,∠ABC=∠DEF,AB=DE,要证明△ABC≌△DEF,需要添加一个条件为:(只添加一个条件即可).12.(3分)如图,△ABC中,DE垂直平分AC,与AC交于E,与BC交于D,∠C=15°,∠BAD=60°,则△ABC是三角形.13.(3分)在平面直角坐标系中,点A(2,0),B(0,4),作△BOC,使△BOC 与△ABO全等,则点C坐标为.(点C不与点A重合)14.(3分)将△ABC如图折叠,使B点落在AC边上E处,折痕为AD,已知∠B=2∠C,则AB,BD,AC三者之间的关系是.15.(3分)已知2m=a,32n=b,则23m+10n=.16.(3分)如图,AD是角平分线,E是AB上一点,AE=AC,EF∥BC交AC于F.下列结论①△ADC≌△ADE;②CE平分∠DEF;③AD垂直平分CE.其中正确的是(填序号).三、解答题(共9小题,满分72分)17.(6分)如图,E、A、C三点共线,AB∥CD,∠B=∠E,AC=CD,求证:BC=ED.18.(12分)计算:(1)(3a﹣2b)(9a+6b);(2)(﹣2m﹣1)2;(3)(﹣8m4n+12m3n2﹣4m2n3)÷(﹣4m2n);(4)(x+2y﹣3)(x﹣2y+3).19.(6分)已知:如图,AB=CD,AB∥CD,DE⊥AC,BF⊥AC,E、F是垂足,AF=5,求CE的长.20.(6分)如图,在△ABC中,AD⊥BC于D,点M、N分别在BC所在的直线上,且AB=AC,BM=CN,试判断△AMN的形状,并说明理由.21.(7分)如图,正方形卡片A类、B类和长方形卡片C类各有若干张,如果要拼一个长为(a+2b),宽为(a+b)的大长方形,求需要A、B、C类卡片各多少张?并请用这些卡片拼出符合条件的长方形(画出示意图,并标明卡片类型即可)22.(7分)△ABC中,AD为BC边上的中线,已知AB=5,AC=3,求线段AD的长的取值范围.23.(8分)如图,在平面直角坐标系中,直线l是第一、三象限的角平分线.实验与探究:(1)由图观察易知A(0,2)关于直线l的对称点A′的坐标为(2,0),请在图中分别标明B(5,3)、C(﹣2,5)关于直线l的对称点B′、C′的位置,并写出他们的坐标:B′、C′;归纳与发现:(2)结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P(a,b)关于第一、三象限的角平分线l的对称点P′的坐标为(不必证明);运用与拓广:(3)已知两点D(1,﹣3)、E(﹣1,﹣4),试在直线l上确定一点Q,使点Q 到D、E两点的距离之和最小,并求出Q点坐标.24.(8分)(1)如图1,C为线段BD上的一个动点(不与点B、D重合),在BD 同侧分别作等边△ABC和等边△CDE,AD与BE相交于点F,求证:△ACD≌△BCE.(2)将△CDE绕C点旋转至如图2,在旋转过程中,∠AFB的大小是否发生改变?若不改变,请求出∠AFB的度数;若改变,请说明理由.25.(12分)已知,△ABC是等腰直角三角形,BC=AB,A点在x负半轴上,直角顶点B在y轴上,点C在x轴上方.(1)如图1所示,若A的坐标是(﹣3,0),点B的坐标是(0,1),求点C的坐标;(2)如图2,过点C作CD⊥y轴于D,请直接写出线段OA、OD、CD之间等量关系;(3)如图3,若x轴恰好平分∠BAC,BC与x轴交于点E,过点C作CF⊥x轴于F,问CF与AE有怎样的数量关系?并说明理由.2015-2016学年湖北省十堰市丹江口市八年级(上)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)下列美丽图案,是轴对称图形的个数是()A.1个 B.2个 C.3个 D.4个【解答】解:第一个是轴对称图形;第二个是轴对称图形;第三个是轴对称图形;第四个是轴对称图形;所给图形中共有4个轴对称图形.故选:D.2.(3分)已知a m=5,a n=6,则a m+n的值为()A.11 B.30 C.D.【解答】解:a m+n=a m×a n=30.故选:B.3.(3分)下列计算错误的是()A.(﹣2x)3=﹣2x3B.﹣a2•a=﹣a3C.(﹣x)9+(﹣x)9=﹣2x9D.(﹣2a3)2=4a6【解答】解:A、(﹣2x)3=﹣8x3,故本选项错误;B、﹣a2•a=﹣a3,故本选项正确;C、(﹣x)9+(﹣x)9=﹣x9+(﹣x9)=﹣2x9,故本选项正确;D、(﹣2a3)2=4a6,故本选项正确.故选:A.4.(3分)根据下列已知条件,能唯一画出△ABC的是()A.AB=3,BC=4,AC=8 B.AB=4,BC=3,∠A=30°C.∠A=60°,∠B=45°,AB=4 D.∠C=90°,AB=6【解答】解:A、因为AB+BC<AC,所以这三边不能构成三角形;B、因为∠A不是已知两边的夹角,无法确定其他角的度数与边的长度;C、已知两角可得到第三个角的度数,已知一边,则可以根据ASA来画一个三角形;D、只有一个角和一个边无法根据此作出一个三角形.故选:C.5.(3分)计算(x+3y)2﹣(3x+y)2的结果是()A.8x2﹣8y2B.8y2﹣8x2 C.8(x+y)2D.8(x﹣y)2【解答】解:原式=(x+3y+3x+y)(x+3y﹣3x﹣y)=(4x+4y)(﹣2x+2y)=8(x+y)(﹣x+y)=8(y2﹣x2)=8y2﹣8x2,故选:B.6.(3分)若(2x﹣1)0=1,则x的取值范围是()A.x≥﹣B.x≠C.x≤﹣D.x≠﹣【解答】解:若(2x﹣1)0=1,则x的取值范围是:x≠.故选:B.7.(3分)如图,在CD上求一点P,使它到OA,OB的距离相等,则P点是()A.线段CD的中点B.OA与OB的中垂线的交点C.OA与CD的中垂线的交点D.CD与∠AOB的平分线的交点【解答】解:利用角的平分线上的点到角的两边的距离相等可知CD与∠AOB的平分线的交于点P.故选:D.8.(3分)△ABC中,AB=AC=4,∠B=15°,则△ABC的面积为()A.4 B.8 C.16 D.32【解答】解:过C作CD⊥AB交BA的延长线于D,∵AB=AC=4,∴∠B=∠ACB=15°,∴∠CAD=∠B+∠ACB=15°+15°=30°,∵AC=4cm,CD是AB边上的高,∴CD=AC=×4=2,∴S=×4×2=4,△ABC故选:A.9.(3分)计算()2014×1.52015×(﹣1)2016的结果是()A.B.C.﹣ D.﹣【解答】解:()2014×1.52015×(﹣1)2016=()2014×1.52014×1.5×1=(×1.5)2014×1.5=1.5.故选:B.10.(3分)如图,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,两边PE、PF分别交AB、AC于点E、F,当∠EPF在△ABC内绕顶点P 旋转时(点E不与A、B重合),给出以下四个结论:①AE=CF;②△EPF是等腰=S△ABC;④BE+CF=EF.上述结论中始终正确的有()直角三角形;③2S四边形AEPFA.4个 B.3个 C.2个 D.1个【解答】解:∵∠APE、∠CPF都是∠APF的余角,∴∠APE=∠CPF,∵AB=AC,∠BAC=90°,P是BC中点,∴AP=CP,在△APE和△CPF中,,∴△APE≌△CPF(ASA),同理可证△APF≌△BPE,=S△ABC,①②③正确;∴AE=CF,△EPF是等腰直角三角形,S四边形AEPF故AE=FC,BE=AF,∴AF+AE>EF,∴BE+CF>EF,故④不成立.始终正确的是①②③.故选:B.二、填空题(共6小题,每小题3分,满分18分)11.(3分)如图,∠ABC=∠DEF,AB=DE,要证明△ABC≌△DEF,需要添加一个条件为:BC=EF(只添加一个条件即可).【解答】解:所添条件为:BC=EF.∵BC=EF,∠ABC=∠DEF,AB=DE∴△ABC≌△DEF(SAS).12.(3分)如图,△ABC中,DE垂直平分AC,与AC交于E,与BC交于D,∠C=15°,∠BAD=60°,则△ABC是直角三角形.【解答】解:∵DE垂直平分AC,∴AD=CD,又∠C=15°,∴∠C=∠DAC=15°,∠ADB=∠C+∠DAC=30°,又∠BAD=60°,∴∠BAD+∠ADB=90°,∴∠B=90°;即△ABC是直角三角形;故答案为:直角.13.(3分)在平面直角坐标系中,点A(2,0),B(0,4),作△BOC,使△BOC 与△ABO全等,则点C坐标为(2,4)或(﹣2,0)或(﹣2,4).(点C 不与点A重合)【解答】解:如图所示:有三个点符合,∵点A(2,0),B(0,4),∴OB=4,OA=2,∵△BOC与△AOB全等,∴OB=OB=4,OA=OC=2,∴C1(﹣2,0),C2(﹣2,4),C3(2,4).故答案为:(2,4)或(﹣2,0)或(﹣2,4).14.(3分)将△ABC如图折叠,使B点落在AC边上E处,折痕为AD,已知∠B=2∠C,则AB,BD,AC三者之间的关系是AB+BD=AC.【解答】解:由翻折的性质可知:BD=DE,AB=AE,∠B=∠AED,又∵∠B=2∠C,∴∠AED=2∠C.∵∠C+∠EDC=∠AED,∴∠EDC=∠ECD.∴DE=EC.∴BD=EC.∴AB+BD=AE+CE=AC.∴AB+BD=AC.故答案为:AB+BD=AC.15.(3分)已知2m=a,32n=b,则23m+10n=a3b2.【解答】解:∵32n=b,∴25n=b,∴23m+10n,=23m•210n,=(2m)3•(25n)2,=a3b2.16.(3分)如图,AD是角平分线,E是AB上一点,AE=AC,EF∥BC交AC于F.下列结论①△ADC≌△ADE;②CE平分∠DEF;③AD垂直平分CE.其中正确的是①②③(填序号).【解答】解:∵AD是△ABC的角平分线,∴∠EAD=∠CAD,在△AED和△ACD中,,∴△AED≌△ACD,故①正确;∴ED=DC,∴∠CED=∠DCE,∵EF∥BC,∴∠FEC=∠ECD,∴∠CED=∠FEC,即CE平分∠DEF,故②正确;∵△AED≌△ACD,∴DE=DC,∴点D在线段EC的垂直平分线上,∵AE=AC,∴点A在线段EC的垂直平分线上,∴AD垂直平分CE.故③正确;故答案为:①②③.三、解答题(共9小题,满分72分)17.(6分)如图,E、A、C三点共线,AB∥CD,∠B=∠E,AC=CD,求证:BC=ED.【解答】证明:∵AB∥CD,∴∠BAC=∠ECD,在△ABC和△CED中,∴△ACB≌△CED(AAS),∴BC=ED.18.(12分)计算:(1)(3a﹣2b)(9a+6b);(2)(﹣2m﹣1)2;(3)(﹣8m4n+12m3n2﹣4m2n3)÷(﹣4m2n);(4)(x+2y﹣3)(x﹣2y+3).【解答】解:(1)原式=3(3a﹣2b)(3a+2b)=3(9a2﹣4b2)=27a2﹣12b2;(2)原式=4m2+4m+1;(3)原式=2m2﹣3mn+n2;(4)原式=x2﹣(2y﹣3)2=x2﹣4y2+12y﹣9.19.(6分)已知:如图,AB=CD,AB∥CD,DE⊥AC,BF⊥AC,E、F是垂足,AF=5,求CE的长.【解答】解:∵DE⊥AC,BF⊥AC,∴∠DEC=∠AFB=90°,∵AB∥CD,在△DEC和△BFA中,,∴△DEC≌△BFA,∴CE=AF,CE=5.20.(6分)如图,在△ABC中,AD⊥BC于D,点M、N分别在BC所在的直线上,且AB=AC,BM=CN,试判断△AMN的形状,并说明理由.【解答】解:等腰三角形,理由如下,∵AB=AC,∴∠ABC=∠ACB.∵∠ABC+∠ABM=180°,∠ACB+∠ACN=180°,∴∠ABM=∠ACN.在△AMB和△ANC中,,∴△AMB≌△ANC(SAS),∴AM=AN,∴△AMN是等腰三角形.21.(7分)如图,正方形卡片A类、B类和长方形卡片C类各有若干张,如果要拼一个长为(a+2b),宽为(a+b)的大长方形,求需要A、B、C类卡片各多少张?并请用这些卡片拼出符合条件的长方形(画出示意图,并标明卡片类型即可)【解答】解:(a+2b)(a+b)=a2+3ab+2b2(3分),分别需要A、B、C类卡片各1张、2张和3张.22.(7分)△ABC中,AD为BC边上的中线,已知AB=5,AC=3,求线段AD的长的取值范围.【解答】解:延长AD到E,使AD=DE,连接BE,∵AD是△ABC的中线,∴BD=CD,∵BD=CD,∠ADC=∠BDE,AD=DE,∴△ADC≌△EDB,∴EB=AC,根据三角形的三边关系定理:5﹣2<AE<5+3,∴1<AD<4.故答案为:1<AC<4.23.(8分)如图,在平面直角坐标系中,直线l是第一、三象限的角平分线.实验与探究:(1)由图观察易知A(0,2)关于直线l的对称点A′的坐标为(2,0),请在图中分别标明B(5,3)、C(﹣2,5)关于直线l的对称点B′、C′的位置,并写出他们的坐标:B′、C′;归纳与发现:(2)结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P(a,b)关于第一、三象限的角平分线l的对称点P′的坐标为(不必证明);运用与拓广:(3)已知两点D(1,﹣3)、E(﹣1,﹣4),试在直线l上确定一点Q,使点Q 到D、E两点的距离之和最小,并求出Q点坐标.【解答】解:(1)如图:B′(3,5),C′(5,﹣2);(2)(b,a);(3)由(2)得,D(1,﹣3)关于直线l的对称点D′的坐标为(﹣3,1),连接D′E交直线l于点Q,此时点Q到D、E两点的距离之和最小.设过D′(﹣3,1)、E(﹣1,﹣4)直线的解析式为y=kx+b,则∴∴直线D′E的解析式为:y=﹣x﹣由得∴所求Q点的坐标为(,).24.(8分)(1)如图1,C为线段BD上的一个动点(不与点B、D重合),在BD 同侧分别作等边△ABC和等边△CDE,AD与BE相交于点F,求证:△ACD≌△BCE.(2)将△CDE绕C点旋转至如图2,在旋转过程中,∠AFB的大小是否发生改变?若不改变,请求出∠AFB的度数;若改变,请说明理由.【解答】(1)证明:在等边△ABC和等边△CDE中,∵AC=BC,CE=CD,∠ACB=∠DCE=60°,∴∠BCE=∠ACD,在△BCE与△ACD中,,∴△ACD≌△BCE;(2)不改变,理由:在等边△ABC和等边△CDE中,∵AC=BC,CE=CD,∠ACB=∠DCE=60°,∴∠BCE=∠ACD,在△BCD与△ACE中,,∴△ACE≌△BCD,∴∠CAF=∠CBF,∵∠AOF=∠BOC,∴∠AFB=∠ACB=60°,∴∠AFB的大小不发生改变.25.(12分)已知,△ABC是等腰直角三角形,BC=AB,A点在x负半轴上,直角顶点B在y轴上,点C在x轴上方.(1)如图1所示,若A的坐标是(﹣3,0),点B的坐标是(0,1),求点C的坐标;(2)如图2,过点C作CD⊥y轴于D,请直接写出线段OA、OD、CD之间等量关系;(3)如图3,若x轴恰好平分∠BAC,BC与x轴交于点E,过点C作CF⊥x轴于F,问CF与AE有怎样的数量关系?并说明理由.【解答】解:(1)如图1,过点C作CD⊥y轴,CE⊥x轴,则四边形CDOE为矩形,∵A的坐标是(﹣3,0),点B的坐标是(0,1),∴OA=3,OB=1,∵CD⊥y轴,∴∠CDB=90°,∠DCB+∠CBD=90°,∵∠ABC=90°,∴∠ABO+∠CBD=90°,∴∠ABO=∠DCB,在△ABO和△BCD中,∴△ABO≌△BCD,∴BO=CD=1,OA=DB=3,∴DO=BO+BD=4,EO=CD=1∴C(﹣1,4);(2)OA=OD+CD;∵CD⊥y轴,∴∠CDB=90°,∠DCB+∠CBD=90°,∵∠ABC=90°,∴∠ABO+∠CBD=90°,∴∠ABO=∠DCB,在△ABO和△BCD中,∴△ABO≌△BCD,∴BO=CD,OA=DB,∵BD=OB+OD,∴OA=CD+OD.(3)AE=2CF,如图3,延长CF,AB相交于G,证明CF=FG,△ABE≌△CBG.∵x轴恰好平分∠BAC,∴∠CAF=∠GAF,∵CF⊥x轴,∴∠AFE=∠AFG=90°,在△AFC和△AFG中,∴△AFC≌△AFG,∴CF=GF,∵∠AEB=∠CEF,∠ABE=∠CFE=90°,∴∠BAE=∠BCG,在△ABE和△CBG中,∴△ABE≌△CBG,∴AE=CG,∴AE=CF+GF=2CF.赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征:l运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为B2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。