2015上海市黄浦区初三数学二模及答案
2015年上海二模23题汇总

2015年二模23题几何证明汇总2015年宝山嘉定联合模拟考试数学试卷23.(本题满分12分,每小题满分各6分)如图8,已知△ABC 和△ADE 都是等边三角形,点D 在边BC 上,点E 在边AD 的右侧,联结CE .(1)求证:︒=∠60ACE ;(2)在边AB 上取一点F ,使BD BF =,联结DF 、EF .求证:四边形CDFE 是等腰梯形.2014学年第二学期奉贤区调研测试 23.(本题满分12分,每小题满分各6分)已知:如图,在四边形ABCD 中,AB//CD ,点E 是对角线AC 上一点,∠DEC=∠ABC ,且CA CE CD ⋅=2. (1)求证:四边形ABCD 是平行四边形;(2)分别过点E 、B 作AB 和AC 的平行线交于点F ,联结若∠FCE= ∠DCE ,求证:四边形EFCD 是菱形.静安、青浦区2014学年第二学期23.(本题满分12分,第小题满分6分)如图,在梯形ABCD 中,AB//CD ,AD =BC ,E 是CD 的中点,BE 交AC 于F ,过点F 作FG ∥AB ,交AE 于点G .(1) 求证:AG=BF ;(2) 当CF CA AD ⋅=2时,求证:AC AG AD AB ⋅=⋅.EDCGFAB(第23题图) B (第23题图) A图8上海闵行区2015年九年级二模数学试卷23. (本题满分12分,其中每小题各6分)如图,已知在梯形ABCD 中,AD ∥BC, ∠A=90º,AB=AD ,点E 在边AB 上,且DE ⊥CD,DF 平分∠EDC ,交BC 于点F ,联结CE 、EF. (1)求证:DE=DC;(2)如果2BE BF BC =⋅,求证:∠BEF=∠CEF.杨浦区2014学年度第二学期初三质量调研数学试卷23. 已知,如图,Rt △ABC 和Rt △CDE 中,90ABC CDE ∠=∠=︒,且BC 与CD 共线,联结AE ,点M 为AE 中点,联结DM ,交AC 于点G ,联结MD ,交CE 于点H ;(1)求证:MB MD =;(2)当AB BC =,DC DE =时,求证:四边形MGCH 为矩形;黄浦区2015年九年级学业考试模拟卷23. 如图,在正方形ABCD 中,点E 在对角线AC 上,点F 在边BC 上,联结BE 、DF ,DF 交对角线AC 于点G ,且DE DG =;(1)求证:AE CG =; (2)求证:BE ∥DF ;2015年松江区初中毕业生学业模拟(二模)考试23.(本题满分12分,每小题各6分)如图,已知在正方形ABCD 中,点E 在CD 边上,过C 点作AE 的垂线交于点F ,联结DF ,过点D 作DF 的垂线交AF 于点G ,联结BG.(1)求证:△ADG ≌△CDF ;(2)如果E 为CD 的中点,求证:BG ⊥AF.徐汇区2015年初中毕业统一学业模拟考试23.(本题满分12分)如图7,在正方形ABCD 中,E 为对角线AC 上一点,联结EB 、ED ,延长BE 交AD 于点F. (1)求证:∠BEC =∠DEC ;(2)当CE=CD 时,求证:2DF EF BF =.ABCDEF 图7A(第23题图)EGDFCB2014学年金山第二学期期中质量检测23.(本题满分12分)已知:如图,在中ABC Rt ∆中,︒=∠90ACB ,BC AC =,点E 在边AC 上,延长BC 至D 点,使CD CE =,延长BE 交AD 于F ,过点C 作CG //BF ,交AD 于点G ,在BE 上取一点H ,使DCG HCE ∠=∠. (1)求证:ACD BCE ∆≅∆; (2) 求证:四边形FHCG 是正方形. [注:若要用1∠、2∠等,请不要标在此图,要标在答题纸的图形上]闸北区2015年初中毕业统一学业模拟考试23.(本题共2小题,第(1)小题5分,第(2)小题7分,满分12分)如图,在Rt △ABC 中,∠BAC = 90°,AD = CD ,点E 是边AC 的中点,联结DE ,DE 的延长线与边BC 相交于点F ,AG // BC ,交DE 于点G ,联结AF 、CG .(1)求证:AF = BF ;(2)如果AB = AC ,求证:四边形AFCG 是正方形.GFE D BAC第23题图 H ABCDEF(第23题图)G虹口普陀2015年长宁初三数学二模考试检测试卷23.(本题满分12分)如图,正方形ABCD 中,点E 、F 分别在边BC 、CD 上,AE=AF ,AC 和EF交于点O ,延长AC 至点G ,使得AO=OG ,联结EG 、FG. (1)求证: BE=DF ;(2)求证:四边形AEGF 是菱形.崇明县2014学年第二学期教学质量调研测试卷23.(本题满分12分,每小题各6分)如图,ABC ∆中,2BC AB =,点D 、E 分别是BC 、AC 的中点,过点A 作AF BC ∥交线段DE 的延长线于点F ,取AF 的中点G ,联结DG ,GD 与AE 交于点H . (1)求证:四边形ABDF 是菱形; (2)求证:2DH HE HC =⋅.A BD H G FE C(第23题图)。
2015年上海市黄浦区中考数学、语文、英语二模试卷及答案

【解答】解:A、对角线相等的平行四边形是矩形,所以 A 选项错误; B、对角线相等的平行四边形是矩形,所以 B 选项错误; C、四个角都相等的四边形是矩形,所以 C 选项错误; D、四个角都相等的四边形是矩形,所以 D 选项正确. 故选 D. 【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和 结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如 果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理. 二、填空题(每题 4 分,共 48 分) 7. (4 分) (2015•黄浦区二模)计算: (a2)2= a4 . 【考点】幂的乘方与积的乘方. 【分析】根据幂的乘方和积的乘方的运算法则求解.
二、填空题(每题 4 分,共 48 分) 7. (4 分) (2015•黄浦区二模)计算: (a2)2= 8. (4 分) (2015•房山区二模)分解因式:2x2﹣8x+8= 9. (4 分) (2015•黄浦区二模)计算: + = . 是
菁优网版 权所有
6. (4 分) (2015•黄浦区二模)下列命题中真命题是( A.对角线互相垂直的四边形是矩形 B.对角线相等的四边形是矩形 C.四条边都相等的四边形是矩形 D.四个内角都相等的四边形是矩形 【考点】命题与定理. 【分析】根据矩形的判定方法对四个命题进行判断.
菁优网版 权所有
)
第 6页(共 26页)
菁优网版 权所有
C.y=(x+1)2﹣2
D.y=(x+2)2﹣1
【分析】把抛物线的平移问题转化为点平移的问题:先确定抛物线 y=x2 的顶点坐标为(0, 0) , 再根据点平移的规律得到把向下平移 1 个单位, 再向左平移 2 个单位后得到对应点的坐 标为(﹣2,﹣1) ,然后根据顶点式写出平移后的抛物线解析式. 【解答】解:抛物线 y=x2 的顶点坐标为(0,0) ,把点(0,0)向下平移 1 个单位,再向左 平移 2 个单位后得到对应点的坐标为(﹣2,﹣1) , 所以所得抛物线的表达式是 y=(x+2)2﹣1. 故选:D. 【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故 a 不变, 所以求平移后的抛物线解析式通常可利用两种方法: 一是求出原抛物线上任意两点平移后的 坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式. 5. (4 分) (2015•黄浦区二模)如果两圆的半径长分别为 6 与 2,圆心距为 4,那么这两个 圆的位置关系是( ) A.内含 B.内切 C.外切 D.相交 【考点】圆与圆的位置关系. 【分析】根据数量关系来判断两圆的位置关系.设两圆的半径分别为 R 和 r,且 R≥r,圆心 距为 d:外离,则 d>R+r;外切,则 d=R+r;相交,则 R﹣r<d<R+r;内切,则 d=R﹣r; 内含,则 d<R﹣r. 【解答】解:∵两圆半径之差=6﹣2=4=圆心距, ∴两个圆的位置关系是内切. 故选 B. 【点评】本题考查了由两圆位置关系的知识点,利用了两圆内切时,圆心距等于两圆半径的 差求解.
2015年上海市浦东新区初三数学二模(含答案)

2015年上海市浦东新区初三数学⼆模(含答案)浦东新区初三教学质量检测数学试卷(2015.4.21)⼀、选择题:(本⼤题共6题,每题4分,满分24分) 1.下列等式成⽴的是()(A )2222-=-;(B )236222=÷;(C )5232)2(=;(D )120=. 2.下列各整式中,次数为5次的单项式是()(A )xy 4;(B )xy 5;(C )x+y 4;(D )x+y 5.3.如果最简⼆次根式2+x 与x 3是同类⼆次根式,那么x 的值是()(A )-1;(B )0;(C )1;(D )2. 4.如果正多边形的⼀个内⾓等于135度,那么这个正多边形的边数是()(A )5;(B )6;(C )7;(D )8. 5.下列说法中,正确的个数有()①⼀组数据的平均数⼀定是该组数据中的某个数据;②⼀组数据的中位数⼀定是该组数据中的某个数据;③⼀组数据的众数⼀定是该组数据中的某个数据.(A )0个;(B )1个;(C )2个;(D )3个.6.已知四边形ABCD 是平⾏四边形,对⾓线AC 与BD 相交于点O ,那么下列结论中正确的是()(A )当AB =BC 时,四边形ABCD 是矩形;(B )当AC ⊥BD 时,四边形ABCD 是矩形;(C )当OA =OB 时,四边形ABCD 是矩形;(D )当∠ABD =∠CBD 时,四边形ABCD 是矩形.⼆、填空题:(本⼤题共12题,每题4分,满分48分)7.计算:23-= . 8.分解因式:x x 43-= . 9.⽅程43+=x x 的解是.10.已知分式⽅程312122=+++x x x x ,如果设x x y 12+=,那么原⽅程可化为关于y 的整式⽅程是.11.如果反⽐例函数的图像经过点(3,-4),那么这个反⽐例函数的⽐例系数是. 12.如果随意把各⾯分别写有数字“1”、“2”、“3”、“4”、“5”、“6”的骰⼦抛到桌⾯上,那么正⾯朝上的数字是合数的概率是.13.为了解某⼭区⾦丝猴的数量,科研⼈员在该⼭区不同的地⽅捕获了15只⾦丝猴,并在它们的⾝上做上标记后放回该⼭区.过段时间后,在该⼭区不同的地⽅⼜捕获了32只⾦丝猴,其中4只⾝上有上次做的标记,由此可以估计该⼭区⾦丝猴的数量约有只.14.已知点G 是△ABC 的重⼼,m AB =,n BC =,那么向量AG ⽤向量m 、n 表⽰为. 15.如图,已知AD ∥EF ∥BC,AE=3BE ,AD =2,EF =5,那么BC = .16.如图,已知⼩岛B 在基地A 的南偏东30°⽅向上,与基地A 相距10海⾥,货轮C 在基地A 的南偏西60°⽅向、⼩岛B 的北偏西75°⽅向上,那么货轮C 与⼩岛B 的距离是海⾥. A B C DE F (第15题图)CAD B (第18题图)17.对于函数()2b ax y +=,我们称[a ,b ]为这个函数的特征数.如果⼀个函数()2b ax y +=的特征数为[2,-5],那么这个函数图像与x 轴的交点坐标为.18.如图,已知在Rt △ABC 中,D 是斜边AB 的中点,AC =4,BC=2,将△ACD 沿直线CD 折叠,点A 落在点E 处,联结AE ,那么线段AE 的长度等于.三、解答题:(本⼤题共7题,满分78分) 19.(本题满分10分)化简并求值:12)111(22+-÷-+x x x x ,其中12+=x . 20.(本题满分10分)解不等式组:->--≥+,1262,6325x x x x 并写出它的⾮负整数解.21.(本题满分10分,其中每⼩题各5分)已知:如图,在△ABC 中,D 是边BC 上⼀点,以点D 为圆⼼、CD 为半径作半圆,分别与边AC 、BC 相交于点E 和点F .如果AB =AC =5,cos B =54,AE =1.求:(1)线段CD 的长度;(2)点A 和点F 之间的距离.22.(本题满分10分)⼩张利⽤休息⽇进⾏登⼭锻炼,从⼭脚到⼭顶的路程为12千⽶.他上午8时从⼭脚出发,到达⼭顶后停留了半⼩时,再原路返回,下午3时30分回到⼭脚.假设他上⼭与下⼭时都是匀速⾏⾛,且下⼭⽐上⼭时的速度每⼩时快1千⽶,求⼩张上⼭时的速度.C(第21题图)23.(本题满分12分,其中每⼩题各6分)如图,已知在平⾏四边形ABCD 中,AE ⊥BC ,垂⾜为点E ,AF ⊥CD ,垂⾜为点F .(1)如果AB =AD ,求证:EF ∥BD ;(2)如果EF ∥BD ,求证:AB =AD .24.(本题满分12分,其中第(1)⼩题3分,第(2)⼩题4分,第(3)⼩题5分)已知:如图,直线y =kx +2与x 轴的正半轴相交于点A (t ,0)、与y 轴相交于点B ,抛物线c bx x y ++-=2经过点A 和点B ,点C 在第三象限内,且AC ⊥AB ,tan ∠ACB =21.(1)当t =1时,求抛物线的表达式;(2)试⽤含t 的代数式表⽰点C 的坐标;(3)如果点C 在这条抛物线的对称轴上,求t 的值.(第24题图)A B C DE F(第23题图)25.(本题满分14分,其中第(1)⼩题3分,第(2)⼩题6分,第(3)⼩题5分)如图,已知在△ABC 中,射线AM ∥BC ,P 是边BC 上⼀动点,∠APD =∠B ,PD 交射线AM 于点D ,联结CD .AB =4,BC =6,∠B =60°.(1)求证:BP AD AP ?=2;(2)如果以AD 为半径的圆A 与以BP 为半径的圆B 相切,求线段BP 的长度;(3)将△ACD 绕点A 旋转,如果点D 恰好与点B 重合,点C 落在点E 的位置上,求此时∠BEP 的余切值.A B C P D (第25题图) M AB C (第25题备⽤图)M浦东新区初三教学质量检测数学试卷参考答案及评分说明⼀、选择题1.D ; 2.A ; 3.C ; 4.D ; 5.B ; 6.C .⼆、填空题7.32-; 8.)2)(2(-+x x x ; 9.4=x ; 10.0232=+-y y ; 11.12-;12.31; 13.120; 14.n m ρρ3132+; 15.6; 16.210; 17.)(0,25; 18.558.三、解答题19.解:原式=12122+-÷-x x x x x …………………………………………………………(2分) =22)1(1x x x x -?-………………………………………………………………(2分) =xx 1-.………………………………………………………………………(2分)把12+=x 代⼊,得原式=)12)(12()12(2122-+-=+………………………………………………(2分)=22-.……………………………………………………………………(2分) 20.解:由6325-≥+x x ,得4-≥x .…………………………………………………(3分)由1262->-xx ,得2∴此不等式组的⾮负整数解是0、1.…………………………………………(2分) 21.解:(1)作DH ⊥CE ,垂⾜为点H .∵D 为半圆的圆⼼,AC =5,AE =1,∴221==EC CH .……………………(2分)∵AC AB =,∴C B ∠=∠.……………………………………………………(1分)∴54cos cos ==B C .在Rt △CDH 中,∵54cos ==CD CH C ,CH =2,∴25=CD . …………………(2分)(2)作AM ⊥BC ,垂⾜为点M ,联结AF .∵25=CD ,∴5=CF .…………………………………………………………(1分)在Rt △ACM 中,∵54cos ==AC CM C ,5=AC ,∴4=CM .………………(1分)∴3452222=-=-=CM AC AM .…………………………………………(1分)∵CF =5,CM =4,∴1=FM .……………………………………………………(1分)∴10132222=+=+=FM AM AF .………………………………………(1分)22.解:设⼩张上⼭时的速度为每⼩时x 千⽶.…………………………………………(1分)根据题意,得711212=++x x .…………………………………………………(4分)化简,得 0121772=--x x .…………………………………………………(2分)解得 31=x ,742-=x .…………………………………………………………(1分)经检验:3=x ,742-=x 都是原⽅程的解,但742-=x 不符合题意,舍去.(1分)答:⼩张上⼭时的速度为每⼩时3千⽶.……………………………………………(1分)23.证明:(1)∵四边形ABCD 是平⾏四边形,∴∠ABE=∠ADF .…………………(1分)∵AE ⊥BC ,AF ⊥CD,∴∠AEB=∠AFD=90o. ……………………(1分)∵AB =AD ,∴△ABE ≌△ADF . ………………………………………(1分)∴BE =DF .…………………………………………………………………(1分)∵BC =AD =AB =CD ,∴CDDFBC BE =.……………………………………(1分)∴EF ∥BD .………………………………………………………………(1分)(2)∵∠ABE=∠ADF ,∠AEB=∠AFD ,∴△ABE ∽△ADF .…………(1分)∴ADABDF BE =.……………………………………………………………(1分)∵EF ∥BD ,∴CDDFBC BE =.……………………………………………(1分)∵四边形ABCD 是平⾏四边形,∴AB=CD ,AD=BC .∴AB DFAD BE =.……………………………………………………………(1分)∴AB ADDF BE =.∴ABADAD AB =,即22AD AB =.…………………………………………(1分)∴AB =AD .…………………………………………………………………(1分) 24.解:(1)∵t =1,y =kx +2,∴A (1,0),B (0,2).………………………………………(1分)把点A (1,0)、B (0,2)分别代⼊抛物线的表达式,得=++-=.2,10c c b …………………………………………………………(1分)解得?=-=.2,1c b∴所求抛物线的表达式为y =-x 2-x +2.……………………………………(1分)(2)作CH ⊥x 轴,垂⾜为点H ,得∠AHC =∠AOB =90°.∵AC ⊥AB ,∴∠OAB +∠CAH =90°.⼜∵∠CAH +∠ACH =90°,∴∠OAB =∠ACH .∴△AOB ∽△CHA .…………………………………………(1分)∴ACABAH OB CH OA ==.∵tan ∠ACB =21=AC AB ,∴21==AH OB CH OA .…………………(1分)∵OA =t ,OB =2,∴CH =2t ,AH =4.…………………………(1分)∴点C 的坐标为(t -4,-2t ).…………………………(1分)(3)∵点C (t -4,-2t )在抛物线y =-x 2+bx +c 的对称轴上,∴24bt =-,即82-=t b .………………………………………(1分)把点A (t ,0)、B (0,2)代⼊抛物线的表达式,得-t 2+bt +2=0. …………(1分)∴02)82(2=+-+-t t t ,即0282=+-t t . ………………(1分)解得t =144±.………………………………………………(1分)∵点C (t -4,-2t )在第三象限,∴t =144+不符合题意,舍去.∴t =144-.……………………………………………………(1分)25.解:(1)∵AM ∥BC ,∴∠PAD =∠APB .∵∠APD =∠B ,∴△APD ∽△PBA .…………………………(1分)∴BPAPAP AD =.………………………………………………………(1分)∴BP AD AP ?=2.………………………………………………(1分)(2)过点A 作AH ⊥BC ,垂⾜为点H .∵∠B =60°,AB =4,∴BH =2,32=AH .………………(1分)设BP =x ,那么2-=x PH .∴164)32()2(2222+-=+-=x x x AP .………………………(1分)∴xx x BP AP AD 16422+-==.…………………………(1分)⽽AB =4,BP =x ,因此(i )如果两圆外切,那么41642=++-x xx x .整理,得0842=+-x x .∵08442(ii )如果两圆内切,那么41642=-+-x xx x .解得x =2.…………………………………………………………(1分)或41642=+--xx x x .此⽅程⽆解.………………………………………………(1分)综上所述,如果两圆相切,那么BP =2.(3)过点A 作AH ⊥BC ,垂⾜为点H .由题意,可知AD =AB =4,即41642=+-xx x .…………………(1分)∴x =4.………………………………………………………(1分)⼜∵BC =6,BH =2,∴CH =4.∴AD =CH .∵AD ∥CH ,∴四边形AHCD 是平⾏四边形.∵∠AHC =90°,∴平⾏四边形AHCD 是矩形.∴∠ABE =∠ADC =90°,…………………………………(1分)EB =CD =32.……………………………(1分)过点P 作PK ⊥BE ,垂⾜为点K .∵∠ABC =60°,∴∠PBK =30°.⼜∵BP =4,∴PK =2,BK =32.∴EK =34.∴cot ∠BEP =32.………………………………(1分)。
2015年上海中考各区二模数学试题及答案汇总

BC OC = ∴ OC ,∴ OD
2 2
x r 2 − x2
2
=
r 2 − x2 r
2
,…………………(1 分)
∴ xr = r − x , x + rx − r − 0 , 5 ∵ r ≠ 0 , ( rx ) + rx − 1 ≠ 0 , rx = − 1 ± (负值舍去) ,………………………(1 分) 2 BC x 5 −1 ∴sin∠ODC=sin∠COB = OB .……………(1 分) = = r 2
2 2 2 2
年长宁区初三数学教学质量检测试卷 长宁区初三数学教学质量检测试卷参考答案 初三数学教学质量检测试卷参考答案
2
x
2
2
2
∆ADE
2
∆ADE
1
2
D
E
H
F
C
P
G R
O
A
Q
B
初三数学基础考试卷—3—
2015
年上海各区县中考二模试题及答案
∴DE=CF. (1 分) (2)据题意,设 DP=t,PA=10-t,AQ=3t,QB=12-3t,BR=1.5t(0 < t < 4). (1 分) ∵矩形 ABCD ∴∠A=∠B=90° 若△PAQ 与△QBR 相似,则有 AP AQ 10 - t 3t 14 ① QB = (2 分) = t= BR 12 - 3t 1.5t 5
25
D P E F C
O R
A
Q
B
第 25 题图
初三数学基础考试卷—2—
2015
年上海各区县中考二模试题及答案
2015 18. 1
或 11 . 6 24.(本题满分 12 分) 解:(1) y = x − 2tx + t − 2 = (x - t ) - 2 ∴A(t,-2)(2 分) y ∵点 C 的横坐标为 1,且是线段 AB 的中点 ∴t =2 (1 分) ∴ y = (x - 2 ) - 2 D ∴P(1,-1).(1 分) O (2)据题意,设 C(x,-2)(0< x < t),P(x, ( x − t ) − 2 )E P B C A AC= t-x,PC= ( x − t ) (1 分) 第 24 题图 ∵AC=PC ∴t-x = ( x − t ) ∵x < t ∴ t - x=1 即 x = t - 1 ∴AC=PC=1 (2 分) AC ∵DC//y 轴 ∴ PC ∴EB= t ∴OE=2-t = EB AB 1 1 3 ∴S = 1 (OE + DP) × OD = (3 − t )(t − 1) = − t + 2t − (1< t <2). (2 分) 2 2 2 2 1 1 1 (3) S = 2 DP × AB = 2 ×1× t = 2 t (1 分) 1 3 ∵ S = 2S ∴ 1 t = 2( − t + 2t − ) 2 2 2 3 解得 t = 3 , t = 2 (不合题意)∴ t = .(2 分) 2 2 25.(本题满分 14 分) (1)证:作 OH⊥DC 于点 H,设⊙O 与 BC 边切于点 G,联结 OG. (1 分) ∴∠OHC=90° ∵⊙O 与 BC 边切于点 G ∴OG=6,OG⊥BC ∴∠OGC=90° ∵矩形 ABCD ∴∠C=90° ∴四边形 OGCH 是矩形 ∴CH=OG ∵OG=6 ∴CH=6 (1 分) ∵矩形 ABCD ∴AB=CD 第 25 题图(1) ∵AB=12 ∴CD=12 ∴DH=CD﹣CH=6 ∴DH= CH ∴O 是圆心且 OH⊥DC ∴EH=FH (2 分)
2015年黄浦区数学二模卷及答案

2015年黄浦区初三数学二模卷(时间:100分钟,满分:150分)一、选择题:(本大题共6题,每题4分,满分24分)1、 下列分数中,可以化为有限小数的是( )A 、115B 、118C 、315D 、3182、 下列二次根式中最简根式是( )ABCD3、 下列是某地今年春节放假七天最低气温(℃)的统计结果:这七天最低气温的众数和中位数分别是( )A 、4,4B 、4,5C 、6,5D 、6,64、 将抛物线2y x =向下平移1个单位,再向左平移2个单位后,所得新抛物线的表达式是( )A 、2(1)2y x =-+B 、2(2)1y x =-+C 、2(1)2y x =+-D 、2(2)1y x =+-5、 如果两圆的半径长分别为6与2,圆心距为4,那么这两个圆的位置关系是( ) A 、内含B 、内切C 、外切D 、相交6、 下列命题中真命题是( )A 、对角线互相垂直的四边形是矩形B 、对角线相等的四边形是矩形C 、四条边都相等的四边形是矩形D 、四个内角都相等的四边形是矩形二、填空题:(本大题共12题,每题4分,满分48分)7、 计算:22()=a;8、 因式分解:2288x x -+= ;9、 计算:111x x x +=+- ; 101x =-的根是 ;11、如果抛物线2(2)3y a x x a =-+-的开口向上,那么a 的取值范围是 ;12、某校八年级共四个班,各班寒假外出旅游的学生人数如图1所示,那么三班外出旅游学生人数占全年级外出旅游学生人数的百分比为 ;13、将一枚质地均匀的硬币抛掷2次,硬币正面均朝上的概率是 ; 14、如果梯形的下底长为7,中位线长为5,那么其上底长为 ; 15、已知AB 是O 的弦,如果O 的半径长为5,AB 长为4,那么圆心O 到弦AB 的距离是 ;图1四班三班二班一班16、如图2,在平行四边形ABCD 中,点M 是边CD 中点,点N 是边BC 上的点,且12CN BN =,设AB a =,BC b =,那么MN 可用a 、b 表示为 ;17、如图3,△ABC 是等边三角形,若点A 绕点C 顺时针旋转30°至点A ’,联结A ’B ,则∠ABA ’度数是 ;18、如图4-1,点P 是以r 为半径的圆O 外一点,点P ’在线段OP 上,若满足2'OP OP r ⋅=,则称点P’是点P 关于圆O 的反演点。
【VIP专享】2015年黄浦区数学二模卷及答案

;
6.培养学生观察、思考、对比及分析综合的能力。过程与方法1.通过观察蚯蚓教的学实难验点,线培形养动观物察和能环力节和动实物验的能主力要;特2征.通。过教对学观方察法到与的教现学象手分段析观与察讨法论、,实对验线法形、动分物组和讨环论节法动教特学征准的备概多括媒,体继课续件培、养活分蚯析蚓、、归硬纳纸、板综、合平的面思玻维璃能、力镊。子情、感烧态杯度、价水值教观1和.通过学理解的蛔1虫.过观适1、察于程3观阅 六蛔寄.内列察读 、虫生出蚯材 让标容生3根常蚓料 学本教活.了 据见身: 生,师的2、解 问的体巩鸟 总看活形作 用蛔 题线的固类 结雌动态业 手虫 自形练与 本雄学、三: 摸对 学动状习人 节蛔生结4、、收 一人 后物和同类 课虫活构请一蚯集 摸体 回并颜步关 重的动、学、蚓鸟 蚯的 答归色学系 点形教生生让在类 蚓危 问纳。习从 并状学理列学平的害 题线蚯四线人 归、意特出四生面体以形蚓、形类 纳大图点常、五观玻存 表及动的鸟请动文 本小引以见引、察璃现 ,预物身类 3学物明 节有言及的、导巩蚯上状 是防的体之生和历 课什根蚯环怎学固蚓和, 干感主是所列环史 学么据蚓节二样生练引牛鸟 燥染要否以举节揭 到不上适动、区回习导皮类 还的特分分蚯动晓 的同节于物让分答。学纸减 是方征节布蚓物起 一,课穴并学蚯课生上少 湿法。?广的教, 些体所居归在生蚓前回运的 润;4泛益学鸟色生纳.靠物完的问答动原 的4蛔,处目类 习和活环.近在成前题蚯的因 ?了虫以。标就 生体的节身其实端并蚓快及 触解寄上知同 物表内特动体结验和总利的慢我 摸蚯生适识人 学有容点物前构并后结用生一国 蚯蚓在于与类 的什,的端中思端线问活样的 蚓人飞技有 基么引进主的的考?形题环吗十 体生行能着 本特出要几变以动,境?大 节活的1密 方征本“特节化下物.让并为珍 近习会形理切 法。课生征有以问的小学引什稀 腹性态解的 。2课物。什游题主.结生出么鸟 面和起结蛔关观题体么戏:要利明蚯?类 处适哪构虫系察:的特的特用确蚓等 ,于些特适。蛔章形殊形征板,这资 是穴疾点于可虫我态结式。书生种料 光居病是寄的们结构,五小物典, 滑生?重生鸟内学构,学、结的型以 还活5要生类部习与.其习巩鸟结的爱 是如原活生结了功颜消固类构线鸟 粗形何因的存构腔能色化练适特形护 糙态预之结的,肠相是系习于点动鸟 ?、防一构现你动适否统。飞都物为结蛔。和状认物应与的行是。主构虫课生却为和”其结的与题、病本理不蛔扁的他构特环以生?8特乐虫形观部特8征境小理三页点观的动位点梳相组等、这;,哪物教相,理适为方引些2鸟,育同师.知应单面导鸟掌类结了;?生识的位学你握日构解2互.。办特生认线益特了通动手征观识形减点它过,抄;察吗动少是们理生报5蛔?物,与的解.参一了虫它和有寄主蛔与份解结们环些生要虫其。蚯构都节已生特对中爱蚓。会动经活征人培鸟与飞物灭相。类养护人吗的绝适这造兴鸟类?主或应节成趣的为要濒的课情关什特临?就危感系么征灭来害教;?;绝学,育,习使。我比学们它生可们理以更解做高养些等成什的良么两好。类卫动生物习。惯根的据重学要生意回义答;的3.情通况过,了给解出蚯课蚓课与题人。类回的答关:系线,形进动行物生和命环科节学动价环值节观动的物教一育、。根教据学蛔重虫点病1.引蛔出虫蛔适虫于这寄种生典生型活的线结形构动和物生。理二特、点设;置2.问蚯题蚓让的学生生活思习考性预和习适。于穴居生活的形态、结构、生理等方面的特征;3.线形动物和环节动物的主要特征。
中考数学:2015上海黄浦区中考数学二模压轴题

3 12 x ,所以点 D 的坐标为 (4, ) . a a 12 由于 AC//y 轴,所以点 C 的坐标为 (a, ) . a
由于直线 OA 的解析式为 y
2
华东师大出版社独家资源
华枫教育培训电子资源
中考数学
所以 CD//x 轴.因此四边形 ABDC 是矩形. 所以点 B、 C 到对角线 AP 的距离相等. 因此△ABP 与△ACP 是同底等高的两个三角形, 它们的面积相等.所以
CD BF 3 1 y ,即 . CE BC x 2
2 3x 3 .定义域是 ≤x< 2 3 . x 2
4
整理,得 y
图2
华东师大出版社独家资源
华枫教育培训电子资源
中考数学
(3)△EFG 与△CDG 都是直角三角形,分两种情况讨论相似: ①如图 3,当∠FEG=∠DCG 时,由于∠FDG=∠DCG,所以∠FEG=∠FDG. 因此 FE=FD.所以 FC 垂直平分 DE.此时 CE=CD= 3 . ②如图 4,当∠FEG=∠CDG 时,EF//CD.此时 EF⊥AB. 作 EH⊥CD 于 H,那么四边形 EFDH 是矩形,DF=EH. 所以 y=
S△ABP S 的值是否随 a 的变化而变化?如果不变,求出 △ABP S△ACP S△ACP
图1
备用图
思路点拨
1.点 B 是确定的,点 C、P 随点 A 的改变而改变. 2.已知 a>4 隐含了点 A 在点 B 的右侧这个条件.
满分解答
12 =2.所以点 P 的坐标为(6, 2). x 1 由 O(0, 0)、P(6, 2),得直线 AO 的解析式为 y x . 3
满分解答
(1)在 Rt△ABC 中,∠A=30°,BC=2,所以 AB=4,AC= 2 3 . 在 Rt△ACD 中,∠A=30°,AC= 2 3 ,所以 CD= 3 ,AD=3. (2)如图 2,∠CDE 与∠BFD 都是∠EDF 的余角, 所以∠CDE=∠BFD. 又因为∠DCE=∠B=60°,所以△CDE∽△BFD. 所以
上海市2015各区初三数学二模考试第18题详细解析

1.黄浦OP r外一点,如图,点为半径的圆是以18.2??r??OPOP OPP在线段,则点上,若满足?OPP是点的反演点,如图,在称点关于圆??O?BO?4ABO?B?90BAB?2A分,圆、,Rt△的半径为中,2,如果点,??OBBAA;别是点、关于圆的反演点,那么的长是2.奉贤18.如图,已知钝角三角形ABC,∠A=35°,OC为边AB上的中线,将△AOC ''',处,A处,点落在点联结绕着点O顺时针旋转,点C落在BC边上的点ABA CC '、在同一直线上,如果点A、C A;那么∠的度数为''CBABAO(第18题图)3.普陀4杨3?BAC tan?,,18. 如图,△中,ABC?90?ABC?4,将三角形绕着点旋转,点落在直线C A4?BC??处,若、、上的点处,点落在点CC BBBAB?恰好在一直线上,则的长为;BAB5.松江A,BC=6cmAB=AC=5cm,△18.如图,在ABC中,如果将D.交AC于点BD 平分∠BDABC,D处,A沿BD翻折,点落在点A′ABD△2.的面积为△那么D A′C_______________cm CBC6.崇明F中,18.如图,在,,点是DCBABC??CA??C?90BCD与点重合,的中点,将沿着直线EF折叠,使点ABC?DABAE ,那么的值于点折痕交于点,交BED sin?ABACFE 18题图)(第.为7.浦东徐汇8闵行9.ABC点D在边BC上,将△C=90o18. 如图,已知在Rt△ABC中,∠,AC=BC=1,CB AC 1与边处,联结AC 1,直线落在点沿直线AD翻折,使点CC 1 BF= ▲的延长线相交于点F.如果∠DAB=∠BAF,那么10.静安、青浦外切、O⊙.18如图,⊙O的半径为1,O的半径为2,O=5,⊙O分别与⊙O12121.半径内切,那么⊙O的取值范围是O与⊙r2OO 虹口11.1A2,. 18在中,,(如图)若将绕点顺时针方向旋转到的位置,.联结,则的长为D BC长宁12.ADEF如图,18.△ABC≌△(点A、、B分别与点D △,BC=6,ABC固定不动,AB=AC=5对应)E,F边从在△DEF运动,并满足点EBCB移动向C M EF DE重合)、不与(点EBC,始终经过点,A BEC是等腰三角形时,△,当MAC与边交于点AEM.BE=13金山A DM ,把矩形中,,.在矩形188AB?6ABCD?AD上的点沿直线翻折,点落在边MNABCDADEB BCN处,若,那么的长等于ENAMAE?2嘉定、宝山14.GDA上,中,,点在边18.在矩形DC15ABCD?ADE,翻折后点落到点联结,△沿直线FADEAEDAE E,如果作,垂足为点,如图5过点GAD?FGF.,那么GD3AD??DE F CB5图解析答案1.黄浦2.奉贤3.普陀4.杨浦5.松江6.崇明7.浦东徐汇89.闵行10.静安、青浦虹口11.12.长宁13.金山嘉定、宝山14.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
黄浦区2015年九年级学业考试模拟卷
一. 选择题
1. 下列分数中,可以化为有限小数的是()
A. 1
15; B. 1
18
; C. 3
15
; D. 3
18
;
2. 下列二次根式中最简根式是()
A. B. C. D.
3. 下表是某地今年春节放假七天最低气温(C︒)的统计结果
A. 4,4;
B. 4,5;
C. 6,5;
D. 6,6;
4. 将抛物线2
y x
=向下平移1个单位,再向左平移2个单位后,所得新抛物线的表达式是()
A. 2
(1)2
y x
=-+; B. 2
(2)1
y x
=-+;
C. 2
(1)2
y x
=+-; D. 2
(2)1
y x
=+-;
5. 如果两圆的半径长分别为6与2,圆心距为4,那么这两个圆的位置关系是()
A. 内含;
B. 内切;
C. 外切;
D. 相交;
6. 下列命题中真命题是()
A. 对角线互相垂直的四边形是矩形;
B. 对角线相等的四边形是矩形;
C. 四条边都相等的四边形是矩形;
D. 四个内角都相等的四边形是矩形;
二. 填空题
7. 计算:22()a = ;
8. 因式分解:2288x x -+= ; 9. 计算:
111
x x x +=+- ; 10. 方程1x =-的根是 ;
11. 如果抛物线2(2)3y a x x a =-+-的开口向上,那么a 的取值范围是 ;
12. 某校八年级共四个班,各班寒假外出旅游的学生人数如图所示,那么三班外
出旅游学生人数占全年级外出旅游学生人数的百分比为 ;
13. 将一枚质地均匀的硬币抛掷2次,硬币证明均朝上的概率是 ; 14. 如果梯形的下底长为7,中位线长为5,那么其上底长为 ;
15. 已知AB 是O e 的弦,如果O e 的半径长为5,AB 长为4,那么圆心O 到弦AB
的距离是 ;
16. 如图,在平行四边形ABCD 中,点M 是边CD 中点,点N 是边BC 上的点,
且
1
2CN BN =,设AB a =uu u r r ,BC b =uu u r r ,那么MN uuu r 可用a r 、b r 表示为 ; 17. 如图,△ABC 是等边三角形,若点A 绕点C 顺时针旋转30°至点A ',联结
A B ',则ABA '∠度数是 ;
18. 如图,点P 是以r 为半径的圆O 外一点,点P '在线段OP 上,若满足
2OP OP r '⋅=,则称点P '是点P 关于圆O 的反演点,如图,在Rt △ABO 中,90B ∠=︒,2AB =,4BO =,圆O 的半径为2,如果点A '、B '分别是点A 、B 关于圆O 的反演点,那么A B ''的长是 ;
三. 解答题
19.
计算:10
12
481)|1-+-+;
20. 解方程组:22221x y x y ⎧-=-⎨-=⎩①
②;
21. 温度通常有两种表示方法:华氏度(单位:F ︒)与摄氏度(单位:C ︒),已知华氏度数y 与摄氏度数x 之间是一次函数关系,下表列出了部分华氏度与摄氏度之间的对应关系:
定义域);
(2)已知某天的最低气温是-5C ︒,求与之对应的华氏度数;
22. 如图,在梯形ABCD 中,AD ∥BC ,AB ⊥BC ,已知2AD =,
4
cot 3
ACB ∠=,梯形ABCD 的面积是9; (1)求AB 的长;
(2)求tan ACD ∠的值;
23. 如图,在正方形ABCD 中,点E 在对角线AC 上,点F 在边BC 上,联结BE 、
DF ,DF 交对角线AC 于点G ,且DE DG =;
(1)求证:AE CG =;
(2)求证:BE ∥DF ;
24. 如图,在平面直角坐标系xOy 中,已知点A 的坐标为(,3)a (其中4a >),射线OA 与反比例函数12y x =
的图像交于点P ,点B 、C 分别在函数12
y x
=的图像上,且AB ∥x 轴,AC ∥y 轴;
(1)当点P 横坐标为6,求直线AO 的表达式; (2)联结BO ,当AB BO =时,求点A 坐标; (3)联结BP 、CP ,试猜想:ABP
ACP
S S ∆∆的值是否随a 的变化而变化?如果不变,求出
ABP
ACP
S S ∆∆的值;如果变化,请说明理由;
25. 如图,Rt △ABC 中,90C ∠=︒,30A ∠=︒,2BC =,CD 是斜边AB 上的高,点E 为边AC 上一点(点E 不与点A 、C 重合),联结DE ,作CF ⊥DE ,CF 与边AB 、线段DE 分别交于点F 、G ; (1)求线段CD 、AD 的长;
(2)设CE x =,DF y =,求y 关于x 的函数解析式,并写出它的定义域; (3)联结EF ,当△EFG 与△CDG 相似时,求线段CE 的长;
2015年黄浦区初三二模数学参考答案
一. 选择题
1. C ;
2. C ;
3. B ;
4. D ;
5. B ;
6. D ; 二. 填空题
7. 4
a ; 8. 2
2(2)x -; 9. 221
1
x x +-; 10. 3x =; 11. 2a <; 12. 40%;
13.
1
4
; 14. 3; 15. 16.
1123a b -; 17. 15︒; 18. 三. 解答题
19. 解:原式
12131)11
=+=-=; 20. 解:由②得:1x y =+,代入①得:22(1)22y y +-=-,即2230y y --=, ∴(1)(3)0y y +-=,∴11y =-,23y =,∴10x =,24x =,
∴方程组的解为01x y =⎧⎨=-⎩或4
3x y =⎧⎨=⎩
;
21. 解:设y kx b =+,代入(0,32)和(35,95),即032
3595
b k b +=⎧⎨+=⎩,
∴32b =,95k =
,∴9
325
y x =+, 当5x =-时,93223y =-+=;
22. 解:(1)Rt ABC 中,4
cot 3
BC ACB AB ∠=
=,设4BC k =,3AB k =, ∴11
()(24)3922
ABCD S AD BC AB k k =⋅+⋅=+⋅=,∴1k =或32k =-(舍),
∴3AB =,4BC =,5AC =;
(2)作DH AC ⊥,∵AD ∥BC ,∴DAH ACB ∠=∠,
∴Rt ADH ∽Rt CAB ,∴
2
5
DH AD AH AB AC BC ===, ∴65DH =,85AH =,∴17
5
CH AC AH =-=,
∴6
tan 17
DH ACD CH ∠=
=; 23. 解:(1)∵DE DG =,∴DEG DGE ∠=∠,∴AED CGD ∠=∠, 又∵AD CD =,45DAC DCA ∠=∠=︒,∴△ADE ≌△CDG , ∴AE CG =
(2)∵BC CD =,CE CE =,45BCE DCE ∠=∠=︒, ∴△BCE ≌△DCE ,∴BEC DEC DGE ∠=∠=∠, ∴BE ∥DF ;
24. 解:(1)当6x =时,2y =,∴(6,2)P ,设:OA l y kx =,
代入(6,2)P 得13k =,∴1
:3
OA l y x =;
(2)当3y =时,4x =,∴(4,3)B ,∵AB BO =, ∴54a =-,即9a =,∴(9,3)A (3)3:OA l y x a =
,联立12y x =
,得P ,
作PM AB ⊥,PN AC ⊥,
当x a =时,12y a =
,即12
(,)C a a
,当3y =时,4x =,即(4,3)B ,
∴1(4)(32ABP S a =-
,112()2ACP S a a =--,
∴3121ABP ACP a S S -
-==; 25. 解:(1)CD =,3AD =;
(2)∵90CDE BFC DCF ∠=∠=︒-∠,60ECD B ∠=∠=︒,
∴△CDE ∽△BFC ,∴CE CD BC BF =,即
2x =,
∴1y =
-,x ≤< (3)90EGF CGD ∠=∠=︒
① △EGF ∽△DGC 时,GEF GDC ∠=∠,∴EF ∥DC ,
∴CE DF AC AD =
1
33y x ==
,解得x =; ② △EGF ∽△CGD 时,∴GEF GCD GDF ∠=∠=∠,
∴EF DF =,又∵CF DE ⊥,∴EG DG =
,∴CD CE ==
综上,CE =。