上海2015年数学二模松江区试卷+答案

合集下载

2015.4参考答案及评分标准巩固基础

2015.4参考答案及评分标准巩固基础

2015年松江区初中毕业生学业模拟考试数学参考答案及评分标准2015.4一、选择题1、D ;2、A ;3、B ;4、C ;5、C ;6、D .二、填空题7、21; 8、()()b a b a 22-+; 9、23; 10、x y 3-=; 11、43<<x ; 12、0122=++y y ; 13、32; 14、322+=x y ; 15、a b -2; 16、1; 17、1030; 18、1112. 三、解答题19.解: 原式=()()31232-+-÷--x x x x x ………………………………………………………6分 =()()12332+--⨯--x x x x x …………………………………………………………2分 =11+x ……………………………………………………………………………2分 20.解:由②得0,05=+=-y x y x …………………………………………………………4分原方程组化为⎩⎨⎧=-=+0583y x y x ,⎩⎨⎧=+=+083y x y x …………………………………………2分 解得⎩⎨⎧=-=⎩⎨⎧==44152211y x y x …………………………………………………………4分 21.解:(1)设一月份每辆电动车的售价是x 元.…………………………………………1分 根据题意得:()()12200100-80%101100=-+x x …………………………………………5分 解得2100=x …………………………………………………………………………………2分 答:一月份每辆电动车的售价是2100元.……………………………………………………2分22.解:(1)设⊙O 的半径为r ,则OD =OB =r∵BE =8,∴OE =r -8………………………………………………………………………………1分 ∵OB ⊥CD ,OB 是半径,∴ED =CD 21…………………………………………………………1分 ∵CD =24,∴ED =12 ……………………………………………………………………………1分 在Rt △OED 中,222OD ED OE =+∴222128r r =+-)( …………………………………………………………………………1分解得13=r ………………………………………………………………………………………1分 ∴⊙O 的半径为13.(2)∵OM =OB ,∴∠OMB =∠B ……………………………………………………………1分 ∵∠DOE =∠OMB +∠B ,∴∠DOE =2∠OMB ………………………………………………1分 ∵∠DMB=∠D ,∴∠DOE =2∠D ,∵∠DOE +∠D =90°,∴∠D =30°………………………1分 在Rt △OED 中,ED OE D =∠tan ………………………………………………………………1分 ∵ED =12,∠D =30°∴OE =34………………………………………………………………………………………1分 23.证明:(1)∵四边形ABCD 是正方形∴AD =DC ,∠ADC =90°…………………………………………………………………………2分∵GD ⊥DF ,∴∠GDF =90°∴∠ADG =∠CDF ………………………………………………………………………………1分∵CF ⊥AF ,∴∠AFC =90°,∴∠CFD =90°+∠DFG …………………………………………1分 ∵∠AGD =∠GDF +∠DFG =90°+∠DFG ∴∠AGD =∠CFD ………………………………………………………………………………1分 ∴△ADG ≌△CDF ………………………………………………………………………………1分 (2)∵∠ADE =∠EFC ,∠DEA =∠FEC ,∴△ADE ∽△CFE ,∴FC EF AD DE =……………1分 ∵E 为CD 的中点,∴21=DC DE ,∴21=AD DE ,∴21=FC EF ∵△ADG ≌△CDF ,∴FC =AG ,∴21=AG EF ,∵21=AB EC ,∴ABEC AG EF = ……………1分 ∵AB ∥EC ,∴∠FEC=∠GAB …………………………………………………………………1分 ∴△EFC ∽△AGB ………………………………………………………………………………1分 ∴∠EFC =∠AGB =90° …………………………………………………………………………1分 ∴BG ⊥AF ………………………………………………………………………………………1分24.解:(1)∵抛物线bx x y +-=2经过点A (4,0)∴b 416-0+=…………………………………………………………………………………1分 ∴4=b …………………………………………………………………………………………1分 ∴ 4x 2+-=x y ………………………………………………………………………………1分 ∴抛物线的解析式为x x y 42+-=……………………………………………………………1分 (2)∵422+--=)(x y ,顶点D 的坐标是(2,4)……………………………………1分 由抛物线的对称性可得OF =AF =2∵BO ∥CH ∥EF ,∴OFOH BE BC = ∵CE =3BC ,∴41=BE BC ,∴OH =21…………………………………………………………1分 ∴CH =y =47 ∵AO AH OB CH =,∴421447-=OB ………………………………………………………………1分 ∴OB =2,∴B (0,2) …………………………………………………………………………1分(3)设点C 的坐标为(x ,-x 2+4x ),∵AH AF CH EF =,∴x xx EF -=+424-2 ∴EF =2x …………………………………………………………………………………………1分∵EH =DE ,∴x x x 242222-=+-)()(…………………………………………………1分 ∴3461+-=x ,3462--=x (舍)…………………………………………………1分 ∴38122+-==x EF ,∴),(38122+-E …………………………………………1分25.解:(1)过点D 作DG ⊥BC ,垂足为G∵在Rt △ABD 中,∠ABC =90º,AB =4,AD=3,∴BD=5……………………………………1分 在Rt △DCG 中,∠DGC =90º,552sin =∠BCD =DC DG …………………………………1分 ∵AD ∥BC ,∴AB =DG =4,AD =BG =3,∴DC=52,∴CG=2∴BC=3+2=5……………………………………………………………………………………1分 ∴BD=BC ,∴∠BCD =∠BDC …………………………………………………………………1分(2)设DP=x ,则R P =PB=5-x ………………………………………………………………1分 ∵∠BCD =∠BDC ,∴552sin sin =∠=∠BDC BCD ……………………………………1分 在Rt △PDH 中,∠PHD =90º,552sin =∠BDC =x PH PD PH =∴PH =x 552,∴DH =x 55,∴R H =HD=x 55……………………………………………1分 ∵⊙P 与⊙H 外切,∴PH R R H P =+ ………………………………………………………1分 ∴x x x 552555=+-,∴45525-=x …………………………………………………1分 即45525-=DP (3)过点P 作PM ∥BC 交DC 于点M ,∴∠DMP =∠DCB∵∠BDC =∠DCB ,∴∠DMP =∠BDC ,∴PD =PM ,∵PH ⊥CD ,∴DH =HM ……………1分 ∵PM ∥BC ,∴CEPM FC MF =,∵DP =CE ,∴PM =CE ,∴MF =CF ∴521==DC HF ,∴x HF DH CD CF 555-=--=…………………………1分 ∵AD ∥CE ,∴∠ADH=∠FCE …………………………………………………………………1分 (ⅰ)若CFDH CE AD =,则△ADH ∽△ECF ∴x x x555553-=,解得2693+-=x (负值已舍)……………………………………1分 (ⅱ)若CEDH CF AD =,则△ADH ∽△FCE ∴x x x 555553=-,解得10-=x (舍)………………………………………………1分 综上所述,2693+-=DP .。

2015年上海中考各区二模数学试题及答案汇总

2015年上海中考各区二模数学试题及答案汇总
2 2 2 2
BC OC = ∴ OC ,∴ OD
2 2
x r 2 − x2
2
=
r 2 − x2 r
2
,…………………(1 分)
∴ xr = r − x , x + rx − r − 0 , 5 ∵ r ≠ 0 , ( rx ) + rx − 1 ≠ 0 , rx = − 1 ± (负值舍去) ,………………………(1 分) 2 BC x 5 −1 ∴sin∠ODC=sin∠COB = OB .……………(1 分) = = r 2
2 2 2 2
年长宁区初三数学教学质量检测试卷 长宁区初三数学教学质量检测试卷参考答案 初三数学教学质量检测试卷参考答案
2
x
2
2
2
∆ADE
2
∆ADE
1
2
D
E
H
F
C
P
G R
O
A
Q
B
初三数学基础考试卷—3—
2015
年上海各区县中考二模试题及答案
∴DE=CF. (1 分) (2)据题意,设 DP=t,PA=10-t,AQ=3t,QB=12-3t,BR=1.5t(0 < t < 4). (1 分) ∵矩形 ABCD ∴∠A=∠B=90° 若△PAQ 与△QBR 相似,则有 AP AQ 10 - t 3t 14 ① QB = (2 分) = t= BR 12 - 3t 1.5t 5
25
D P E F C
O R
A
Q
B
第 25 题图
初三数学基础考试卷—2—
2015
年上海各区县中考二模试题及答案
2015 18. 1
或 11 . 6 24.(本题满分 12 分) 解:(1) y = x − 2tx + t − 2 = (x - t ) - 2 ∴A(t,-2)(2 分) y ∵点 C 的横坐标为 1,且是线段 AB 的中点 ∴t =2 (1 分) ∴ y = (x - 2 ) - 2 D ∴P(1,-1).(1 分) O (2)据题意,设 C(x,-2)(0< x < t),P(x, ( x − t ) − 2 )E P B C A AC= t-x,PC= ( x − t ) (1 分) 第 24 题图 ∵AC=PC ∴t-x = ( x − t ) ∵x < t ∴ t - x=1 即 x = t - 1 ∴AC=PC=1 (2 分) AC ∵DC//y 轴 ∴ PC ∴EB= t ∴OE=2-t = EB AB 1 1 3 ∴S = 1 (OE + DP) × OD = (3 − t )(t − 1) = − t + 2t − (1< t <2). (2 分) 2 2 2 2 1 1 1 (3) S = 2 DP × AB = 2 ×1× t = 2 t (1 分) 1 3 ∵ S = 2S ∴ 1 t = 2( − t + 2t − ) 2 2 2 3 解得 t = 3 , t = 2 (不合题意)∴ t = .(2 分) 2 2 25.(本题满分 14 分) (1)证:作 OH⊥DC 于点 H,设⊙O 与 BC 边切于点 G,联结 OG. (1 分) ∴∠OHC=90° ∵⊙O 与 BC 边切于点 G ∴OG=6,OG⊥BC ∴∠OGC=90° ∵矩形 ABCD ∴∠C=90° ∴四边形 OGCH 是矩形 ∴CH=OG ∵OG=6 ∴CH=6 (1 分) ∵矩形 ABCD ∴AB=CD 第 25 题图(1) ∵AB=12 ∴CD=12 ∴DH=CD﹣CH=6 ∴DH= CH ∴O 是圆心且 OH⊥DC ∴EH=FH (2 分)

上海市松江区八年级(下)期末数学试卷答案

上海市松江区八年级(下)期末数学试卷答案

2015-2016学年上海市松江区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共6题,每题2分,满分12分)1.(2分)(2016春•松江区期末)一次函数y=3(x﹣1)在y轴上的截距是()A.1 B.﹣1 C.3 D.﹣3【分析】直接求出一次函数与y轴的交点即可得出答案.【解答】解:∵y=3(x﹣1)=3x﹣3,∴当x=0时,y=﹣3,故一次函数y=3(x﹣1)在y轴上的截距是:﹣3.故选:D.【点评】此题主要考查了一次函数图象上点的坐标特征,正确得出x=0时y的值是解题关键.2.(2分)(2016春•松江区期末)下列方程中,有实数解的是()A.x2+1=0 B.x3+1=0 C.D.【分析】可以解各个选项中的方程来判断出哪个选项中的方程是有实数根的,从而可以解答本题.【解答】解:∵x2+1=0,∴x2=﹣1,∵x2≥0,故x2+1=0无实数根;∵x3+1=0,得x=﹣1,∴x3+1=0有实数根;∵,而,∴=﹣2无实数根;∵得x=2,而x=2时,x﹣2=0,∴5无实数根;故选B.【点评】本题考查无理方程、根的判别式,解题的关键是明确方程的解答方法.3.(2分)(2016春•松江区期末)下列事件属于必然事件的是()A.地面往上抛出的篮球会落下B.软木塞沉在水底C.抛掷一枚硬币,落地后正面朝上D.买一张彩票中大奖【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:地面往上抛出的篮球会落下是必然事件;软木塞沉在水底是不可能事件;抛掷一枚硬币,落地后正面朝上是随机事件;买一张彩票中大奖是随机事件,故选:A.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.(2分)(2016春•松江区期末)一组对边相等,另一组对边平行的四边形是()A.梯形 B.等腰梯形C.平行四边形D.等腰梯形或平行四边形【分析】根据特殊四边形的性质,分析所给条件,选择正确答案.【解答】解:A、一组对边相等,另一组对边平行,可以是等腰梯形,也可以是平行四边形,故A不正确;B、一组对边相等,另一组对边平行,可以是等腰梯形,也可以是平行四边形,故B不正确;C、一组对边相等,另一组对边平行,可以是等腰梯形,也可以是平行四边形,故C不正确;D、一组对边相等,另一组对边平行,可以是等腰梯形,也可以是平行四边形,故D正确.故选D.【点评】本题考查了平行四边形和等腰梯形的性质.考虑问题时应该全面考虑,不能漏掉任何一种情况,要求培养严谨的态度.5.(2分)(2016春•松江区期末)一次函数y=kx+b(k≠0)的图象如图所示,当y>0时,x的取值范围是()A.x<3 B.x>3 C.x<4 D.x>4【分析】首先找到当y>0时,图象所在位置,再根据图象可直接得到答案.【解答】解:当y>0时,图象在x轴上方,∵与x交于(4,0),∴y>0时,自变量x的取值范围是x<4,故选:C.【点评】此题主要考查了一次函数与一元一次不等式,关键是能从图象中找到对应的直线.6.(2分)(2016春•松江区期末)如图,已知在△ABC中,点D、E、F分别是AB、AC、BC的中点.下列结论不正确的是()A.∥B.C.=D.【分析】根据三角形法则,结合图形,即可判断出不正确的选项.【解答】解:∵点D、E、F分别是AB、AC、BC的中点,∴DE∥BC,∴∥,A选项正确;﹣=,B选项错误;=﹣,C选项正确;++=,D选项正确;故选B.【点评】本题主要考查了平面向量以及三角形中位线定量的知识,解题的关键是掌握向量的运算法则,此题难度不大.二、填空题(本大题共12题,每题3分,满分36分)7.(3分)(2016春•松江区期末)方程x3﹣8=0的根是x=2 .【分析】首先整理方程得出x3=8,进而利用立方根的性质求出x的值.【解答】解:x3﹣8=0,x3=8,解得:x=2.故答案为:x=2.【点评】此题主要考查了立方根的性质,正确由立方根定义求出是解题关键.8.(3分)(2016春•松江区期末)已知一次函数f(x)=2x+1,那么f(﹣1)= ﹣1 .【分析】将x=﹣1代入计算即可.【解答】解:当x=﹣1时,f(﹣1)=2×(﹣1)+1=﹣1.故答案为:﹣1.【点评】本题主要考查的是求函数值,将x的值代入式解题的关键.9.(3分)(2016春•松江区期末)已知直线y=kx﹣5经过点M(2,1),那么k= 3 .【分析】把M点的坐标代入直线解析式可得到关于k的方程,可求得答案.【解答】解:∵直线y=kx﹣5经过点M(2,1),∴1=2k﹣5,解得k=3,故答案为:3.【点评】本题主要考查一次函数图象上点的坐标特征,掌握直线上点的坐标满足直线的解析式是解题的关键.10.(3分)(2016春•松江区期末)将直线y=2x﹣3沿y轴向上平移2个单位后,所得直线的解析式是y=2x﹣1 .【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【解答】解:由“上加下减”的原则可知,直线y=2x﹣3沿y轴向上平移2个单位,所得直线的函数关系式为y=2x﹣3+2,即y=2x﹣1;故答案为y=2x﹣1.【点评】本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.11.(3分)(2016春•松江区期末)若一次函数y=(m﹣1)x+m的函数值y随x的增大而减小,那么m的取值范围是m<1 .【分析】根据一次函数的增减性列出关于m的不等式,求出m的取值范围即可.【解答】解:∵一次函数y=(m﹣1)x+m的函数值y随x的增大而减小,∴m﹣1<0,解得m<1.故答案为:m<1.【点评】本题考查的是一次函数的图象与系数的关系,熟知一次函数的增减性是解答此题的关键.12.(3分)(2013•嘉定区二模)方程的根是x=﹣2 .【分析】先把方程两边平方去根号后求解,再根据x<0,即可得出答案.【解答】解:由题意得:x<0,两边平方得:x+6=x2,解得x=3(不合题意舍去)或x=﹣2;故答案为:x=﹣2.【点评】此题考查了无理方程,在解无理方程是最常用的方法是两边平方法及换元法,本题用了平方法.13.(3分)(2016春•松江区期末)在分式方程中,令,则原方程可化为关于y的整式方程是y2﹣4y+3=0 .【分析】方程根据y=变形即可得到结果.【解答】解:分式方程变形得:+3×=4,根据y=,得到=,分式方程整理得:y+=4,整理得:y2﹣4y+3=0,故答案为:y2﹣4y+3=0【点评】此题考查了换元法解分式方程,当分式方程比较复杂时,通常采用换元法使分式方程简化.14.(3分)(2010•北京校级自主招生)已知一个多边形的内角和是外角和的2倍,此多边形是六边形.【分析】设这个多边形的边数为n,根据内角和公式和外角和公式,列出等式求解即可.【解答】解:设这个多边形的边数为n,∴(n﹣2)•180°=2×360°,解得:n=6,故答案为:六.【点评】本题考查了多边形的内角和与外角和,是基础知识要熟练掌握.15.(3分)(2016春•松江区期末)袋中有5个红球、4个白球、3个黄球,每一个球除颜色外都相同,从袋中任意摸出一个球是红球的概率是.【分析】直接根据概率公式求解.【解答】解:从袋中任意摸出一个球是红球的概率==.故答案为.【点评】本题考查了概率公式:)随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.16.(3分)(2016春•松江区期末)如果一个等腰梯形中位线长为6cm,腰长是5cm,那么它的周长是22 cm.【分析】根据梯形的中位线定理求出AD+BC的长,求出梯形的周长即可.【解答】解:∵EF是梯形ABCD的中位线,AD∥BC,∴AD+BC=2EF=2×6=12,∴等腰梯形ABCD的周长是AB+BC+CD+AD=12+5+5=22cm,故答案为:22;【点评】本题主要考查对等腰梯形的性质,梯形的中位线定理等知识点的理解和掌握,能求出AD+BC的长是解此题的关键.17.(3分)(2016春•松江区期末)已知菱形的边长为6cm,一个内角为60°,则菱形的面积为18cm2.【分析】由题意可知菱形的较短的对角线与菱形的一组边组成一个等边三角形,根据勾股定理可求得另一条对角线的长,再根据菱形的面积等于两对角线乘积的一半即可求得其面积.【解答】解:因为菱形的一个内角是120°,则相邻的内角为60°从而得到较短的对角线与菱形的一组邻边构成一个等边三角形,即较短的对角线为6cm,根据勾股定理可求得较长的对角线的长为6cm,则这个菱形的面积=×6×6=18cm2,故答案为18.【点评】此题主要考查菱形的性质和面积求法,综合利用了勾股定理.18.(3分)(2016春•松江区期末)如图,在矩形ABCD中,BC=6cm,CD=3cm,将△BCD沿BD翻折,点C落在点C′处,BC′交AD于点E,则AE的长为cm.【分析】根据翻折的性质可得∠BCD=∠EBD,再根据两直线平行,内错角相等可得∠BCD=∠ADB,从而得到∠EBD=∠ADB,然后根据等角对等边可得BE=DE,再根据矩形的对边相等可得AB=CD,AD=BC,设AE=x,表示出BE,然后在Rt△ABE中,利用勾股定理列出方程求解即可.【解答】解:∵△BCD沿BD翻折,点C落在点C′处,∴∠BCD=∠EBD,∵矩形的对边AD∥BC,∴∠BCD=∠ADB,∴∠EBD=∠ADB,∴BE=DE,在矩形ABCD中,AB=CD=3cm,AD=BC=6cm,设AE=xcm,则BE=DE=AD﹣AE=6﹣x,在Rt△ABE中,由勾股定理得,AB2+AE2=BE2,即32+x2=(6﹣x)2,解得x=,即AE=cm.故答案为:.【点评】本题考查了翻折变换的性质,矩形的性质,平行线的性质,等角对等边的性质,难点在于将所求的边以及已知的边的长度转化到同一个直角三角形中利用勾股定理列出方程.三、解答题(本大题共7题,满分52分)19.(6分)(2016春•松江区期末)解方程:.【分析】方程两边同乘以(x+2)(x﹣1),得到整式方程,解整式方程,把得到的根代入最简公分母检验即可.【解答】解:方程两边同乘以(x+2)(x﹣1),得,3x2﹣x(x+2)=x2+x﹣2,整理得,x2﹣3x+2=0,解得:x1=1,x2=2,检验:当x=1时,(x+2)(x﹣1)=0,∴x=1不是原方程的根,当x=2时,(x+2)(x﹣1)≠0,∴x=2是原方程的根,∴原方程的根是x=2.【点评】本题考查的是分式方程的解法,解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.20.(6分)(2016春•松江区期末)解方程组:.【分析】先将①中的x2﹣6xy+9y2分解因式为:(x﹣3y)2,则x﹣3y=±2,与②组合成两个方程组,解出即可.【解答】解:由①得x﹣3y=2,x﹣3y=﹣2,∴原方程组可化为二个方程组,解这两个方程组得原方程组的解是.【点评】本题考查了解高次方程,通过适当的方法,把高次方程化为次数较低的方程求解;所以解高次方程一般思路是降次,即把它转化成二次方程或一次方程.也有的通过因式分解来解;本题就是通过因式分解将方程①降次,化成二元一次方程组.21.(7分)(2016春•松江区期末)如图,在梯形ABCD中,AD∥BC,∠B=45°,AD=8,AB=,CD=26,求BC的长.【分析】作AE⊥BC,DF⊥BC,垂足分别为E、F,由此可得出四边形AEFD是矩形,在Rt△ABE中利用勾股定理可求出AE的长,在Rt△DFC中利用勾股定理可求出FC的长,再根据线段之间的关系即可得出BC的长.【解答】解:作AE⊥BC,DF⊥BC,垂足分别为E、F,如图所示.∵AE⊥BC,DF⊥BC,∴∠AEF=∠DFE=90°,AE∥DF.∵AD∥BC,∴四边形AEFD是矩形,∴AE=DF,AD=EF=8.在Rt△ABE中,由∠B=45°,得AE=BE∴,∴AE=BE=10,∴DF=10.在Rt△DFC中,由DF=10,CD=26,∴FC==24,∴BC=BE+EF+FC=42.【点评】本题考查了梯形的性质及直角三角形的性质,属于基础题,关键将掌握的知识结合,做题时融会贯通.22.(7分)(2016春•松江区期末)如图,已知在□ABCD中,点E、F分别是边AD、CD的中点,过点E、F的直线交BA、BC的延长线于点G、H,联结AC.(1)求证:四边形ACHE是平行四边形;(2)求证:AB=2AG.【分析】(1)先由四边形ABCD是平行四边形,根据平行四边形的性质得出AD∥BC,即AE∥CH.再由点E、F分别是边AD、CD的中点,根据三角形中位线定理得出EF∥AC,即EH∥AC,然后根据两组对边分别平行的四边形是平行四边形即可得出四边形ACHE是平行四边形;(2)先由平行四边形的对边平行得出AB∥CD,GF∥AC,根据两组对边分别平行的四边形是平行四边形证明出四边形ACFG是平行四边形,那么AG=CF,再由平行四边形的对边相等得出AB=CD,又CD=2CF,等量代换即可得出AB=2AG.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC,即AE∥CH.∵点E、F分别是边AD、CD的中点,∴EF∥AC,即EH∥AC,∴四边形ACHE是平行四边形;(2)∵四边形ABCD是平行四边形,∴AB∥CD,∵GF∥AC,∴四边形ACFG是平行四边形,∴AG=CF,∵四边形ABCD是平行四边形,∴AB=CD,∵CD=2CF,∴AB=2AG.【点评】此题考查了平行四边形的判定与性质,三角形中位线定理,线段中点的定义,解题的关键是熟记平行四边形的各种判定方法并且熟练运用.23.(8分)(2016春•松江区期末)某地区为了进一步缓解交通拥堵问题,决定修建一条长8千米的公路.如果平均每天的修建费y(万元)与修建天数x(天)之间在50≤x≤100时具有一次函数关系,如表所示:x(天)60 80 100y(万元)45 40 35(1)求y关于x的函数解析式;(2)后来在修建的过程中计划发生改变,政府决定多修3千米,因此在没有增减建设力量的情况下,修完这条路比计划晚了21天.求原计划每天的修建费?【分析】(1)根据题意设出函数解析式,由表格中的数据可以求得函数的解析式;(2)根据题意可以列出相应的方程,求出原计划修路用的天数,从而可以求得原计划每天修建的费用.【解答】解:(1)设y关于x的函数解析式为y=kx+b(k≠0),∵图象过点(60,45),(80,40),∴解得,∴y关于x的函数解析式为;(2)设原计划修完这条路需要m天,根据题意得,解得m=56,经检验m=56是原方程的根,∵50≤m≤100∴(万元),答:原计划每天的修建费是46万元.【点评】本题考查一次函数的应用,解题的关键是明确题意,找出所求问题需要的条件.24.(8分)(2016春•松江区期末)如图,在平面直角坐标系xOy中,直线交y轴于点A,交x轴于点B,以线段AB为边作菱形ABCD(点C、D在第一象限),且点D的纵坐标为9.(1)求点A、点B的坐标;(2)求直线DC的解析式;(3)除点C外,在平面直角坐标系xOy中是否还存在点P,使点A、B、D、P组成的四边形是平行四边形?若存在,请直接写出点P的坐标;若不存在,请说明理由.【分析】(1)分别令一次函数中x=0、y=0,求出与之对应的y、x的值,由此即可得出点A、B的坐标;(2)过点D作DE⊥y轴,垂足为E,由点D的纵坐标为9即可得出AE的长,根据菱形的性质得出AB=AD,结合勾股定理即可求出点D的坐标,由DC∥AB可设直线DC的解析式为,代入点D的坐标求出b值即可得出结论;(3)假设存在,点C时以BD为对角线找出的点,再分别以AB、AD为对角线,根据平行四边形的性质(对角线互相平分)结合点A、B、D的坐标即可得出点P的坐标.【解答】解:(1)令中x=0,则y=4,∴点A(0,4);令中y=0,则﹣x+4=0,解得:x=2,∴点B(,0).(2)过点D作DE⊥y轴,垂足为E,如图1所示.∵点D的纵坐标为9,OA=4,∴AE=5.∵四边形是ABCD是菱形,∴AD=AB=,∴DE===,∴D(,9).∵四边形是ABCD是菱形,∴DC∥AB,∴设直线DC的解析式为,∵直线DC过点D(,9),∴b=11,∴直线DC的解析式为.(3)假设存在.以点A、B、D、P组成的四边形是平行四边形还有两种情况(如图2):①以AB为对角线时,∵A(0,4),B(,0),D(,9),∴点P(0+2﹣,4+0﹣9),即(,﹣5);②以AD为对角线时,∵A(0,4),B(,0),D(,9),∴点P(0+﹣2,4+9﹣0),即(﹣,13).故除点C外,在平面直角坐标系xOy中还存在点P,使点A、B、D、P组成的四边形是平行四边形,点P的坐标为(,﹣5)或(﹣,13).【点评】本题考查了一次函数图象上点的坐标特征、菱形的性质、勾股定理以及待定系数法求函数解析,解题的关键是:(1)分别代入x=0、y=0,求出与之对应的y、x的值;(2)求出点D的坐标;(3)分别以AB、AD为对角线求出点P的坐标.本题属于中档题,难度不大,解决该题型题目时,根据平行四边形的性质(对角线互相平分),结合三个顶点的坐标求出另一顶点坐标是关键.25.(10分)(2016春•松江区期末)已知正方形ABCD的边长为5,等腰直角△AEF的直角顶点E在直线BC上(不与点B,C重合),FM⊥AD,交射线AD于点M.(1)当点E在边CB的延长线上,点M在边AD上时,如图1,求证:BE+AM=AB;(2)当点E在边BC上,点M在边AD的延长线上时,如图2,设BE=x,AM=y,求y 关于x的函数关系式,并写出函数定义域;(3)当点E在边BC的延长线上,点M在边AD上时,如图3.如果∠AFM=15°,求AM的长.【分析】(1)根据正方形的性质和等腰直角三角形的性质证明△ABE≌△ENF,得到AB=EN,证明结论;(2)由(1)的结论得到AB=EH=5,根据正方形的性质得到AM=BH=y,得到答案;(3)根据等腰直角三角形的性质和已知得到∠EFG=30°,根据直角三角形的性质和勾股定理计算即可.【解答】(1)证明:设FM交边BC于点N,∵四边形ABCD是正方形,∴∠ABC=90°,AD∥BC,∴∠ABE=90°,∴∠BAE+∠AEB=90°∵△AEF是等腰直角三角形,∴∠AEF=90°,AE=EF,∴∠NEF+∠AEB=90°,∴∠BAE=∠NEF∵FM⊥AD,∴FM⊥BC,∴∠ENF=90°,∴∠ABE=∠ENF,在△ABE和△ENF中,,∴△ABE≌△ENF∴AB=EN,∵∠ABC=∠BNM=∠NMA=90°,∴四边形ABNM是矩形,∴AM=BN,∵EN=BE+BN,∴AB=BE+AM;(2)延长MF交BC的延长线于点H,由(1)得AB=EH=5,∵∠MAB=∠ABH=∠AMH=90°,∴四边形ABHM是矩形,∴AM=BH=y,∵BH=BE+EH,BE=x,∴y=x+5(0<x<5);(3)设FM交边BC于点G,∵△AEF是等腰直角三角形,∴∠AFE=45°,∵∠AFM=15°,∴∠EFG=30°,∴∠AEB=∠EFG=30°,在Rt△ABE中,AB=5,∠AEB=30°,∴AE=10,BE=5,∵△ABE≌△EGF,∴AB=EG=5∴BG=5﹣5,∵∠MAB=∠ABC=∠GMA=90°∴四边形ABGM是矩形,∴AM=BG,∴AM=5﹣5.。

(完整)2015年上海各区二模18题汇总,推荐文档

(完整)2015年上海各区二模18题汇总,推荐文档

黄埔18. 如图4-1,点P是以r为半径的圆O外一点,点在线段OP上,若满足,则称点是点P关于圆O的反演点.如图4-2,在Rt△AB O中,,AB=2,BO=4,圆O的半径为2,如果点、分别是点A、B关于圆O的反演点,那么的长是▲.奉贤18.如图,已知钝角三角形ABC,∠A=35°,OC为边AB上的中线,将△AOC绕着点O顺时针旋转,点C落在BC边上的点处,点A落在点处,联结,如果点A、C、在同一直线上,那么∠的度数为▲;虹口徐汇18.如图,已知扇形AOB的半径为6,圆心角为90°,E是半径OA上一点,F是上一点.将扇形AOB沿EF对折,使得折叠后的圆弧恰好与半径OB相切于点G,若OE=5,则O到折痕EF的距离为▲ .静安、青浦区18.如图,⊙O1的半径为1,⊙O2的半径为2,O1O2=5,⊙O分别与⊙O1外切、与⊙O2内切,那么⊙O半径的取值范围是▲ .宝山嘉定18.在矩形中,,点在边上,联结,△沿直线翻折后点落到点,过点作,垂足为点,如图5,如果,那么▲.18.如图,在△ABC中,AB=AC=5cm,BC=6cm,BD平分∠ABC,BD交AC于点D.如果将△ABD沿BD翻折,点A落在点A′处,那么△D A′C的面积为_______________cm2.长宁18.如图,△ABC≌△DEF(点A、B分别与点D、E对应),AB=AC=5,且juxingABCD4BC=6,△ABC固定不动,△DEF运动,并满足点E在BC边从B向C移动(点E不与B、C重合),DE始终经过点A,EF与AC边交于点M,当△AEM 是等腰三角形时,BE= ▲ .18.如图,在中,,,点是的中点,将沿着直线EF折叠,使点与点重合,折痕交于点,交于点,那么的值为▲.闵行18.如图,已知在Rt△ABC中,∠C = 90º,AC = BC = 1,点D在边BC上,将△ABC沿直线AD翻折,使点C落在点C′处,联结AC′,直线AC′与边CB的延长线相交于点F.如果∠DAB=∠BAF,那么BF =▲ .浦东新区18.如图,已知在Rt△ABC中,D是斜边AB的中点,AC=4,BC=2,将△ACD沿直线CD折叠,点A落在点E处,联结AE,那么线段AE的长度等于▲.普陀区18.如图6,在矩形纸片中,<.点、分别在边、上,沿直线将四边形翻折,点恰好与点重合.如果此时在原图中△与△的面积比是1︰3,那么的值等于▲.杨浦18.如图,钝角△ABC中,tan∠BA C=,BC=4,将三角形绕着点A旋转,点C落在直线AB上的点C,处,点B落在点B,处,若C、B、B,恰好在一直线上,则A B的长为▲ .闸北18.在矩形中,,,把矩形沿直线翻折,点落在边上的点处,若,那么的长等于▲。

上海松江区高三数学二模试卷及答案

上海松江区高三数学二模试卷及答案

松江区2016学年度第二学期期中质量监控试卷高三数学(满分150分,完卷时间120分钟)一.填空题(本大题满分54分)本大题共有12题,考生必须在答题纸相应编号的空格内直接填写结果,第1~6题每个空格填对得4分,第7~12题每个空格填对得5分,否则一律得零分.1.已知()21x f x =-,则1(3)f -= ▲ .2.已知集合{}{}11,1,0,1,M x x N =+≤=-则M N =I ▲ .3.若复数122,2z a i z i =+=+(i 是虚数单位),且12z z 为纯虚数,则实数a = ▲ . 4.直线23x y ⎧=--⎪⎨=+⎪⎩(t 为参数)对应的普通方程是 ▲ .5.若()1(2),3n n n x x ax bx c n n -*+=++++∈≥N L ,且4b c =,则a 的值为 ▲ .6.某空间几何体的三视图如图所示,则该几何体的侧面积是 ▲ .7.若函数()2()1x f x x a =+-在区间[]0,1上有零点,则实数a 的取值范围是 ▲ .8.在约束条件123x y ++-≤下,目标函数2z x y =+的最大值为 ▲ .9.某学生在上学的路上要经过2个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是13,则这名学生在上学路上到第二个路口时第一次遇到红灯的概率是 ▲ . 10.已知椭圆()222101y x b b +=<<的左、右焦点分别为12F F 、,记122F F c =.若此椭圆上存在点P ,使P 到直线1x c=的距离是1PF 与2PFb 的最大值为 ▲ .11.如图同心圆中,大、小圆的半径分别为2和1,点P 在大圆上,PA 与小圆相切于点A ,Q 为小圆上的点,则PA PQ ⋅u u u r u u u r 的取值范围是 ▲ .12.已知递增数列{}n a 共有2017项,且各项均不为零,20171a =,如果从{}n a 中任取两项,i j a a ,当i j <时,j i a a -仍是数列{}n a 中的项,则数列{}n a 的各项和2017S = ▲ .二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生必须在答题纸相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.13.设a b r r 、分别是两条异面直线12l l 、的方向向量,向量a b r r 、夹角的取值范围为A ,12l l 、所成角的取值范围为B ,则“A α∈”是“B α∈”的(A) 充要条件(B) 充分不必要条件(C) 必要不充分条件(D) 既不充分也不必要条件14. 将函数sin 12y x π⎛⎫=- ⎪⎝⎭图像上的点,4P t π⎛⎫ ⎪⎝⎭向左平移(0)s s >个单位,得到点P ',若P '位于函数的图像上,则(A) 12t =,s 的最小值为6π (B) t =,s 的最小值为6π(C) 12t =,s 的最小值为12π (D) 2t =,s 的最小值为12π 15.某条公共汽车线路收支差额y 与乘客量x 的函数关系如图所示(收支差额=车票收入-支出费用),由于目前本条线路亏损,公司有关人员提出了两条建议:建议(Ⅰ)不改变车票价格,减少支出费用;建议(Ⅱ)不改变支出费用,提高车票价格,下面给出的四个图形中,实线和虚线分别表示目前和建议后的函数关系,则(A) ①反映了建议(Ⅱ),③反映了建议(Ⅰ)(B) ①反映了建议(Ⅰ),③反映了建议(Ⅱ)(C) ②反映了建议(Ⅰ),④反映了建议(Ⅱ)(D) ④反映了建议(Ⅰ),②反映了建议(Ⅱ)16.设函数()y f x =的定义域是R ,对于以下四个命题:(1) 若()y f x =是奇函数,则(())y f f x =也是奇函数;(2) 若()y f x =是周期函数,则(())y f f x =也是周期函数;(3) 若()y f x =是单调递减函数,则(())y f f x =也是单调递减函数;(4) 若函数()y f x =存在反函数1()y f x -=,且函数1()()y f x f x -=-有零点,则函数()y f x x =-也有零点.其中正确的命题共有(A) 1个(B) 2个 (C) 3个 (D) 4个三.解答题(本大题满分76分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.(本题满分14分;第1小题6分,第2小题8分)直三棱柱111C B A ABC -中,底面ABC 为等腰直角三角形,AC AB ⊥,2==AC AB ,41=AA ,M 是侧棱1CC 上一点,设h MC =.(1) 若C A BM 1⊥,求h 的值;(2) 若2h =,求直线1BA 与平面ABM 所成的角.18.(本题满分14分;第1小题6分,第2小题8分)设函数()2xf x =,函数()g x 的图像与函数()f x 的图像关于y 轴对称.(1)若()4()3f x g x =+,求x 的值;(2)若存在[]0,4x ∈,使不等式3)2()(≥--+x g x a f 成立,求实数a 的取值范围.19.(本题满分14分;第1小题6分,第2小题8分)如图所示,PAQ ∠是某海湾旅游区的一角,其中ο120=∠PAQ ,为了营造更加优美的旅游环境,旅游区管委会决定在直线海岸AP 和AQ 上分别修建观光长廊AB 和AC ,其中AB 是宽长廊,造价是800元/米,AC 是窄长廊,造价是400元/米,两段长廊的总造价为120万元,同时在线段BC 上靠近点B 的三等分点D 处建一个观光平台,并建水上直线通道AD (平台大小忽略不计),水上通道的造价是1000元/米.(1) 若规划在三角形ABC 区域内开发水上游乐项目,要求ABC △的面积最大,那么AB和AC 的长度分别为多少米(2) 在(1)的条件下,建直线通道AD 还需要多少钱20.(本题满分16分;第1小题4分,第2小题6分,第3小题6分)设直线l 与抛物线24y x =相交于不同两点A 、B ,与圆)0()5(222>=+-r r y x相切于点M ,且M 为线段AB 中点.(1) 若AOB △是正三角形(O 是坐标原点),求此三角形的边长;(2) 若4r =,求直线l 的方程;(3) 试对()0,r ∈+∞进行讨论,请你写出符合条件的直线l 的条数(直接写出结论).21.(本题满分18分;第1小题4分,第2小题6分,第3小题8分)对于数列{}n a ,定义12231n n n T a a a a a a +=+++L ,*n N ∈.(1) 若n a n =,是否存在*k N ∈,使得2017k T =请说明理由;(2) 若13a =,61n n T =-,求数列{}n a 的通项公式; (3) 令21*112122,n n n n T T n b T T T n n N +--=⎧=⎨+-≥∈⎩,求证:“{}n a 为等差数列”的充要条件是“{}n a 的前4项为等差数列,且{}n b 为等差数列”.松江区二模考试数学试卷题(印刷稿)(参考答案)一.填空题(本大题共54分)第1~6题每个空格填对得4分,第7~5题每个空格填对得5分1. 2 2.{1,0}- 3.1 4.10x y +-= 5.16 6. 7. 1[,1]2- 8.9 9.2910.2 11.[3-+ 12.1009二、选择题 (每小题5分,共20分)13. C 14.A 15. B 16.B三.解答题(共78分)17.(1)以A 为坐标原点,以射线AB 、AC 、1AA 分别为x 、y 、z 轴建立空间直角坐标系,如图所示,则)0,0,2(B ,)4,0,0(1A ,)0,2,0(C ,),2,0(h M ……………………2分 ),2,2(h BM -=,)4,2,0(1-=C A ……………………4分 由C A BM 1⊥得01=⋅A ,即0422=-⨯h解得1=h . ……………………6分(2) 解法一:此时(0,2,2)M()()()12,0,0,0,2,2,2,0,4AB AM BA ===-u u u r u u u u r u u u r ……………8分设平面ABM 的一个法向量为(,,)n x y z =r由00n AB n AM ⎧⋅=⎪⎨⋅=⎪⎩r u u u r r u u u u r 得00x y z =⎧⎨+=⎩所以(0,1,1)n =-r ……………………10分设直线1BA 与平面ABM 所成的角为θ则11sin n BA n BA θ⋅===⋅r u u u r r u u u r ……………12分 所以直线1BA 与平面ABM所成的角为sinarc ………………14分 解法二:联结1A M ,则1A M AM ⊥,1,AB AC AB AA ⊥⊥Q ,AB ∴⊥平面11AAC C …………………8分 1AB A M ∴⊥ 1A M ∴⊥平面ABM所以1A BM ∠是直线1BA 与平面ABM 所成的角; ……………………10分在1A BM Rt △中,11AM A B ==所以111sin A M A BM A B ∠===……………………12分所以1arcsin A BM ∠= 所以直线1BA 与平面ABM所成的角为sinarc ………………14分18.(1)由()4()3f x g x =+得2423x x -=⋅+ ……………………2分 223240x x ⇒-⋅-=所以21x =-(舍)或24x =, ……………………4分 所以2x = ……………………6分(2)由()(2)3f a x g x +--≥得2223a x x +-≥ ……………………8分 2223a x x +≥+2232a x x -⇒≥+⋅ ……………………10分而232x x -+⋅≥[]4232,log 30,4x x x -=⋅=∈即时取等号…12分所以2a ≥211log 32a ≥+.………………………………14分19.(1)设AB 长为x 米,AC 长为y 米,依题意得8004001200000x y +=, 即23000x y +=, ………………………………2分1sin1202ABC S x y ∆=⋅⋅o y x ⋅⋅=43 …………………………4分 y x ⋅⋅=28322283⎪⎭⎫ ⎝⎛+≤y x=2m 当且仅当y x =2,即750,1500x y ==时等号成立,所以当ABC △的面积最大时,AB 和AC 的长度分别为750米和1500米……6分(2)在(1)的条件下,因为750,1500AB m AC m ==. 由2133AD AB AC =+u u u r u u u r u u u r …………………………8分 得222133AD AB AC ⎛⎫=+ ⎪⎝⎭u u u r u u u r u u u r 22919494+⋅+= …………………………10分 2244117507501500()15009929=⨯+⨯⨯⨯-+⨯250000= ||500AD ∴=u u u r , …………………………12分1000500500000⨯=元所以,建水上通道AD 还需要50万元. …………………………14分 解法二:在ABC ∆中,ο120cos 222AC AB AC AB BC ⋅-+=7750= ………8分在ABD ∆中,ACAB AC BC AB B ⋅-+=2cos 222775075021500)7750(750222⨯⨯-+=772= …………………………10分 在ABD ∆中,B BD AB BD AB AD cos 222⋅-+=772)7250(7502)7250(75022⋅⨯⨯-+==500 …………12分 1000500500000⨯=元所以,建水上通道AD 还需要50万元. …………………………14分解法三:以A 为原点,以AB 为x 轴建立平面直角坐标系,则)0,0(A ,)0,750(B )120sin 1500,120cos 1500(οοC ,即)3750,750(-C ,设),(00y x D ………8分 由2CD DB =u u u r u u u r ,求得⎪⎩⎪⎨⎧==325025000y x ,所以(D …………10分 所以,22)03250()0250(||-+-=AD 500=……………………12分 1000500500000⨯=元所以,建水上通道AD 还需要50万元. …………………………14分20. (1)设AOB △的边长为a ,则A的坐标为1,)22a a ±………2分所以214,22a ⎛⎫±=⋅ ⎪⎝⎭所以a =此三角形的边长为 ……………………………4分(2)设直线:l x ky b =+当0k =时,1,9x x ==符合题意 ……………………………6分当0k ≠时,224404x ky b y ky b y x =+⎧⇒--=⎨=⎩…………………8分 222121216()0,4,42(2,2)k b y y k x x k b M k b k ∆=+>+=+=+⇒+ 11,AB CM AB k k k k⋅=-=Q 2223225CM k k k b k k b ∴==-⇒=-+- 22216()16(3)003k b k k ∴∆=+=->⇒<<4r ===Q ()230,3k ∴=∉,舍去综上所述,直线l 的方程为:1,9x x == ……………………………10分(3)(][)0,24,5r ∈U 时,共2条;……………………………12分 ()2,4r ∈时,共4条; ……………………………14分 [)5,r ∈+∞时,共1条. ……………………………16分21.:(1)由0n a n =>,可知数列{}n T 为递增数列,……………………………2分 计算得1719382017T =<,1822802017T =>, 所以不存在*k N ∈,使得2017k T =; ………………………4分(2)由61n n T =-,可以得到当*2,n n N ≥∈时,1111(61)(61)56n n n n n n n a a T T --+-=-=---=⋅, ……………………6分又因为1215a a T ==,所以1*156,n n n a a n N -+=⋅∈, 进而得到*1256,n n n a a n N ++=⋅∈,两式相除得*26,n na n N a +=∈, 所以数列21{}k a -,2{}k a 均为公比为6的等比数列, ……………………8分 由13a =,得253a =, 所以1*22*23621,562,3n n n n k k N a n k k N --⎧⋅=-∈⎪=⎨⎪⋅=∈⎩; ………… …………10分(3)证明:由题意12123122b T T a a a a =-=-,当*2,n n N ≥∈时,111212n n n n n n n n b T T T a a a a +-+++=+-=-,因此,对任意*n N ∈,都有121n n n n n b a a a a +++=-. …………12分必要性(⇒):若{}n a 为等差数列,不妨设n a bn c =+,其中,b c 为常数, 显然213243a a a a a a -=-=-,由于121n n n n n b a a a a +++=-=2212()222n n n a a a b n b bc ++-=++,所以对于*n N ∈,212n n b b b +-=为常数,故{}n b 为等差数列; …………14分 充分性(⇐):由于{}n a 的前4项为等差数列,不妨设公差为d 当3(1)n k k ≤+=时,有4131213,2,a a d a a d a a d =+=+=+成立。

2015年区二模数学答案

2015年区二模数学答案

3 2 2
3 ..............................................................................................2 分
22.(本题满分 7 分) (1)画图正确...............................................................................................................................................3 分 △ABC 的面积为6..................................................................................................................................1 分 (2) 画图正确.................................................................................................................................................3 分 23.(本题满分 8 分) (1)解:m = 100,x = 40,y = 0.18........................................................................................................3 分 (2)补图正确..................................................................................................................................................2 分 (3)解: 估计该校学生劳动的总时间为 2640 小时..........................................................................................3 分 24.(本题满分 8 分) (1)在△ABC 中,∵AC=BC,∠ACB=90,CG 平分∠ACB, ∴∠CAB=∠CBA=

松江区2015学年度初三第二学期数学月考试卷(含答案)

松江区2015学年度初三第二学期数学月考试卷(含答案)

松江区2015学年度第二学期月考试卷初三数学(满分150分,完卷时间100分钟) 2016.5考生注意:1.本试卷含三个大题,共25题;2.除第一、二大题外,其余各题如无特别说明,都必须在试卷相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.下列分数中,能化为有限小数的是…………………………………………………( ).A .18;B .19;C .112;D .115.2.如果a >b ,0c ≠那么下列不等式成立的是…………………………………………( ).A .a -c >b -c ;B .c -a >c -b ;C .ac >bc ;D .a bc c> . 3.数据-2,-2,2,2 的中位数及方差分别是………………………………………( ).A .-2,-2B .2,2C .0,4D .-2,2 .4.下列函数中,y 随x 的增大而减小的函数是………………………………………( ).A .x y 1-=; B .x y 1=; C .xy 1-= )0(>x ;D .xy 1= )0(<x .5.如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 相交于点O ,已知△AOD 和△AOB 的面积分别为2和4,则△ACD 的面积为………………………………………… ( ). A .3; B .4; C .5; D .6. 6.如图,等边ABC △是O ⊙的内接三角形,则圆心O 关于直线AB 的对称点O ′ 和O ⊙的位置关系是………………………………………………………………………… ( ). A .在O ⊙内; B .在O ⊙上;C .在O ⊙外;D .不能确定CBAO(第6题图)(第5题图)CBADO二、填空题:(本大题共12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置上】7.计算:105⋅= .8.分解因式:224y x -= . 9.已知函数6)(-=x x f ,那么=)10(f .10.函数2-=x y 中自变量x 的取值范围是 .11.方程31=-x 的根是 . 12.不等式:3222xx -<-的解集是 . 13.在不透明的布袋中有红球4个,白球5个,黄球3个,它们除颜色不同外完全相同,如果从布袋里随机的摸取一个球,摸到的是黄球的概率是 .14.已知一次函数b kx y +=在y 轴上的截距为3,且经过点(1,4),则一次函数解析式为 .15.如图,点G 是△ABC 的重心,DE 过点G 且平行于BC ,点D 、E 分别在AB 、AC 上,设AB a =,AC b =,那么DE = .(用、ab 表示) 16.学习了统计知识后,小明就本班同学的上学方式进行了一次调查统计.他通过采集数据后,绘制一幅不完整的统计图(如图所示).已知骑车的人数占全班人数的30%,结合图中提供的信息,可得该班步行上学的有 人.17.当相交的两个圆,其中任意一个圆的圆心都在另一圆的外部时,我们称此两圆的位置关系为“外相交”.如果⊙1O 、⊙2O 半径分别为3和4,且两圆“外相交”,那么两圆的圆心距d 的取值范围是 .18.如图,Rt △ABC 中,若∠ACB =90°,AC =4,BC =3,将△ABC 绕着C 点旋转,使得B 点落在AB 上B ′处,A 点落在A ′处,则A A ′ = .(第15题图)(第16题图)乘车步行 骑车 上学方式 CA A ′B ′ (第18题图)三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)计算:()()022331212++⎪⎭⎫⎝⎛--+-π20.(本题满分10分) 解方程:22161242x x x x +-=--+21.(本题满分10分,第(1)小题满分4分,第(2)小题满分6分)现要建造一段铁路,其路基的横断面ABCD 是等腰梯形,上底CD =8米,高DH 为2.5米,坡度2.1:1=i .(1)求路基底AB 的长;(2)一段铁路长为2000米,工程由甲、乙两个工程队同时合作完成,原计划需要55天,但在开工时,甲工程队改进了设备,工作效率提高了25%,结果工程提前了5天完成,问这两个工程队原计划每天各完成多少土方?(路基的土方=路基的横断面的面积×路的长度)CBAD(第21题图)H22.(本题满分10分,第(1)小题满分6分,第(2)小题满分4分)如图,一次函数(0)y kx b k =+≠的图像与反比例函数y =)0(≠m xm的图像相交于C 、D 两点,和x 轴交于A 点,y 轴交于B 点.已知点C 的坐标为( 3,6),CD =2BC . (1)求点D 的坐标及一次函数的解析式; (2)求△COD 的面积.23.(本题满分12分,每小题满分各6分)如图,已知△ABC 中, AB =AC ,将△ABC 沿着EF 折叠,使点B 落在边AC 上,记为点D ,且DF =DC .(1)求证:四边形EBFD 是菱形; (2)求证:AB ADBC DC=EFCBAD(第23题图)24.(本题满分12分,每小题满分各4分)如图,已知二次函数y=x2+bx+c图象顶点为C,与直线m=图象交于A、B两点,其xy+中A点的坐标为(3,4),B点在轴y上.(1)求这个二次函数的解析式;(2)联结AC,求∠BAC的正切值;(3)点P为直线AB上一点,若△ACP为直角三角形,求点(第24题图)25.(本题满分14分,其中第(1)小题4分,第(2)小题5分,第(3)小题5分)如图,□ABCD 中,AB =8,AD =10,sin A =54.E 、F 分别是边AB 、BC 上动点(点E 不与A 、B 重合),且∠EDF =∠DAB ,DF 延长线交射线AB 于G . (1)若DE ⊥ AB 时,求DE 的长度;(2)设AE =x ,BG =y ,求y 关于x 的函数解析式,并写出函数的定义域; (3)当△BGF 为等腰三角形时,求AE 的长度.松江区2015学年度第二学期月考试卷初三数学参考答案及评分标准一、选择题:(本大题共6题,每题4分,满分24分) 1. A 2.A 3.C 4.D 5. D 6.B 二、填空题:(本大题共12题,每题4分,满分48分);7.25; 8.)2)(2(y x y x -+;9.2; 10.2≥x ; 11.10=x ;12.x <2; 13.41; 14.3+=x y ;15.a b3232-; 16.8;17.74<<d ;18.524三、解答题:(本大题共7题,满分78分)19.解:原式=19432+-+…………………………………………8分(每个2分)CB ADCBADF ECBA DG(第25题图)(备用图1)(备用图2)=432-…………………………………………………………………2分20.解:去分母,得2(2)162x x +-=-.…………………………………2分 整理,得23100x x +-=.……………………………………………3分 解得12x =,25x =-.……………………2分经检验,25x =-为原方程的根,12x =是增根.…………………2分∴原方程的根是5x =-.……………………………………………1分21.解:(1)由题意,得AHDHA =tan =1:1.2; ………………………1分 ∵DH =2.5;∴AH =3………………………………………………………1分∵等腰梯形ABCD ∴AB=8+3+3=14 ……………………………2分(2) 路基的土方=5500020005.2)148(21=⨯⨯+…………………1分 设甲工程队原计划每天完成x 土方,乙工程队原计划每天完成y 土方,则⎩⎨⎧=+=+55000)25.1(5055000)(55y x y x …………………………………………………………2分 整理,得⎩⎨⎧=+=+110025.11000y x y x ∴⎩⎨⎧==600400y x ………………………………………2分答:甲乙工程队原计划每天分别完成400m 3土方和600 m 3土方. ……………1分 22.解:(1)分别过点C 作CE ⊥OB 于点E ,作DF ⊥OB 于点F ,则CE ∥DF∵CD =2BC ∴31==DF CE BD BC ∵CE =3,∴DF =9 ………………………2分 ∵y =)0(≠m x m 经过C 、D 两点,C 的坐标为( 3,6)∴y =x18………………1分把9=x 代入,得2y =∴ D 坐标为( 9,2) …………………………………1分 一次函数图像经过点C ( 3,6),D ( 9,2),设一次函数解析式为)0(≠+=k b kx y⎩⎨⎧=+=+2963b k b k 解得⎪⎩⎪⎨⎧=-=832b k , 一次函数解析式832+-=x y ………2分(2)方法1:∵O (0,0),)8,0(B )6,3(C ∴123821=⨯⨯=∆OBC S ,………………………………………………………2分 ∵CD =2BC ∴242==∆∆OBC OCD S S ………………………………………2分 方法2:∵)0,12(A )8,0(B )6,3(C )2,9(D2412124821221832181221=--=⨯⨯-⨯⨯-⨯⨯=--=∆∆∆∆AOD OBC AOB COD S S S S(每个三角形面积1分,答案1分)23. (本题满分12分,每小题满分各6分)如图,已知△ABC 中, AB =AC ,将△ABC 沿着EF 折叠,使点B 落在边AC 上,记为点D ,且DF =DC . (1)求证:四边形EBFD 是菱形;(2)求证:AB ADBC DC=证明:(1)设BD 、EF 交于O 点, ∵B 、D 是翻折的对应点∴BE =DE ,BF =DF ,BD ⊥EF ……………………1分 ∴∠BOE =∠BO F=90°,∠FDB =∠FBD ………………1分 ∵DF =DC ,AB =AC ∴∠DFC =∠C =∠ABC∴AB ∥DF …………………………………………………1分 ∴∠FDB =∠EBD∴∠EBD =∠FBD ,又BO =BO∴△BOE ≌△BOF ……………………………………………………1分 ∴BE =BF∴BE=BF =DE =DF ……………………………………………………1分 ∴四边形EBFD 是菱形。

2015年上海市松江区中考数学、语文、英语二模试卷及答案

2015年上海市松江区中考数学、语文、英语二模试卷及答案

2015年上海市松江区中考数学二模试卷一、选择题(本大题共6题,每题4分,满分24分)(下列各题的四个选项中,有且只有一个选项是正确的)1.(4分)下列根式中与是同类二次根式的是()A .B .C .D .2.(4分)如果关于x 的一元二次方程x 2﹣4x+k=0有两个不相等的实数根,那么k 的取值范围是()A .k <4B .k >4C .k <0D .k >03.(4分)已知一次函数y=kx ﹣1,若y 随x 的增大而增大,则它的图象经过()A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限4.(4分)一组数据:﹣1,1,3,4,a ,若它们的平均数为2,则这组数据的众数为()A .1B .2C .3D .45.(4分)已知在四边形ABCD 中,AB ∥CD ,添加下列一个条件后,一定能判定四边形ABCD 是平行四边形的是()A .AD=BCB .AC=BDC .∠A=∠CD .∠A=∠B6.(4分)如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB ,垂足为D ,AB=c ,∠a=α,则CD 长为()A .c •sin 2αB .c •cos 2αC .c •sin α•tan αD .c •sin α•cos α二、填空题:(本大题共12题,每题4分,满分48分).7.(4分)计算:2﹣1=.8.(4分)分解因式:a 2﹣4b 2=.9.(4分)如果f (x )=,那么f (3)=.10.(4分)已知正比例函数的图象经过点(﹣1,3),那么这个函数的解析式为.11.(4分)不等式组的解集是.12.(4分)用换元法解方程时,可设,则原方程可化为关于y的整式方程为.13.(4分)任意掷一枚质地均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6),朝上的面的数字大于2的概率是.14.(4分)将抛物线y=2x2﹣1向上平移4个单位后,所得抛物线的解析式是.15.(4分)如图,在△ABC中,AD是BC边上的中线,如果,,那么=(用,表示).16.(4分)如图,DE为△ABC的中位线,点F在DE上,且∠AFB为直角,若AB=8,BC=10,则EF的长为.17.(4分)如图,当小明沿坡度i=1:3的坡面由A到B行走了100米,那么小明行走的水平距离AC=米.(结果可以用根号表示).18.(4分)如图,△ABC中,AB=AC=5cm,BC=6cm,BD平分∠ABC,BD交AC于点D,如果将△ABD沿BD翻折,点A落在点A′处,那么△DA′C的面积为cm2.三、解答题:(本大题共7题,满分78分)19.(10分)计算:(1+)÷.20.(10分)解方程组:.21.(10分)某品牌电动车经销商一月份销售该品牌电动车100辆,二月份的销售量比一月份增加10%,二月份每辆电动车的售价比一月份每辆电动车的售价低80元,二月份的销售总额比一月份销售总额多12200元,问一月份每辆电动车的售价是多少?22.(10分)如图,AB是⊙O的直径,弦CD⊥AB于点E,且CD=24,点M在⊙O上,MD经过圆心O,联结MB.(1)若BE=8,求⊙O的半径;(2)若∠DMB=∠D,求线段OE的长.23.(12分)如图,已知在正方形ABCD中,点E在CD边长,过C点作AE的垂线交于点F,联结DF,过点D作DF的垂线交A于点G,联结BG.(1)求证:△ADG≌△CDF;(2)如果E为CD的中点,求证:BG⊥AF.24.(12分)如图,二次函数y=﹣x2+bx的图象与x轴的正半轴交于点A(4,0),过A点的直线与y轴的正半轴交于点B,与二次函数的图象交于另一点C,过点C作CH⊥x轴,垂足H,设二次函数图象的顶点为D,其对称轴与直线AB及x轴分别交于点E和点F.(1)求这个二次函数的解析式;(2)如果CE=3BC,求点B的坐标;(3)如果△DHE是以DH为底边的等腰三角形,求点E的坐标.25.(14分)如图,已知在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=4,AD=3,sin∠BCD=,点P是对角线BD上一动点,过点P作PH⊥CD,重足为H.(1)求证:∠BCD=∠BDC;(2)如图1,若以P为圆心,PB为半径的圆和以H为圆心、HD为半径的圆外切时,DP 的长;(3)如图2,点E在BC延长线上,且满足DP=CE,PE交DC于点F,若△ADH和△ECF相似,求DP的长.2015年上海市松江区中考数学二模试卷参考答案与试题解析一、选择题(本大题共6题,每题4分,满分24分)(下列各题的四个选项中,有且只有一个选项是正确的)1.(4分)下列根式中与是同类二次根式的是()A.B.C.D.【考点】同类二次根式.【分析】先将各选项化简,再找到被开方数为6的选项即可.【解答】解:因为=2;A、与2被开方数不同,故不是同类二次根式;B、与2被开方数不同,故不是同类二次根式;C、与2被开方数不同,故不是同类二次根式;D、与2被开方数相同,故是同类二次根式;故选D.【点评】要判断几个根式是不是同类二次根式,须先化简根号里面的数,把非最简二次根式化成最简二次根式,然后判断.2.(4分)如果关于x的一元二次方程x2﹣4x+k=0有两个不相等的实数根,那么k的取值范围是()A.k<4B.k>4C.k<0D.k>0【考点】根的判别式.【分析】利用一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:方程有两个不相等的两个实数根,△>0,进而求出即可.【解答】解:∵关于x的一元二次方程x2﹣4x+k=0有两个不相等的实数根,∴b2﹣4ac=16﹣4k>0,解得:k<4.故选:A.【点评】此题主要考查了根的判别式,正确记忆△与方程根的关系是解题关键.3.(4分)已知一次函数y=kx﹣1,若y随x的增大而增大,则它的图象经过()A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限【考点】一次函数图象与系数的关系.【专题】数形结合.【分析】根据“一次函数y=kx﹣1且y随x的增大而增大”得到k>0,再由k的符号确定该函数图象所经过的象限.【解答】解:∵一次函数y=kx﹣1且y随x的增大而增大,∴k>0,该直线与y轴交于y轴负半轴,∴该直线经过第一、三、四象限.故选:C.【点评】本题考查了一次函数图象与系数的关系.函数值y随x的增大而减小⇔k<0;函数值y随x的增大而增大⇔k>0;一次函数y=kx+b图象与y轴的正半轴相交⇔b>0,一次函数y=kx+b图象与y轴的负半轴相交⇔b<0,一次函数y=kx+b图象过原点⇔b=0.4.(4分)一组数据:﹣1,1,3,4,a,若它们的平均数为2,则这组数据的众数为()A.1B.2C.3D.4【考点】众数;算术平均数.【分析】根据平均数的定义即可列方程求得a的值,然后根据众数的定义求解.【解答】解:根据题意得:(﹣1+1+3+4+a)=2,解得:a=3.则组数据的众数是3.故选C.【点评】本题考查了众数的定义以及平均数,正确依据平均数定义求得a的值是关键.5.(4分)已知在四边形ABCD中,AB∥CD,添加下列一个条件后,一定能判定四边形ABCD是平行四边形的是()A.AD=BC B.AC=BD C.∠A=∠C D.∠A=∠B【考点】平行四边形的判定.【分析】利用平行线的判定与性质结合平行四边形的判定得出即可.【解答】解:如图所示:∵AB∥CD,∴∠B+∠C=180°,当∠A=∠C时,则∠A+∠B=180°,故AD∥BC,则四边形ABCD是平行四边形.故选:C.【点评】此题主要考查了平行线的判定与性质以及平行四边形的判定,得出AD∥BC是解题关键.6.(4分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AB=c,∠a=α,则CD长为()A.c•sin2αB.c•cos2αC.c•sinα•tanαD.c•sinα•cosα【考点】解直角三角形.【分析】根据已知条件在Rt△ABC中,用AB和α表示BC,在Rt△DCB中,根据余弦求出CD的长,得到答案.【解答】解:在Rt△ABC中,∠ACB=90°,AB=c,∠A=α,siα=,BC=c•sinα,∠A+∠B=90°,∠DCB+∠B=90°,∴∠DCB=∠A=α,在Rt△DCB中,∠CDB=90°,cos∠DCB=,CD=BC•cosα=c•sinα•cosα,故选:D.【点评】本题考查的是解直角三角形的知识,掌握锐角三角函数的概念是解题的关键,把三角函数的概念看作是公式,在相应的直角三角形中,直接运用.二、填空题:(本大题共12题,每题4分,满分48分).7.(4分)计算:2﹣1=.【考点】负整数指数幂.【专题】计算题.【分析】根据幂的负整数指数运算法则进行计算即可.【解答】解:2﹣1=.故答案为.【点评】本题考查负整数指数幂的运算.幂的负整数指数运算,先把底数化成其倒数,然后将负整数指数幂当成正的进行计算.8.(4分)分解因式:a2﹣4b2=(a+2b)(a﹣2b).【考点】因式分解-运用公式法.【分析】直接用平方差公式进行分解.平方差公式:a2﹣b2=(a+b)(a﹣b).【解答】解:a2﹣4b2=(a+2b)(a﹣2b).【点评】本题考查运用平方差公式进行因式分解,熟记公式结构是解题的关键.9.(4分)如果f(x)=,那么f(3)=.【考点】函数值.【分析】把x=3代入函数关系式计算即可得解.【解答】解:x=3时,f(3)==.故答案为:.【点评】本题考查了函数值求解,是基础题,准确计算是解题的关键.10.(4分)已知正比例函数的图象经过点(﹣1,3),那么这个函数的解析式为y=﹣3x.【考点】待定系数法求正比例函数解析式.【分析】根据待定系数法,可得正比例函数的解析式.【解答】解:设正比例函数的解析式为y=kx,图象经过点(﹣1,3),得3=﹣k,解得k=﹣3.正比例函数的解析式为y=﹣3x,故答案为:y=﹣3x.【点评】本题考查了待定系数法求正比例函数解析式,八点的坐标代入函数解析式得出k 值是解题关键.11.(4分)不等式组的解集是3<x<4.【考点】解一元一次不等式组.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得:x<4,解②得:x>3.则不等式组的解集是:3<x<4.故答案是:3<x<4.【点评】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.12.(4分)用换元法解方程时,可设,则原方程可化为关于y 的整式方程为y2+2y+1=0.【考点】换元法解分式方程.【分析】换元法即是整体思想的考查,解题的关键是找到这个整体,此题的整体是,设,换元后整理即可求得.【解答】解:∵,∴y++2=0,整理得:y2+2y+1=0.故答案为:y2+2y+1=0.【点评】考查了换元法解分式方程,用换元法解一些复杂的分式方程是比较简单的一种方法,根据方程特点设出相应未知数,解方程能够使问题简单化.13.(4分)任意掷一枚质地均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6),朝上的面的数字大于2的概率是.【考点】概率公式.【专题】常规题型.【分析】根据概率的求法,找准两点:①全部情况的总数,②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:∵投掷一次会出现1,2,3,4,5,6共六种情况,并且出现每种可能都是等可能的,∴朝上的面的数字大于2的概率是:=.故答案为:.【点评】本题主要考查了概率公式:概率=所求情况数与总情况数之比,比较简单.14.(4分)将抛物线y=2x2﹣1向上平移4个单位后,所得抛物线的解析式是y=2x2+3.【考点】二次函数图象与几何变换.【分析】直接利用二次函数图象平移规律得出即可.【解答】解:∵将抛物线y=2x2﹣1向上平移4个单位,∴平移后解析式为:y=2x2+3.故答案为:y=2x2+3.【点评】此题主要考查了二次函数图象与几何变换,正确记忆平移规律是解题关键.15.(4分)如图,在△ABC中,AD是BC边上的中线,如果,,那么=(用,表示).【考点】*平面向量.【分析】先求出,然后根据AD是BC边上的中线,可得出,继而可得出.【解答】解:∵=,=,∴=﹣=﹣,则=﹣=﹣,∵AD是BC边上的中线,∴=2=2(﹣),则=+=+2(﹣)=2﹣.故答案为:2﹣.【点评】本题考查了向量的知识,难度适中,解答本题的关键是熟练掌握用平行四边形法则求向量.16.(4分)如图,DE为△ABC的中位线,点F在DE上,且∠AFB为直角,若AB=8,BC=10,则EF的长为1.【考点】三角形中位线定理;直角三角形斜边上的中线.【分析】根据三角形的中位线定理求得DE的长,然后根据FD是直角△ABF斜边上的中线,求得FD的长,则EF即可求得.【解答】解:∵DE为△ABC的中位线,∴DE=BC=×10=5,∵∠AFB为直角,D是AB的中点,即FD是直角△ABF的中线,∴FD=AB=×8=4.∴EF=DE﹣FD=5﹣4=1.故答案是:1.【点评】本题考查了三角形的中位线定理以及直角三角形的性质,直角三角形斜边上的中线等于斜边的一半.17.(4分)如图,当小明沿坡度i=1:3的坡面由A到B行走了100米,那么小明行走的水平距离AC=30米.(结果可以用根号表示).【考点】解直角三角形的应用-坡度坡角问题.【分析】直接利用坡度的定义得出设BC=x,则AC=3x,进而利用勾股定理得出即可.【解答】解:∵小明沿坡度i=1:3的坡面由A到B行走了100米,∴设BC=x,则AC=3x,故x2+(3x)2=1002,解得:x=10,那么小明行走的水平距离AC=30(m).故答案为:30.【点评】此题主要考查了坡度和坡角问题以及勾股定理,得出BC的长是解题关键.18.(4分)如图,△ABC中,AB=AC=5cm,BC=6cm,BD平分∠ABC,BD交AC于点D,如果将△ABD沿BD翻折,点A落在点A′处,那么△DA′C的面积为cm2.【考点】翻折变换(折叠问题).【分析】如图,作辅助线;首先运用勾股定理求出AE的长度,进而求出△ABC的面积;求出△DBA′、△CDA′的面积之比;证明△ABD、△A′BD的面积相等,即可解决问题.【解答】解:如图,过点A作AE⊥BC于点E;∵AB=AC,∴BE=CE=3;由勾股定理得:AB2=AE2+BE2,而AB=5,∴AE=4,;由题意得:,A′B=AB=5,∴CA′=6﹣5=1,∴,∴若设=5λ,故λ+5λ+5λ=12,∴λ=(cm2),故答案为.【点评】该题主要考查了翻折变换的性质、等腰三角形的性质、勾股定理等几何知识点及其应用问题;解题的方法是作辅助线,构造直角三角形;解题的关键是灵活运用翻折变换的性质来分析、判断、解答.三、解答题:(本大题共7题,满分78分)19.(10分)计算:(1+)÷.【考点】分式的混合运算.【分析】首先将括号里面通分,进而将能分解因式进行分解因式,进而化简求出即可.【解答】解:(1+)÷=×=.【点评】此题主要考查了分式的混合运算,正确运算顺序是解题关键.20.(10分)解方程组:.【考点】高次方程.【分析】先将方程组②变形为(x﹣5y)(x+y)=0,再重新构成二元一次方程组,解这两个二元一次方程组即可.【解答】解:原方程变形为:,解得:.【点评】本题考查了消元、降次的方法解二元二次方程组的运用,因式分解的运用,二元一次方程组的解法的运用,解答时将原方程转化为两个二元一次方程组是关键.21.(10分)某品牌电动车经销商一月份销售该品牌电动车100辆,二月份的销售量比一月份增加10%,二月份每辆电动车的售价比一月份每辆电动车的售价低80元,二月份的销售总额比一月份销售总额多12200元,问一月份每辆电动车的售价是多少?【考点】一元一次方程的应用.【分析】首先设一月份每辆电动车的售价是x元,利用二月份的销售总额比一月份销售总额多12200元,进而得出等式求出即可.【解答】解:设一月份每辆电动车的售价是x元,根据题意可得:100x+12200=(x﹣80)×100×(1+10%)解得:x=2100,答:一月份每辆电动车的售价是2100元.【点评】此题主要考查了一元一次方程的应用,根据题意结合两个月的销售金额得出等式是解题关键.22.(10分)如图,AB是⊙O的直径,弦CD⊥AB于点E,且CD=24,点M在⊙O上,MD经过圆心O,联结MB.(1)若BE=8,求⊙O的半径;(2)若∠DMB=∠D,求线段OE的长.【考点】垂径定理;勾股定理;圆周角定理.【分析】(1)根据垂径定理求出DE的长,设出半径,根据勾股定理,列出方程求出半径;(2)根据OM=OB,证出∠M=∠B,根据∠M=∠D,求出∠D的度数,根据锐角三角函数求出OE的长.【解答】解:(1)设⊙O的半径为x,则OE=x﹣8,∵CD=24,由垂径定理得,DE=12,在Rt△ODE中,OD2=DE2+OE2,x2=(x﹣8)2+122,解得:x=13.(2)∵OM=OB,∴∠M=∠B,∴∠DOE=2∠M,又∠M=∠D,∴∠D=30°,在Rt△OED中,∵DE=12,∠D=30°,∴OE=4.【点评】本题考查的是垂径定理、勾股定理和圆周角定理的综合运用,灵活运用定理求出线段的长度、列出方程是解题的关键,本题综合性较强,锻炼学生的思维能力.23.(12分)如图,已知在正方形ABCD中,点E在CD边长,过C点作AE的垂线交于点F,联结DF,过点D作DF的垂线交A于点G,联结BG.(1)求证:△ADG≌△CDF;(2)如果E为CD的中点,求证:BG⊥AF.【考点】正方形的性质;全等三角形的判定与性质;相似三角形的判定与性质.【分析】(1)根据正方形性质和垂直求出AD=CD,∠ADE=∠GDF=90°,求出∠ADG=∠CDF,∠DAG=∠DCF,根据ASA推出两三角形全等即可;(2)设正方形ABCD的边长为a,求出DE=EC=a,在Rt△ADE中,由勾股定理求出AE=a,证△ADE∽△CFE,求出CF=2EF,由勾股定理求出EF=a,CF=a,求出AG=CF=a,=,证△ABG∽△EAD,推出∠BGA=∠ADE即可.【解答】证明:(1)∵四边形ABCD是正方形,DG⊥DF,∴AD=CD,∠ADE=∠GDF=90°,∴∠ADG=∠CDF=90°﹣∠GDE,∵AF⊥CF,∴∠EFC=∠ADE=90°,∵∠AED=∠CEF,∴由三角形内角和定理得:∠DAG=∠DCF,在△ADG和△CDF中∴△ADG≌△CDF;(2)设正方形ABCD的边长为a,∵E为CD的中点,∴DE=EC=a,在Rt△ADE中,由勾股定理得:AE==a,∵∠ADE=∠CFE,∠AED=∠FEC,∴△ADE∽△CFE,∴===2,∴CF=2EF,∵CE=a,∠EFC=90°,∴由勾股定理得:EF=a,CF=a,∵△ADG≌△CDF,∴AG=CF=a,即=,∵四边形ABCD是正方形,∴AB∥CD,∴∠BAG=∠AED,∴△ABG∽△EAD,∴∠BGA=∠ADE,∵∠ADE=90°,∴∠BGA=90°,∴BG⊥AF.【点评】本题考查了正方形的性质,勾股定理,全等三角形的性质和判定,平行线的性质,相似三角形的性质和判定的应用,能综合运用性质进行推理是解此题的关键,此题综合性比较强,难度偏大.24.(12分)如图,二次函数y=﹣x2+bx的图象与x轴的正半轴交于点A(4,0),过A点的直线与y轴的正半轴交于点B,与二次函数的图象交于另一点C,过点C作CH⊥x轴,垂足H,设二次函数图象的顶点为D,其对称轴与直线AB及x轴分别交于点E和点F.(1)求这个二次函数的解析式;(2)如果CE=3BC,求点B的坐标;(3)如果△DHE是以DH为底边的等腰三角形,求点E的坐标.【考点】二次函数综合题.【分析】(1)直接利用待定系数求出二次函数解析式即可;(2)利用平行线分线段成比例定理得出HO=,CH=,进而得出BO的长即可得出答案;(3)利用等腰三角形的性质结合勾股定理得出EF的长即可得出答案.【解答】解:(1)将A(4,0),代入y=﹣x2+bx得:0=﹣16+4b,解得:b=4,故y=﹣x2+4x;(2)∵y=﹣x2+4x=﹣(x﹣2)2+4,∴D(2,4),则FO=2,∵BO∥HC∥EF,∴==3,∴HO=,CH=,由=得,BO=2,则B(0,2);(3)连接EH,DH,当△DHE是等腰三角形,DH为底,则HE=DE,设OH=a,CH=﹣a2+4a由=,即=,得:EF=2a,故DE=HE=4﹣2a,由EH2=EF2+FH2得,(4﹣2a)2=(2a)2+(2﹣a)2,解得:a=4﹣6(负数舍去),故E(2,8﹣12).【点评】此题主要考查了二次函数综合以及等腰三角形的性质以及勾股定理等知识,正确应用勾股定理以及数形结合求出是解题关键.25.(14分)如图,已知在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=4,AD=3,sin∠BCD=,点P是对角线BD上一动点,过点P作PH⊥CD,重足为H.(1)求证:∠BCD=∠BDC;(2)如图1,若以P为圆心,PB为半径的圆和以H为圆心、HD为半径的圆外切时,DP 的长;(3)如图2,点E在BC延长线上,且满足DP=CE,PE交DC于点F,若△ADH和△ECF相似,求DP的长.【考点】四边形综合题.【分析】(1)作DQ⊥BC,在直角△CDQ中利用三角函数即可求解;(2)设DP=x,当⊙P与⊙H外切时,PH=DH+BP,据此即可列方程求得;(3)作PM∥BE,分△ADH∽△FCE和△ADH∽△ECF两种情况进行讨论,依据相似三角形的对应边的比相等求解.【解答】解:(1)作DQ⊥BC,∵BQ=AD=3,DQ=AB=4,∴CD==2,CQ=2,∴BC=5=BD,∴∠BCD=∠BDC;(2)设DP=x,则DH=x,PH=x,BP=5﹣x.当⊙P与⊙H外切时,PH=DH+BP,即x=x+5﹣x,解得:x=;(3)作PM∥BE.则PM=DP=x,DH=HM=x,由==1,CF=FM=﹣x,当△ADH∽△FCE时,,即=,解得:x=﹣10(舍去).当△ADH∽△ECF时,=,即=,解得:x=.∴DP的长是.【点评】本题考查了三角函数以及相似三角形的判定与性质和圆外切的性质,正确分成△ADH∽△FCE和△ADH∽△ECF两种情况进行讨论,求得x的值是关键.2015年松江区初中毕业生学业模拟考试语文试卷(满分150分,考试时间100分钟)2015.4考生注意:本试卷共27题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初三数学 第1页 共4页2015年松江区初中毕业生学业模拟考试数学试卷(满分150分,考试时间100分钟) 2015.4考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.下列根式中,与24是同类根式的是( ) (A )2;(B )3;(C )5; (D )6.2.如果关于x 的一元二次方程042=+-k x x 有两个不相等的实数根,那么k 的取值范围是( )(A )4<k ; (B )4>k ;(C )0<k ;(D )0>k .3.已知一次函数y =kx ﹣1,若y 随x 的增大而增大,则它的图像经过( ) (A )第一、二、三象限;(B )第一、三、四象限; (C )第一、二、四象限;(D )第二、三、四象限.4.一组数据:-1,1,3,4,a ,若它们的平均数为2,则这组数据的众数为( ) (A )1;(B )2;(C )3;(D )4.5.已知在四边形ABCD 中,AB ∥CD ,添加下列一个条件后,一定能判定四边形ABCD 是平行四边形的是( )(A )AD =BC ; (B )AC =BD ; (C )∠A =∠C ; (D )∠A =∠B . 6.如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D ,AB =c ,∠A =α,则CD 长为( ) (A )α2sin ⋅c ;(B )α2cos ⋅c ;ACBD初三数学 第2页 共4页(C )ααtan sin ⋅⋅c ; (D )ααcos sin ⋅⋅c . 二、填空题:(本大题共12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置上】 7.计算:1-2=________.8.分解因式:224b a -=______________________. 9.已知1)(-=x xx f ,那么)3(f =___________. 10.已知正比例函数的图像经过点(-1,3),那么这个函数的解析式为________. 11.不等式组⎩⎨⎧><+6251x x 的解集是___________.12.用换元法解方程221201x x x x -++=-时,可设21x y x -=,则原方程可化为关于y 的整式方程为 .13.任意掷一枚质地均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6),朝上的面的数字大于2的概率是_______.14.将抛物线221y x =-向上平移4个单位后,所得抛物线的解析式是___________.15.在△ABC 中,AD 是BC 边上的中线,如果a AB =,b AD =,那么=AC.(用a 、b表示)16.如图,DE 为△ABC 的中位线,点F 在DE 上,且∠AFB 为直角,若AB =8,BC =10,则EF 的长为 .17.如图,当小明沿坡度3:1=i 的坡面由A 到B 行走了100米,那么小明行走的水平距离=AC 米.(结果可以用根号表示)18.如图,在△ABC 中,AB =AC =5cm ,BC =6cm ,BD 平分∠ABC ,BD 交AC 于点D .如果BA EFCD (第16题图)ABD(第18题图)ABC (第17题图)初三数学 第3页 共4页将△ABD 沿BD 翻折,点A 落在点A ′处,那么△D A ′C 的面积为_______________cm 2. 三、解答题:(本大题共7题,满分78分)19.(本题满分10分) 计算:323112---÷-+x x x x )(20.(本题满分10分) 解方程组:⎩⎨⎧=--=+0548322y xy x y x21.(本题满分10分)某品牌电动车经销商一月份销售该品牌电动车100辆,二月份的销售量比一月份增加10%,二月份每辆电动车的售价比一月份每辆电动车的售价低80元,二月份的销售总额比一月份销售总额多12200元,问一月份每辆电动车的售价是多少?初三数学第4页共4页初三数学 第5页 共4页22.(本题满分10分,每小题各5分)如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,且CD =24,点M 在⊙O 上,MD 经过圆心O ,联结MB .(1)若BE =8,求⊙O 的半径; (2)若∠DMB=∠D ,求线段OE 的长.(第22题图)23.(本题满分12分,每小题各6分)如图,已知在正方形ABCD中,点E在CD边上,过C点作AE的垂线交于点F,联结DF,过点D作DF的垂线交AF于点G,联结BG.(1)求证:△ADG≌△CDF;(2)如果E为CD的中点,求证:BG⊥AF.A(第23题图)EGDFB初三数学第6页共4页初三数学 第7页 共4页24.(本题满分12分,每小题各4分)如图,二次函数bx x y +-=2的图像与x 轴的正半轴交于点A (4,0),过A 点的直线与y 轴的正半轴交于点B ,与二次函数的图像交于另一点C ,过点C 作CH ⊥x 轴,垂足为H .设二次函数图像的顶点为D ,其对称轴与直线AB 及x 轴分别交于点E 和点F . (1)求这个二次函数的解析式; (2)如果CE =3BC ,求点B 的坐标;(3)如果△DHE 是以DH 为底边的等腰三角形,求点E 的坐标.(第24题图)x初三数学 第8页 共4页25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分)如图,已知在直角梯形ABCD 中,AD ∥BC ,∠ABC =90º,AB =4,AD=3,552sin =∠BCD ,点P 是对角线BD 上一动点,过点P 作PH ⊥CD ,垂足为H . (1)求证:∠BCD =∠BDC ;(2)如图1,若以P 为圆心、PB 为半径的圆和以H 为圆心、HD 为半径的圆外切时,求DP 的长;(3)如图2,点E 在BC 延长线上,且满足DP =CE ,PE 交DC 于点F ,若△ADH 和△ECF 相似,求DP 的长.ABCHPD (第25题图1)ABCHPD EF(第25题图2)初三数学 第9页 共4页2015年松江区初中毕业生学业模拟考试数学参考答案及评分标准2015.4一、选择题1、D ;2、A ;3、B ;4、C ;5、C ;6、D . 二、填空题7、21; 8、()()b a b a 22-+;9、23; 10、x y 3-=; 11、43<<x ; 12、0122=++y y ; 13、32; 14、322+=x y ; 15、a b -2; 16、1; 17、1030; 18、1112. 三、解答题19.解: 原式=()()31232-+-÷--x x x x x ………………………………………………………6分 =()()12332+--⨯--x x x x x …………………………………………………………2分 =11+x ……………………………………………………………………………2分20.解:由②得0,05=+=-y x y x (4)分原方程组化为⎩⎨⎧=-=+0583y x y x ,⎩⎨⎧=+=+083y x y x (2)分 解得⎩⎨⎧=-=⎩⎨⎧==44152211y x y x …………………………………………………………4分21.解:(1)设一月份每辆电动车的售价是x 元.…………………………………………1分根据题意得:()()12200100-80%101100=-+x x …………………………………………5分解得2100=x …………………………………………………………………………………2分初三数学 第10页 共4页答:一月份每辆电动车的售价是2100元.……………………………………………………2分22.解:(1)设⊙O 的半径为r ,则OD =OB =r∵BE =8,∴OE =r -8………………………………………………………………………………1分∵OB ⊥CD ,OB 是半径,∴ED =CD 21…………………………………………………………1分∵CD =24,∴ED =12 ……………………………………………………………………………1分在Rt △OED 中,222OD ED OE =+∴222128r r =+-)( (1)分解得13=r ………………………………………………………………………………………1分 ∴⊙O 的半径为13.(2)∵OM =OB ,∴∠OMB =∠B ……………………………………………………………1分 ∵∠DOE =∠OMB +∠B ,∴∠DOE =2∠OMB ………………………………………………1分 ∵∠DMB=∠D ,∴∠DOE =2∠D ,∵∠DOE +∠D =90°,∴∠D =30°………………………1分在Rt △OED 中,EDOED =∠tan ………………………………………………………………1分错误!未找到引用源。

∵ED =12,∠D =30°∴OE =34………………………………………………………………………………………1分23.证明:(1)∵四边形ABCD 是正方形 ∴AD =DC ,∠ADC =90°…………………………………………………………………………2分∵GD ⊥DF ,∴∠GDF =90°∴∠ADG =∠CDF ………………………………………………………………………………1分∵CF ⊥AF ,∴∠AFC =90°,∴∠CFD =90°+∠DFG …………………………………………1分∵∠AGD =∠GDF +∠DFG =90°+∠DFG ∴∠AGD =∠CFD ………………………………………………………………………………1分∴△ADG ≌△CDF ………………………………………………………………………………1分初三数学 第11页 共4页(2)∵∠ADE =∠EFC ,∠DEA =∠FEC ,∴△ADE ∽△CFE ,∴FC EF AD DE =……………1分 ∵E 为CD 的中点,∴21=DC DE ,∴21=AD DE ,∴21=FC EF ∵△ADG ≌△CDF ,∴FC =AG ,∴21=AG EF ,∵21=AB EC ,∴ABEC AG EF = ……………1分 ∵AB ∥EC ,∴∠FEC=∠GAB …………………………………………………………………1分 ∴△EFC ∽△AGB ………………………………………………………………………………1分∴∠EFC =∠AGB =90° …………………………………………………………………………1分 ∴BG ⊥AF ………………………………………………………………………………………1分24.解:(1)∵抛物线bx x y +-=2经过点A (4,0)∴b 416-0+=…………………………………………………………………………………1分 ∴4=b …………………………………………………………………………………………1分 ∴ 4x 2+-=x y ………………………………………………………………………………1分 ∴抛物线的解析式为x x y 42+-=……………………………………………………………1分(2)∵422+--=)(x y ,顶点D 的坐标是(2,4)……………………………………1分 由抛物线的对称性可得OF =AF =2 ∵BO ∥CH ∥EF ,∴OFOH BE BC = ∵CE =3BC ,∴41=BE BC ,∴OH =21…………………………………………………………1分 ∴CH =y =47 ∵AO AH OB CH =,∴421447-=OB ………………………………………………………………1分∴OB =2,∴B (0,2) …………………………………………………………………………1分(3)设点C 的坐标为(x ,-x 2+4x ),∵AH AF CH EF =,∴x xx EF -=+424-2 ∴EF =2x …………………………………………………………………………………………1分初三数学 第12页 共4页∵EH =DE ,∴x x x 242222-=+-)()(…………………………………………………1分 ∴3461+-=x ,3462--=x (舍)…………………………………………………1分 ∴38122+-==x EF ,∴),(38122+-E …………………………………………1分25.解:(1)过点D 作DG ⊥BC ,垂足为G∵在Rt △ABD 中,∠ABC =90º,AB =4,AD=3,∴BD=5……………………………………1分在Rt △DCG 中,∠DGC =90º,552sin =∠BCD =DC DG …………………………………1分 ∵AD ∥BC ,∴AB =DG =4,AD =BG =3,∴DC=52,∴CG=2∴BC=3+2=5……………………………………………………………………………………1分 ∴BD=BC ,∴∠BCD =∠BDC …………………………………………………………………1分(2)设DP=x ,则R P =PB=5-x ………………………………………………………………1分 ∵∠BCD =∠BDC ,∴552sin sin =∠=∠BDC BCD ……………………………………1分 在Rt △PDH 中,∠PHD =90º,552sin =∠BDC =x PH PD PH = ∴PH =x 552,∴DH =x 55,∴R H =HD=x 55……………………………………………1分 ∵⊙P 与⊙H 外切,∴PH R R H P =+ ………………………………………………………1分 ∴x x x 552555=+-,∴45525-=x …………………………………………………1分 即45525-=DP初三数学 第13页 共4页 (3)过点P 作PM ∥BC 交DC 于点M ,∴∠DMP =∠DCB∵∠BDC =∠DCB ,∴∠DMP =∠BDC ,∴PD =PM ,∵PH ⊥CD ,∴DH =HM ……………1分 ∵PM ∥BC ,∴CEPM FC MF =,∵DP =CE ,∴PM =CE ,∴MF =CF ∴521==DC HF ,∴x HF DH CD CF 555-=--=…………………………1分 ∵AD ∥CE ,∴∠ADH=∠FCE …………………………………………………………………1分 (ⅰ)若CF DH CE AD =,则△ADH ∽△ECF ∴x x x 555553-=,解得2693+-=x (负值已舍)……………………………………1分 (ⅱ)若CE DH CF AD =,则△ADH ∽△FCE ∴xx x 555553=-,解得10-=x (舍)………………………………………………1分 综上所述,2693+-=DP .。

相关文档
最新文档