九年级数学 第24章《解直角三角形》测试卷及答案 沪科版

合集下载

华东师大版九年级上册数学第24章《解直角三角形》分课时练习题及答案

华东师大版九年级上册数学第24章《解直角三角形》分课时练习题及答案

数学九年级上册第24章解直角三角形 24.1 测量同步练习题1.如图,一场暴风雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B恰好碰到地面,经测量AB=2米,则树高为( )A. 5 米B. 3 米 C.(5+1)米 D.3米2. 如图,李光用长为3.2m的竹竿DE为测量工具测量学校旗杆的高度,移动竹竿,使竹竿顶端、旗杆顶端的影子恰好落在地面的同一点,此时,竹竿与这一点相距(AE)8m,与旗杆相距(BE)22 m,则旗杆的高为()A.12 m B.10 m C.8 m D.7 m3. 身高为1.5米的小华在打高尔夫球,她在阳光下的影长为2.1米,此时她身后一棵树的影长为10.5米,则这棵树高为()A.7.5米B.8米 C.14.7米 D.15.75米4. 小明想知道学校旗杆的高度,他发现旗杆上的绳子垂到地面还多了1米,当他把绳子的下端拉开5米后,发现下端刚好接触地面,则旗杆的高度为()A.11米 B.12米 C.13米 D.14米5. 如图,有两棵树,一棵高12米,另一棵高6米,两树相距8米,一只鸟从一棵树的树梢飞到另一棵树的树梢,则小鸟至少要飞行______米.6. 如图,B,C是河岸上两点,A是对岸岸边上一点,测得∠ABC=45°,∠ACB=45°,BC=60米,则点A到岸边BC的距离是______米.7. 如图,铁道口栏杆的短臂长为1.2 m,长臂长为8 m,当短臂端点下降0.6 m时,长臂端点升高______m .(杆的粗细忽略不计)8. 如图,阳光通过窗口照到室内,在地面上留下2.7米的亮区,已知亮区一边到窗口下的墙脚距离EC=8.7 米,窗口高AB=1.8米,那么窗口底边离地面的高BC=________米.9. 如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,将△ABC折叠,使点B恰好落在边AC上,与点B′重合,AE为折痕,则EB′=_______.10. 如图,某水平地面上建筑物的高度为AB,在点D和点F处分别竖立高是2米的CD和EF,两标杆相隔52米,并且建筑物AB、标杆CD和EF在同一竖直平面内,从标杆CD后退2米到点G处,在G处测得建筑物顶端A和标杆顶端C在同一条直线上;从标杆FE后退4米到点H处,在H处测得建筑物顶端A和标杆顶端E在同一条直线上,则建筑物的高是______米.11. 如图,一人拿着一把有厘米刻度的小尺,他站在距电线杆约30米的地方,把手臂向前伸直,小尺竖直,看到尺上约12厘米恰好遮住电线杆,已知臂长约60厘米,求电线杆的高.12. 如图,是一个照相机成像的示意图.(1)如果像高MN是35 mm,焦距是50 mm,拍摄的景物高度AB是4.9 m,拍摄点离景物有多远?(2)如果要完整的拍摄高度是2 m的景物,拍摄点离景物有4 m,像高不变,则相机的焦距应调整为多少?13. 如图,正方形城邑DEFG的四面正中各有城门,出北门20步的A处(HA=20步)有一树木,出南门14步到C处(KC=14步),再向西行1775步到B处(CB=1775步),正好看到A处的树木(点D在直线AB上),求城邑的边长.14. 亮亮和晶晶住在同一幢住宅楼,两人准备用测量影子的方法测算其楼高,但恰逢阴天,于是两人商定改用下面方法:如图,亮亮蹲在地上,晶晶站在亮亮和楼之间,两人适当调整自己的位置,当楼的顶部M,晶晶的头顶B及亮亮的眼睛A恰在一条直线上时,两人分别标定自己的位置C,D.然后测出两人之间的距离CD=1.25m,晶晶与楼之间的距离DN=30 m(C,D,N在一条直线上),晶晶的身高BD=1.6m,亮亮蹲地观测时眼睛到地面的距离AC=0.8m.你能根据以上测量数据帮助他们求出住宅楼的高度吗?15. 某同学要测量树的高度.在阳光下,一名同学测得一根长为1米的竹竿的影长为0.4米,同时另外一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得台阶上的影长为0.2米,一级台阶高为0.3米,如图,若此时落在地面上的影长为4.4米,则树高为多少米?答案:1—4 CAAB5. 106. 507. 48. 49. 1.5 10. 5411. 解:电线杆的高为6米12. 解:根据物体成像原理知:△LMN∽△LBA,∴MN AB =LCLD (1)∵像高MN 是35mm ,焦距是50 mm ,拍摄的景物高度AB 是4.9 m ,∴3550=4.9LD ,解得LD =7.∴拍摄点距离景物7 m (2)拍摄高度AB 是2 m 的景物,拍摄点离景物LD =4 m ,像高MN 不变,∴35LC =24.解得LC =70.∴相机的焦距应调整为70 mm13. 解:设正方形的边长为x 步,由已知可得△ADH∽△ABC ,∴AH AC =DHBC ,即2020+x +14=12x 1775,整理得x 2+34x -71000=0,解得x 1=250,x 2=-284(舍去),所以城邑的边长为250步14. 解:过A 作CN 的平行线交BD 于点E ,交MN 于点F.由已知可得FN =ED =AC =0.8 m ,AE =CD =1.25 m ,EF =DN =30 m ,∠AEB =∠AFM =90°,又∠BAE=∠MAF,∴△ABE ∽△AMF ,∴BE MF =AE AF ,即1.6-0.8MF = 1.251.25+30,解得MF =20.∴MN =MF +FN =20+0.8=20.8(m),所以住宅楼的高度为20.8 m15. 解:设落在地面上的影子4.4米所对应的树高为x米,则有x4.4=10.4,∴x=11,落在第一阶台阶上的影子长为0.2米对应的树高为0.5米,所以树高为11+0.5+0.3=11.8(米)数学九年级上学期《24.2直角三角形的性质》同步练习一.选择题(共12小题)1.如图,△ABC中,∠BAC=90°,AD⊥BC,∠ABC的平分线BE交AD于点F,AG平分∠DAC.给出下列结论:①∠BAD=∠C;②∠AEF=∠AFE;③∠EBC=∠C;④AG⊥EF.正确结论有()A.1个B.2个C.3个D.4个2.下列判断:①有两个内角分别为55°和25°的三角形一定是钝角三角形;②直角三角形中两锐角之和为90°;③三角形的三个内角中至少有两个锐角;④三条高不相交的三角形一定是钝角三角形,其中正确的有()个.A.1 B.2 C.3 D.43.如图,已知△ABC中,∠ACB=90°,CD为AB边上的高,∠ABC 的平分线BE分别交CD、CA于点F、E,则下列结论正确的有()①∠CFE=∠CEF;②∠FCB=∠FBC,③∠A=∠DCB;④∠CFE与∠CBF互余.A.①③④B.②③④C.①②④D.①②③4.在一个直角三角形中,有一个锐角等于45°,则另一个锐角的度数是()A.75° B.60° C.45°D.30°5.在Rt△ABC中,∠C=90°,∠B=35°,则∠A=()A.45° B.55°C.65° D.75°6.如图所示,△ABC为直角三角形,∠ACB=90°,CD⊥AB,与∠1互余的角有()A.∠B B.∠A C.∠BCD和∠A D.∠BCD 7.直角三角形的一个锐角是另一个锐角的4倍,那么这个锐角的度数是()A.18° B.36° C.54°D.72°8.直角三角形两个锐角平分线相交所成角的度数为()A.90° B.135° C.120°D.45°或135°9.在Rt△ABC中,∠C=90°,∠A=50°,则∠B=()A.30° B.40° C.50°D.60°10.如图,∠ACB=90°,CD⊥AB,垂足为点D,下列结论错误的是()A.∠A=∠2 B.∠1和∠B都是∠A的余角C.∠1=∠2 D.图中有3个直角三角形11.在Rt△ABC中,∠C=90°,∠A=61°,则∠B=()A.61° B.39°C.29° D.19°12.如图,在△ABC中,∠ACB=105°,∠B=30°,∠ACB的平分线CD交AB 于点D,则AD:BD=()A.B.C.1:2D.二.填空题(共10小题)13.如图,已知∠AON=40°,OA=6,点P是射线ON上一动点,当△AOP 为直角三角形时,∠A=°.14.在一个直角三角形中,两个锐角相等,则这两个锐角的度数是°.15.如图,在直角三角形ABC中,两锐角平分线AM、BN所夹的钝角∠AOB=度.16.如图△ABC中,点M是BC的中点,∠ACB=90°,AC=5,BC=12,AN平分∠BAC,AN⊥CN,则MN=.17.如图示在△ABC中∠B=.18.直角△ABC中,∠A﹣∠B=20°,则∠C的度数是.19.直角三角形ABC中有一个角是另一角的2倍小60°,则直角三角形中最小的角的度数为.20.在直角三角形ABC中,∠C=90°,∠A=23°,则∠B=°,与∠B相邻的外角为°.21.一块直角三角板放在两平行直线上,如图,∠1+∠2=度.22.在直角三角形中,若一个锐角为35°,则另一个锐角为.三.解答题(共5小题)23.如图,在Rt△ABC中∠ACB=90°,CD⊥AB,∠A=30°,求∠DCB.24.小明在学习三角形知识时,发现如下三个有趣的结论:在Rt△ABC中,∠A=90°,BD平分∠ABC,M为直线AC上一点,ME⊥BC,垂足为E,∠AME的平分线交直线AB于点F.(1)M为边AC上一点,则BD、MF的位置是.请你进行证明.(2)M为边AC反向延长线上一点,则BD、MF的位置关系是.请你进行证明.(3)M为边AC延长线上一点,猜想BD、MF的位置关系是.请你进行证明.25.已知,在直角三角形ABC中,∠ACB=90°,D是AB上一点,且∠ACD=∠B.(1)如图1,求证:CD⊥AB;(2)将△ADC沿CD所在直线翻折,A点落在BD边所在直线上,记为A′点.①如图2,若∠B=34°,求∠A′CB的度数;②若∠B=n°,请直接写出∠A′CB的度数(用含n的代数式表示).26.如图,在△ACB中,∠ACB=90゜,CD⊥AB于D.(1)求证:∠ACD=∠B;(2)若AF平分∠CAB分别交CD、BC于E、F,求证:∠CEF=∠CFE.27.如图,在Rt△ABC中,∠ACB=90°,D是AB上一点,且∠ACD=∠B,求证:CD⊥AB.参考答案一.选择题1.C.2.D.3.A.4.C.5.B.6.C.7.D.8.D.9.B.10.C.11.C.12.A.二.填空题13.50或90.14.4515.13516.4.17.25°.18.20°或90°.19.40°或15°.20.67;113.21.90.22.55°.三.解答题23.解:∵∠A=30°,∴∠B=90°﹣30°=60°,∵CD⊥AB,∴∠DCB=90°﹣∠B=30°.24.解:(1)BD∥MF.理由如下:∵∠A=90°,ME⊥BC,∴∠ABC+∠AME=360°﹣90°×2=180°,∵BD平分∠ABC,MF平分∠AME,∴∠ABD=∠ABC,∠AMF=∠AME,∴∠ABD+∠AMF=(∠ABC+∠AME)=90°,又∵∠AFM+∠AMF=90°,∴∠ABD=∠AFM,∴BD∥MF;(2)BD⊥MF.理由如下:∵∠A=90°,ME⊥BC,∴∠ABC+∠C=∠AME+∠C=90°,∴∠ABC=∠AME,∵BD平分∠ABC,MF平分∠AME,∴∠ABD=∠AMF,∵∠ABD+∠ADB=90°,∴∠AMF+∠ADB=90°,∴BD⊥MF;(3)BD⊥MF.理由如下:∵∠A=90°,ME⊥BC,∴∠ABC+∠ACB=∠AME+∠ACB=90°,∴∠ABC=∠AME,∵BD平分∠ABC,MF平分∠AME,∴∠ABD=∠AMF,∵∠AMF+∠F=90°,∴∠ABD+∠F=90°,∴BD⊥MF.25.解:(1)∵∠ACB=90°,∴∠ACD+∠BCD=90°,∵∠ACD=∠B,∴∠B+∠BCD=90°,∴∠BDC=90°,∴CD⊥AB;(2)①当∠B=34°时,∵∠ACD=∠B,∴∠ACD=34°,由(1)知,∠BCD+∠B=90°,∴∠BCD=56°,由折叠知,∠A'CD=∠ACD=34°,∴∠A'CB=∠BCD﹣∠A'CD=56°﹣34°=22°;②当∠B=n°时,同①的方法得,∠A'CD=n°,∠BCD=90°﹣n°,∴∠A'CB=∠BCD﹣∠A'CD=90°﹣n°﹣n°=90°﹣2n°.26.证明:(1)∵∠ACB=90゜,CD⊥AB于D,∴∠ACD+∠BCD=90°,∠B+∠BCD=90°,∴∠ACD=∠B;(2)在Rt△AFC中,∠CFA=90°﹣∠CAF,同理在Rt△AED中,∠AED=90°﹣∠DAE.又∵AF平分∠CAB,∴∠CAF=∠DAE,∴∠AED=∠CFE,又∵∠CEF=∠AED,∴∠CEF=∠CFE.27.证明:(1)∵∠ACB=90°,∴∠A+∠B=90°,∵∠ACD=∠B,∴∠A+∠ACD=90°,∴∠ADC=90°,∴CD⊥AB.数学九年级上学期《24.3锐角三角函数》同步练习一.选择题(共9小题)1.在Rt△ABC中,∠C=90°,若sinA=,AB=2,则AC长是()A.B.C.D.22.如图,在平面直角坐标系中,点A的坐标为(4,3),那么cosα的值是()A.B.C.D.3.如图,△ABC的三个顶点分别在正方形网格的格点上,则tanC的值是()A.B.C.D.4.如图,在△ABC中,∠C=90°,AB=5,AC=4,则sinA的值是()A.B.C.D.5.在△ABC中,∠C=90°,tanA=,则sinA=()A.B.C.D.6.如图,延长RT△ABC斜边AB到点D,使BD=AB,连接CD,若tan∠BCD=,则tanA=()A.B.1 C.D.7.若0°<∠A<45°,那么sinA﹣cosA的值()A.大于0 B.小于0 C.等于0 D.不能确定8.下列说法正确的个数有()(1)对于任意锐角α,都有0<sinα<1和0<cosα<1(2)对于任意锐角α1,α2,如果α1<α2,那么cosα1<cosα2(3)如果sinα1<sinα2,那么锐角α1<锐角α2(4)如果cotα1<cotα2,那么锐角α1>锐角α2A.1个B.2个C.3个D.4个9.在Rt△ABC中,∠C=90°,AC=4,cosA的值等于,则AB的长度是()A.3 B.4 C.5 D.二.填空题(共5小题)10.如图,Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,若AD=BC,则cos∠B=.11.如图,若点A的坐标为,则sin∠1=.12.如图,点A(t,4)在第一象限,OA与x轴所夹的锐角为α,tanα=,则t的值为.13.如图,∠AOB放置在正方形网格中,则∠AOB的正切值是.14.如图,在Rt△ABC中,∠A=90°,AD⊥BC,垂足为D.给出下列四个结论:①sinα=sinB;②sinβ=sinC;③sinB=cosC;④sinα=cosβ.其中正确的结论有.三.解答题(共5小题)15.如图所示,在平面直角坐标系xoy中,四边形OABC是正方形,点A的坐标为(m,0).将正方形OABC绕点O逆时针旋转α角,得到正方形ODEF,DE与边BC交于点M,且点M与B、C不重合.(1)请判断线段CD与OM的位置关系,其位置关系是;(2)试用含m和α的代数式表示线段CM的长:;α的取值范围是.16.已知Rt△ABC中,∠C=90°,a+b=2+2,c=4,求锐角A的度数.17.如图,在Rt△ABC中,∠C=90°,M是直角边AC上一点,MN⊥AB于点N,AN=3,AM=4,求cosB的值.18.如图,在△ABC中,∠C=90°,点D在BC上,AD=BC=5,cos∠ADC=,求:sinB的值.19.设θ为直角三角形的一个锐角,给出θ角三角函数的两条基本性质:①tanθ=;②cos2θ+sin2θ=1,利用这些性质解答本题.已知cosθ+sinθ=,求值:(1)tanθ+;(2)||.参考答案一.选择题1.A.2.D.3.A.4.D.5.C.6.A.7.B.8.C.9.C.二.填空题10..11..12.3.13..14.①②③④.三.解答题15.解:(1)连接CD,OM.根据旋转的性质可得,MC=MD,OC=OD,又OM是公共边,∴△COM≌△DOM,∴∠COM=∠DOM,又∵OC=OD,∴CD⊥OM;(2)由(1)知∠COM=∠DOM,∴∠COM=,在Rt△COM中,CM=OC•tan∠COM=m•tan;因为OD与OM不能重合,且只能在OC右边,故可得α的取值范围是0°<α<90°.16.解:将a+b=2+2两边平方,整理得ab=4,又因为a+b=2+2,构造一元二次方程得x2﹣(2+2)x+4=0,解得x1=2,x2=2则(1)sinA==时,锐角A的度数是30°,(2)sinA==时,锐角A的度数是60°,所以∠A=30°或∠A=60°.17.解:∵∠C=90°,MN⊥AB,∴∠C=∠ANM=90°,又∵∠A=∠A,∴△AMN∽△ABC,∴==,设AC=3x,AB=4x,由勾股定理得:BC==x,在Rt△ABC中,cosB===.18.解:∵AD=BC=5,cos∠ADC=,∴CD=3,在Rt△ACD中,∵AD=5,CD=3,∴AC===4,在Rt△ACB中,∵AC=4,BC=5,∴AB===,∴sinB===.19.解(1)∵cosθ+sinθ=,∴(cosθ+sinθ)2=()2,cos2θ+2cosθ•sinθ+sin2θ=,cosθ•sinθ=,∴tanθ+=+===4;(2)∵(cosθ﹣sinθ)2=cos2θ﹣2cosθ•sinθ+sin2θ=1﹣2×=,∴cosθ﹣sinθ=±,∴|cosθ﹣sinθ|=.数学九年级上学期《24.4解直角三角形》同步练习一.选择题(共11小题)1.如图,四边形ABCD中,∠ABC=Rt∠.已知∠A=α,外角∠DCE=β,BC=a,CD=b,则下列结论错误的是()A.∠ADC=90°﹣α+βB.点D到BE的距离为b•sinβC.AD=D.点D到AB的距离为a+bcosβ2.在Rt△ABC中,∠C=90°,如果AC=2,cosA=,那么AB的长是()A.3 B.C.D.3.在Rt△ABC中,∠C=90°,tanA=,若AC=6cm,则BC的长度为()A.8cm B.7cm C.6cmD.5cm4.如图,△ABC的顶点都在正方形网格的格点上,则tan∠BAC的值为()A.2 B.C.D.5.已知BD是△ABC的中线,AC=6,且∠ADB=45°,∠C=30°,则AB=()A.B.2C.3D.66.在Rt△ABC中,∠C=90°,CD是高,如果AD=m,∠A=α,那么BC的长为()A.m•tanα•cosαB.m•cotα•cosαC.D.7.如图,在Rt△ABC中,∠C=90°,sinA=,D为AB上一点,且AD:DB=3:2,过点D作DE⊥AC于E,连结BE,则tan∠CEB的值等于()A.B.2 C.D.8.一个三角形的边长分别为a,a,b,另一个三角形的边长分别为b,b,a,其中a>b,若两个三角形的最小内角相等,的值等于()A.B.C.D.9.如图,在梯形ABCD中,AB∥CD,AB⊥BC,AB=1,BC=4,E为BC中点,AE 平分∠BAD,连接DE,则sin∠ADE的值为()A.B.C.D.10.如图所示,在矩形ABCD中,对角线AC、BD相交于O,OE⊥AC于O交BC于E,连接AE.若AB=1,AD=,则AE=()A.B.C.D.2 11.如图,为了测得电视塔的高度AB,在D处用高为1米的测角仪CD,测得电视塔顶端A的仰角为30°,再向电视塔方向前进100米达到F处,又测得电视塔顶端A的仰角为60°,则这个电视塔的高度AB(单位:米)为()A.50B.51 C.50+1D.101二.填空题(共6小题)12.在△ABC中,AB=2,AC=3,cos∠ACB=,则∠ABC的大小为度.∠ABH=,则13.已知等腰△ABC,AB=AC,BH为腰AC上的高,BH=3,tanCH的长为.14.已知平面直角坐标系xOy中,O为坐标原点,点P的坐标为(5,12),那么OP与x轴正半轴所夹角的余弦值为.15.如图,把n个边长为1的正方形拼接成一排,求得tan∠BA1C=1,tan∠BA2C=,tan∠BA3C=,计算tan∠BA4C=,…按此规律,写出tan∠BA n C=(用含n的代数式表示).16.已知△ABC中,满足+=,AB=10.则AC+BC=17.在△ABC中,AB=AC,若BD⊥直线AC于点D,若cos∠BAD=,BD=2,则BC为.三.解答题(共8小题)18.如图,在Rt△ABC中,∠C=90°,点D是BC边的中点,BD=2,tanB=(1)求AD和AB的长;(2)求sin∠BAD的值.19.如图,四边形ABCD中,AC、BD是它的对角线,∠ABC=∠ADC=90°,∠BCD是锐角.(1)若BD=BC,证明:sin∠BCD=.(2)若AB=BC=4,AD+CD=6,求的值.(3)若BD=CD,AB=6,BC=8,求sin∠BCD的值.(注:本题可根据需要自己画图并解答)20.如图,在Rt△ABC中,∠B=90°,sinA=,点D在AB边上,且∠BDC=45°,BC=5.(1)求AD长;(2)求∠ACD的正弦值.21.在数学活动课上,老师带领学生去测量操场上树立的旗杆的高度,老师为同学们准备了如下工具:①高为m米的测角仪,②长为n米的竹竿,③足够长的皮尺.请你选用以上的工具,设计一个可以通过测量,求出国旗杆高度的方案(不用计算和说明,画出图形并标记可以测量的长度或者角度即可,可测量的角度选用α,β,γ标记,可测量的长度选用a,b,c,d标记,测角仪和竹竿可以用线段表示).(1)你选用的工具为:;(填序号即可)(2)画出图形.22.如图,某防洪指挥部发现长江边一处长500米,高10米,背水坡的坡角为45°的防洪大堤(横断面为梯形ABCD)急需加固.经调查论证,防洪指挥部专家组制定的加固方案是:背水坡面用土石进行加固,并使上底加宽3米,加固后背水坡EF的坡比i=1:.(1)求加固后坝底增加的宽度AF;(2)求完成这项工程需要土石多少立方米?(结果保留根号)23.每年的6至8月份是台风多发季节,某次台风来袭时,一棵大树树干AB(假定树干AB垂直于地面)被刮倾斜15°后折断倒在地上,树的项部恰好接触到地面D(如图所示),量得树干的倾斜角为∠BAC=15°,大树被折断部分和地面所成的角∠ADC=60°,AD=4米,求这棵大树AB原来的高度是多少米?(结果精确到个位,参考数据:≈1.4,≈1.7,≈2.4)24.小明与班级数学兴趣小组的同学在学校操场上测得旗杆BC在地面上的影长AB为12米,同一时刻,测得小明在地面的影长为2.4米,小明的身高为1.6米.(1)求旗杆BC的高度;(2)兴趣小组活动一段时间后,小明站在A,B两点之间的D处(A,D,B三点在一条直线上),测得旗杆BC的顶端C的仰角为α,且tanα=0.8,求此时小明与旗杆之间的距离.25.甲、乙两条轮船同时从港口A出发,甲轮船以每小时30海里的速度沿着北偏东60°的方向航行,乙轮船以每小时15海里的速度沿着正东方向行进,1小时后,甲船接到命令要与乙船会合,于是甲船改变了行进的速度,沿着东南方向航行,结果在小岛C处与乙船相遇.假设乙船的速度和航向保持不变,求:(1)港口A与小岛C之间的距离;(2)甲轮船后来的速度.参考答案一.选择题1.C.2.A.3.A.4.B.5.C.6.C.7.D.8.B.9.B.10.C.11.C.二.填空题(共6小题)12.30或150.13.3或14.15.;.16.14.17.2或2.三.解答题18.解:(1)∵D是BC的中点,BD=2,∴BD=DC=2,BC=4,在Rt△ACB中,由 tanB==,∴=,∴AC=3,由勾股定理得:AD===,AB===5;(2)过点D作DE⊥AB于E,∴∠C=∠DEB=90°,又∠B=∠B,∴△DEB∽△ACB,∴=,∴DE=,∴sin∠BAD===.19.解:(1)如图1中,过点B作AD的垂线BE交DA的延长线于点E,∵∠ABC=∠ADC=90°,∴∠ADC+∠ABC=180°,∴四边形ABCD四点共圆,∴∠BDE=∠ACB,∠EAB=∠BCD,∵∠BED=∠ABC=90°,∴△BED∽△ABC,∴==sin∠EAB=sin∠BCD;(2)如图2中,过点B作BF⊥BD交DC的延长线于F.∵∠ABC=∠DBF=90°,∠BAD+∠BCD+∠ABC+∠ADC=360°,∠ABC+∠ADC=180°,∴∠BAD=180°﹣∠BCD=∠BCF,∵∠BCF=∠BAD,BC=BA,∴△DAB≌△CBF,∴BD=BF,AD=CF,∵∠DBF=90°,∴△BDF是等腰直角三角形,∴BD=DF,∵AD+CD=6,∴CF+CD=DF=6,∴BD=3,AC==4,∴==.(3)当BD=CD时,如图3中,过点B作MN∥DC,过点C作CN⊥MN,垂足为N,延长DA交MN于点M,则四边形DCNM是矩形,△ABM∽△BCN,∴===,设AM=6y,BN=8y,BM=6x,CN=8x,在Rt△BDM中,BD==10x,∵BD=DC,∴10x=6x+8y,∴x=2y,在Rt△ABM中,AB==6y,∴sin∠BCD=sin∠MAB===.20.解:(1)∵∠B=90°,∠BDC=45°,∴BC=BD=5,∵sinA=,∴AB=12,∴AD=AB﹣BD=12﹣5=7;(2)过A作AE⊥CE交CD延长线于点E,∵△ADE是等腰直角三角形,∴AE=DE=,则sin∠ACD=.21.解:(1)选用的工具为:①③;故答案为:①③;(2)如图所示:可以量出AM,AC,AB的长,以及α,β的度数,即可得出DC,NC的长.22.解:(1)分别过点E、D作EG⊥AB、DH⊥AB交AB于G、H.∵四边形ABCD是梯形,且AB∥CD,∴DH平行且等于EG.故四边形EGHD是矩形.∴ED=GH.在Rt△ADH中,AH=DH÷tan∠DAH=10÷tan45°=10(米).在Rt△FGE中,i==,∴FG=EG=10(米).∴AF=FG+GH﹣AH=10+3﹣10=10﹣7(米);(2)加宽部分的体积V=S梯形AFED×坝长=×(3+10﹣7)×10×500=25000﹣10000(立方米).答:(1)加固后坝底增加的宽度AF为(10﹣7)米;(2)完成这项工程需要土石(25000﹣10000)立方米.23.解:过点A作AE⊥CD于点E,∵∠BAC=15°,∴∠DAC=90°﹣15°=75°,∵∠ADC=60°,∴在Rt△AED中,∵cos60°===,∴DE=2,∵sin60°===,∴AE=2,∴∠EAD=90°﹣∠ADE=90°﹣60°=30°,在Rt△AEC中,∵∠CAE=∠CAD﹣∠DAE=75°﹣30°=45°,∴∠C=90°﹣∠CAE=90°﹣45°=45°,∴AE=CE=2,∴sin45°===,∴AC=2,∴AB=2+2+2≈2×2.4+2×1.7+2=10.2≈10米.答:这棵大树AB原来的高度是10米.24.解:(1)依题意有:=,即=,解得BC=8.故旗杆BC的高度是8米;(2)如图,在Rt△CFE中,tan∠CEF===0.8,解得EF=8,则BD=8.故此时小明与旗杆之间的距离是8米.25.解:(1)作BD⊥AC于点D,如图所示:由题意可知:AB=30×1=30海里,∠BAC=30°,∠BCA=45°,在Rt△ABD中,∵AB=30海里,∠BAC=30°,∴BD=15海里,AD=ABcos30°=15海里,在Rt△BCD中,∵BD=15海里,∠BCD=45°,∴CD=15海里,BC=15海里,∴AC=AD+CD=15+15海里,即A、C间的距离为(15+15)海里.(2)∵AC=15+15(海里),轮船乙从A到C的时间为=+1,由B到C的时间为+1﹣1=,∵BC=15海里,∴轮船甲从B到C的速度为=5(海里/小时).。

沪教版九年级上册-解直角三角形(基础),带答案

沪教版九年级上册-解直角三角形(基础),带答案

教学内容------解直角三角形 ★知识要点1、解直角三角形的依据在直角三角形ABC 中,如果∠C=90°,∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,那么 (1)三边之间的关系为(勾股定理)(2)锐角之间的关系为∠A+∠B=90° (3)边角之间的关系为:2、其他有关公式直角三角形面积公式: (hc 为c 边上的高)3、解直角三角形的条件在除直角C 外的五个元素中,只要已知其中两个元素(至少有一个是边)就可以求出其余三个元素。

4、直角三角形的关键是正确选择关系式 在直角三角形中,锐角三角函数是勾通三角形边角关系的结合部,只要题目中已知加未知的三个元素中有边,有角,则一定使用锐角三角函数,应如何从三角函数的八个公式中迅速而准确地优选出所需要的公式呢?(1)若求边:一般用未知边比已知边,去寻找已知角的某三角函数 (2)若求角:一般用已知边比已知边(斜边放在分母),去寻找未知角的某三角函数。

(3)在优选公式时,尽量利用已知数据,避免“一错再错”和“累积误差”。

5、直角三角形时需要注意的几个问题(1)在解直角三角形时,是用三角知识,通过数值计算,去求出图形中的某些边的长度或角的大小,这是数形结合为一种形式,所以在分析问题时,一般先根据已知条件画出它的平面或截面示意图,按照图中边角之间的关系去进行计算,这样可以帮助思考,防止出错。

(2)有些图形虽然不是直角三角形,但可添加适当的辅助线把它们分割成一些直角三角形和矩形,从而把它们转化为直角三角形的问题来解决。

(3)按照题目中已知数据的精确度进行近似计算★新课学习引入新课:如图所示,一棵大树在一次强烈的台风中于地面10米处折断倒下,树顶落在离数根24米处.问大树在折断之前高多少米? 显然,我们可以利用勾股定理求出折断倒下的部分的长度为222410 =26 , 26+10=36所以, 大树在折断之前的高为36米.解:120119sin ,cos 169169A A ==,120tan 119A =,119cot 120A =3. 已知在直角梯形ABCD 中,上底CD=4,下底AB=10,非直角腰BC=34,则底角∠B=30︒;4. 如图所示,已知:在△ABC 中,∠A=60°,∠B=45°,AB=8.求:△ABC 的面积(结果可保留根号).解:48163ABC S ∆=-例3、 已知直角三角形的斜边与一条直角边的和是16cm ,另一条直角边为8cm ,求它的面积.解:224S cm =例4、 在△ABC 中,90C ︒∠=,60B ︒∠=,33a b +=+,求:a 、b 、c 的值及∠A.解:3a =,3b =,23c =,30A ︒∠=例5、 已知△ABC 中,∠C=90°,若△ABC 的周长为30,它的面积等于30,求三边长. 解:5,12,13a b c ===或12,5,13a b c ===例6、 如图:△ABC 中,∠ACB=90°,CD ⊥AB 于D 点,若∠A=60°,AB-CD=13,求BC 及ABC S ∆ . 解:683BC =+,48383ABC S ∆=+例7、 已知△ABC 中,∠BAC=60°,AB ∶AC=5∶2且103ABC S ∆= ,求三边的长. 解:10AB =,4AC =,219BC =例8、 如图,△ABC 中,∠ACB =90°,BD 是中线,已知AB =10,3tan 2α=,求∠A 和BC.解:30A ︒∠=,5BC =例9、 如图,△ABC 中,∠ACB =90°,CD ⊥AB ,D 为垂足,AC =5,BC =12,(1)求AB 的值;(2)求∠BCD 的值。

2018年华东师大九年级上第24章《解直角三角形》检测题含答案

2018年华东师大九年级上第24章《解直角三角形》检测题含答案

第24章《解直角三角形》检测题一、选择题:(本大题共8小题,每题3分,共24分)在每小题给出四个选项中,只有一项是符合题目要求.1.如图,△ABC顶点都是正方形网格中格点,则cos∠ABC等于()A. B. C. D.2.已知,△ABC中,∠C=90°,cosA=,则sinA=()A. B. C. D. 23.如图,一根木棍斜靠在与地面(OM)垂直墙(ON)上,设木棍中点为P,若木棍A端沿墙下滑,且B沿地面向右滑行.在此滑动过程中,点P到点O距离()A. 不变B. 变小C. 变大D. 无法判断4.点(﹣sin60°,cos60°)关于y轴对称点坐标是()A. (,)B. (﹣,)C. (﹣,﹣)D. (﹣,﹣)5.如图,将一个Rt△ABC形状楔子从木桩底端点P沿水平方向打入木桩底下,使木桩向上运动.已知楔子斜面倾斜角为15°,若楔子沿水平方向前进6cm(如箭头所示),则木桩上升了()A. 6sin15°cmB. 6cos15°cmC. 6tan15°cmD. cm6.如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=()A. 3B. 4C. 5D. 67.如图,在某监测点B处望见一艘正在作业渔船在南偏西15°方向A处,若渔船沿北偏西75°方向以40海里/小时速度航行,航行半小时后到达C处,在C处观测到B在C北偏东60°方向上,则B、C之间距离为()A. 20海里B. 10海里C. 20海里D. 30海里8.如图,∠MON=90°,边长为2等边三角形ABC顶点A、B分别在边OM,ON上当B在边ON上运动时,A随之在边OM上运动,等边三角形形状保持不变,运动过程中,点C到点O 最大距离为()A. 2.4B.C.D.二、填空题:(本大题共8小题,每题3分,共24分)9.若a为锐角,且sina=,则tana为.10.若α是锐角,且sinα=1﹣2m,则m取值范围是.11.在Rt△ABC中,∠C=90°,如果AB=6,cosA=,那么AC=.12.如图,在Rt△ABC中,∠ACB=90°,CD是AB边上中线,若BC=6,AC=8,则tan∠ACD 值为.13.将sin37°、cos44°、sin41°、cos46°值按从小到大顺序排列是.14.在△ABC中,如果∠A、∠B满足|tanA﹣1|+(cosB﹣)2=0,那么∠C=.15.如图是一把剪刀局部示意图,刀片内沿在AB、CD上,EF是刀片外沿.AB、CD相交于点N,EF、CD相交于点M,刀片宽MH=1.5cm.小丽在使用这把剪刀时,∠ANC不超过30°.若想一刀剪断4cm宽纸带,则刀身AH长至少为cm.(结果精确到0.1cm,参考数据:≈1.41,≈1.73)16.如图,在等腰△ABC中,∠BAC=120°,DE是AC垂直平分线,线段DE=1cm,则BD长为.三、解答题:(本大题共8个题,共72分)17. (每小题5分,共10分)计算(1)2cos30°+tan60°﹣2tan45°•tan60°;(2).18.(6分)如图,△ABC中,AD⊥BC,垂足是D,若BC=14,AD=12,tan∠BAD=,求sinC值.19.(8分)在一次数学活动课上,数学老师在同一平面内将一副直角三角板如图位置摆放,点C在FD延长线上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,试求CD长.20.(8分)如图,AB、CD交与点O,且BD=BO,CA=CO,E、F、M分别是OD、OA、BC 中点.求证:ME=MF.21.(8分)如图,小明从点A处出发,沿着坡角为α斜坡向上走了0.65千米到达点B,sinα=,然后又沿着坡度为i=1:4斜坡向上走了1千米达到点C.问小明从A点到点C上升高度CD是多少千米(结果保留根号)?22.(10分)如图,一台起重机,他机身高AC为21m,吊杆AB长为40m,吊杆与水平线夹角∠BAD可从30°升到80°.求这台起重机工作时,吊杆端点B离地面CE最大高度和离机身AC 最大水平距离(结果精确到0.1m)(参考数据:sin80°≈0.98,cos80°≈0.17,tan33°≈5.67).23.(10分)如图,为了开发利用海洋资源,某勘测飞机欲测量一岛屿两端A、B距离,飞机在距海平面垂直高度为100米点C处测得端点A俯角为60°,然后沿着平行于AB方向水平飞行了500米,在点D测得端点B俯角为45°,求岛屿两端A、B距离(结果保留根号).24.(12分)问题情景:学习过三角函数,我们知道在直角三角形中,一个锐角大小与两条边长比值相互唯一确定,因此边长与角大小之间可以相互转化.类似,可以在等腰三角形中建立边角之间联系,我们定义:等腰三角形中底边与腰比叫做顶角正对(sad).如图,在△ABC中,AB=AC,顶角A正对记作sadA,这时sad A=.容易知道一个角大小与这个角正对值也是相互唯一确定.根据上述对角正对定义,解下列问题:自主探究:(1)sad60°值为()A.B.1 C.D.2(2)对于0°<A<180°,∠A正对值sadA取值范围是.合作交流:(3)已知sinα=,其中α为锐角,试求sadα值.参考答案一选择题1.B.解:由格点可得∠ABC所在直角三角形两条直角边为2,4,∴斜边为=2.∴cos∠ABC==.2.C.解:∵sin2A+cos2A=1,即sin2A+()2=1,∴sin2A=,∴sinA=或﹣(舍去),3.A.解:不变.连接OP,在Rt△AOB中,OP是斜边AB上中线,那么OP=AB,由于木棍长度不变,所以不管木棍如何滑动,OP都是一个定值.4.A.解:∵sin60°=,cos60°=,∴(﹣sin60°,cos60°)=(﹣,),关于y轴对称点坐标是(,).5.C.解:∵tan15°=.∴木桩上升了6tan15°cm.6.C.解:过P作PD⊥OB,交OB于点D,在Rt△OPD中,cos60°==,OP=12,∴OD=6,∵PM=PN,PD⊥MN,MN=2,∴MD=ND=MN=1,∴OM=OD﹣MD=6﹣1=5.7.C.解:如图,∵∠ABE=15°,∠DAB=∠ABE,∴∠DAB=15°,∴∠CAB=∠CAD+∠DAB=90°.又∵∠FCB=60°,∠CBE=∠FCB,∠CBA+∠ABE=∠CBE,∴∠CBA=45°.∴在直角△ABC中,sin∠ABC===,∴BC=20海里.8.C.解:如图,取AB中点D,连接CD.∵△ABC是等边三角形,且边长是2,∴BC=AB=1,∵点D是AB边中点,∴BD=AB=1,∴CD===,即CD=;连接OD,OC,有OC≤OD+DC,当O、D、C共线时,OC有最大值,最大值是OD+CD,由(1)得,CD=,又∵△AOB为直角三角形,D为斜边AB中点,∴OD==1,∴OD+CD=1+,即OC最大值为1+.二、填空题9.答案:.解:根据题意,∠a是锐角,且sinα=,则cosα==,则tana==.故tana为.10.0<m<.解:∵α是锐角,∴0<sinα<1.∴0<1﹣2m<1,解得0<m<.11.4.解:如图所示,在Rt△ABC中,∠C=90°,AB=6,cosA=,∴cosA==,则AC=AB=×6=4,12..解:∵∠ACB=90°,CD是AB边上中线,∴AD=CD,∴∠A =∠ACD ,∴tan ∠ACD =tan ∠A ===.13.sin37°<sin41°<cos46°<cos44°.解:∵cos44°=sin (90°﹣44°)=sin46°、cos46°=sin (90°﹣46°)=sin44°,∴根据当角是锐角时,正弦值随角度增大而增大得出sin37°<sin41°<cos46°<cos44°,14.75°.解:∵△ABC 中,|tanA ﹣1|+(cosB ﹣)2=0∴tanA =1,cosB = ∴∠A =45°,∠B =60°, ∴∠C =75°.15.6.6.解:在直角△MNH 中,∠MNH =∠ANC =30°,则HN ===1.5(cm ),则AH =HN+4=1.5+4≈6.6(cm ).16.4cm .解:连接AD ,∵等腰△ABC ,∠BAC =120°, ∴∠B =∠C =30°, ∵DE 是AC 垂直平分线, ∴AD =CD ,∴∠CAD =∠C =30°,∴∠BAD =∠BAC ﹣∠CAD =120°﹣30°=90°, 在Rt △CDE 中,CD =2DE , 在Rt △ABD 中,BD =2AD , ∴BD =4DE , ∵DE =1cm , ∴BD 长为4cm .三、解答题17.答案:(1)0;(2) 3+2.解:(1)原式=2cos30°+tan60°﹣2tan45°•tan60°=2×+﹣2×=0;(2)原式====3+2.18.答案:.解:∵在直角△ABD中,tan∠BAD==,∴BD=AD•tan∠BAD=12×=9,∴CD=BC﹣BD=14﹣9=5,∴AC===13,∴sinC==.19.答案:15﹣5.解:过点B作BM⊥FD于点M,在△ACB中,∠ACB=90°,∠A=60°,AC=10,∴∠ABC=30°,BC=AC tan60°=10,∵AB∥CF,∴∠BCM=∠ABC=30°.∴BM=BC•sin30°=10×=5,CM=BC•cos30°=10×=15,在△EFD中,∠F=90°,∠E=45°,∴∠EDF=45°,∴MD=BM=5,∴CD=CM﹣MD=15﹣5.20.答案:(见证明)证明:连接BE、CF,∵BD=BO,E为DO中点,∴BE⊥DO,同理CF⊥AO,∴△BEC为直角三角形,且M为BC中点,∴ME=BC,同理MF=BC,∴ME=MF.21.答案:(+)km.解:如图所示:过点B作BF⊥AD于点F,过点C作CD⊥AD于点D,由题意得:AB=0.65千米,BC=1千米,∴sinα===,∴BF=0.65×=0.25(km),∵斜坡BC坡度为:1:4,∴CE:BE=1:4,设CE=x,则BE=4x,由勾股定理得:x2+(4x)2=12解得:x=,∴CD=CE+DE=BF+CE=+,答:点C相对于起点A升高了(+)km.22.答案:60.2 m,34.6m.解:如图,当∠BAD=30°时,吊杆端点B离机身AC水平距离最大;当∠B′AD=80°时,吊杆端点B′离地面CE高度最大.作BF⊥AD于F,B′G⊥CE于G,交AD于F′.在Rt△BAF中,∵cos∠BAF=,∴AF=AB•cos∠BAF=40×cos30°≈34.6(m).在Rt△B′AF′中,sin∠B′AF′=,∴B′F′=AB’•sin∠B′AF′=40×sin80°≈39.2(m).∴B′G=B′F′+F′G=60.2(m).答:吊杆端点B离地面CE最大高度为60.2 m,离机身AC最大水平距离为34.6m.23.答案:(600﹣)米.解:过点A作AE⊥CD于点E,过点B作BF⊥CD于点F,∵AB∥CD,∴∠AEF=∠EFB=∠ABF=90°,∴四边形ABFE为矩形.∴AB=EF,AE=BF.由题意可知:AE=BF=100米,CD=500米.在Rt△AEC中,∠C=60°,AE=100米.∴CE===(米).在Rt△BFD中,∠BDF=45°,BF=100米.∴DF===100(米).∴AB=EF=CD+DF﹣CE=500+100﹣=600﹣(米).答:岛屿两端A、B距离为(600﹣)米.24.答案:(1)B;(2)0<sadA<2;(3).解:(1)根据正对定义,当顶角为60°时,等腰三角形底角为60°,则三角形为等边三角形,则sad60°==1.(2)当∠A接近0°时,sadα接近0,当∠A接近180°时,等腰三角形底接近于腰二倍,故sadα接近2.于是sadA取值范围是0<sadA<2.(3)如图,在△ABC中,∠ACB=90°,sin∠A=.在AB上取点D,使AD=AC,作DH⊥AC,H为垂足,令BC=3k,AB=5k,则AD=AC==4k,又∵在△ADH中,∠AHD=90°,sin∠A=.∴DH=ADsin∠A=k,AH==k.则在△CDH中,CH=AC﹣AH=k,CD==k.于是在△ACD中,AD=AC=4k,CD=k.由正对定义可得:sadA==,即sadα=.。

华东师大版九上数学24章《解直角三角形》单元测试题(含答案)

华东师大版九上数学24章《解直角三角形》单元测试题(含答案)

华东师大版九上数学24章《解直角三角形》单元测试题(含答案)解直角三角形测试题一. 选择题:(每小题2分,共20分)1. 在△EFG 中,∠G=90°,EG=6,EF=10,则cotE=() A.43 B.34 C. 53 D. 352. 在△ABC 中,∠A=105°,∠B=45°,tanC 的值是() A. 21 B. 33 C. 1 D. 3 3. 在△ABC 中,若22cos =A ,3tan =B ,则这个三角形一定是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形4. 如图18,在△EFG 中,∠EFG=90°,FH ⊥EG ,下面等式中,错误的是()A.EGEF G =sin B. EF EH G =sin C. FGGH G =sin D. FG FH G =sin 5. sin65°与cos26°之间的关系为()A. sin65°<cos26°< p="">B. sin65°>cos26°C. sin65°=cos26°D. sin65°+cos26°=16. 已知30°<α<60°,下列各式正确的是()A. B. C. D.7. 在△ABC 中,∠C=90°,52sin =A ,则sinB 的值是() A.32 B.52 C.54 D. 521 8. 若平行四边形相邻两边的长分别为10和15,它们的夹角为60°,则平行四边形的面积是()米2A. 150B.375C. 9D. 79. 如图19,铁路路基横断面为一个等腰梯形,若腰的坡度为i= 2∶3,顶宽是3米,路基高是4米,则路基的下底宽是()A. 7米B. 9米C. 12米D. 15米10. 如图20,两条宽度都为1的纸条,交叉重叠放在一起,且它们的交角为α,则它们重叠部分(图中阻影部分)的面积为()A. αsin 1B. αcos 1 C. αsin D. 1 二. 填空题:(每小题2分,共10分) 11. 已知0°<α<90°,当α=__________时,21sin =α,当α=__________时,Cota=3.12. 若,则锐角α=__________。

华东师大版九年级数学上第24章《解直角三角形》单元测试答案

华东师大版九年级数学上第24章《解直角三角形》单元测试答案

第24章《解直角三角形》单元测试参考答案一.选择题(每小题3分,共24分)1答案:D.解:由α为锐角,且sinα=,得cosα===,tanα===,故选:D.2.答案:D.解:在直角△OAC中,OC=2,AC=3,则OA===,则sin∠AOB===.故选D.3.答案:A.解:在Rt△BDC中,BF=CF,∴DF=BC,Rt△ABC中,AE=CE,∴BE=AC,∵BC<AC,∴BE>DF,故选:A.4.答案:D.解:A、==3,是无理数;B、4π是无理数;C、sin45°=是无理数;D、==2,是有理数;故选D.5.答案:C.解:∵sin∠CAB===,∴∠CAB=45°.∵==,∴∠C′AB′=60°.∴∠CAC′=60°﹣45°=15°,鱼竿转过的角度是15°.故选:C.6.答案:C.解:作ME⊥OB于E,∵MD⊥OB,∠OMD=75°,∴∠MOD=15°,∵OM平分∠AOB,∴∠AOB=2∠MOD=30°,∵MC∥OB,∴∠ECM=∠AOB=30°,∴EM=MC=4,∵OM平分∠AOB,MD⊥OB,ME⊥OB,∴MD=ME=4,故选:C.7.答案:B.解:连接AH,CH,∵在四边形ABCD中,∠BCD=∠BAD=90°,H是BD的中点,∴AH=CH=BD.∵点G时AC的中点,∴HG是线段AC的垂直平分线,∴∠EGH=90°.∵∠BEC=80°,∴∠GEH=∠BEC=80°,∴∠GHE=90°﹣80°=10°.故选B.8.答案:C.解:如图:过点M作MN⊥AC于点N,根据题意得:∠MAN=60°﹣30°=30°,∠BCM=75°,∠DCA=60°,∴∠MCN=180°﹣75°﹣60°=45°,设MN=x米,在Rt△AMN中,AN==x(米),在Rt△CMN中,CN==x(米),∵AC=1000米,∴x+x=1000,解得:x=500(﹣1),∴AN=x≈634(米).故选C.二.填空题(每小题3分,共24分)9.答案:55°.解:∵sinα=cos35°,∴α=90°﹣35°=55°,故答案为55°.10.答案:.解:∵A(﹣1,3),∴OA=,∴角α的余弦值为=;故答案为:.11.答案:0°<∠A<45°.解:∵∠A是Rt△ABC的一个内角,∴∠A<90°,∵sinA<,∴0°<∠A<45°.12.答案:.解:∵AD、BE分别是△ABC中BC、AC边上的高,∴∠BDA=∠ADC=90°,∴∠CBE=∠DAC,∵∠ADC=90°,AD=4,AC=6,∴CD=,∴sin,∴sin∠EBC=,故答案为:.13.答案:.解:令α=45°,β=30°,则sin15°=×﹣×,=.故答案为:.14.答案:1﹣.解:∵30°<α<β<90°,∴cosβ<cosα,cosβ<.∴原式=|cosβ﹣cosα|+cosβ﹣+1﹣cosα=﹣cosβ+cosα+cosβ﹣+1﹣cosα=1﹣.故答案为:1﹣.15.答案:150a.解:如图,作BA边的高CD,设与BA的延长线交于点D,∵∠BAC=150°,∴∠DAC=30°,∵CD⊥BD,AC=30m,∴CD=15m,∵AB=20m,∴S△ABC=AB×CD=×20×15=150m2,∵每平方米售价a元,∴购买这种草皮的价格为150a 元.故答案为:150a.16.答案:.解:如图,延长AD交地面于E,过D作DF⊥CE于F.∵∠DCF=45°,∠A=60°,CD=4m,∴CF=DF=m,EF=DFtan60°=(m).∵,∴(m).三.解答题(8个小题,共72分)17. 解:(1)原式=4×﹣×+×=1+3;(2)原式=•+()2﹣+2×=+﹣+=1+.18. 解:(1)如图,过点A作AD⊥BC于D,在Rt△ABD中,AB=10,sinB==,∴=,∴AD=6,在Rt△ACD中,由勾股定理得CD2=AC2﹣AD2,∴CD2=(2)2﹣62=16,∴CD=4,∴tanC===;(2)在Rt△ABD中,AB=10,AD=6,∴由勾股定理得BD=8,由(1)得CD=4,∴BC=BD+CD=12.19. 解:∵点E是Rt△ABC,Rt△ACD斜边AC的中点,∴BE=DE=AC=CE,DE⊥AC,∴∠ACB=∠EBC,∠BDE=∠EBD,又∵∠ACB=30°,∴∠AEB=∠EBC+∠ECB=30°+30°=60°∴∠BED=∠BEA+∠DEA=60°+90°=150°∴∠BDE=(180°﹣∠BED)=(180°﹣150°)=15°.20. 解:如图,PQ⊥AB于点C.∵在Rt△QBC中,QC:BC=5:12,∴设QC=5x米,BC=12x米,∵BQ=13米,∴(5x)2+(12x)2=132,∴x=±1(负值舍去),∴QC=5米,BC=12米.∵AB=8米,∴AC=AB+BC=20米.∵tanα=0.75,∴=0.75,即=0.75,∴PC=15.∴PQ=PC﹣QC=15﹣5=10米.答:香樟树PQ的高度为10米.21.解:如图,作BE⊥l于点E,DF⊥l于点F.根据题意,得BE=24mm,DF=48mm.在Rt△ABE中,sin,∴mm在Rt△ADF中,cos,∴mm.∴矩形ABCD的周长=2(40+60)=200mm.22.解:(1)作AD⊥OC,易知台风中心O与A市的最近距离为AD的长度,∵由题意得:∠DOA=45°,OA=60km,∴AD=DO=60÷=60km,∵60>50,∴A市不会受到此台风的影响;(2)作BG⊥OC于G,∵由题意得:∠BOC=30°,OB=80km,∴BG=OB=40km,∵40<50,∴会受到影响,如图:BE=BF=50km,由题意知,台风从E点开始影响B城市到F点影响结束,∴EG==30km,∴EF=2EG=60km,∵风速为40km/h,∴60÷40=1.5小时,∴影响时间约为1.5小时.23. 解:过点N作NF⊥AE于点F,则四边形NDEF为矩形,ND=EF,设BF=x米,在Rt△BMF中,∵∠BMF=30°,∴MF=BF=x,∵MN=10米,∴NF=x﹣10,∵∠ANF=45°,∴AF=NF=x﹣10,∴x﹣10+1.7=18.7,解得:x=9,则AB=AF﹣BF=17﹣9.即广告屏幕AB的长度为(17﹣9)米.24.解:(1)△A1A2B2是等边三角形,理由如下:连结A1B2.∵甲船以每小时30海里的速度向正北方向航行,航行20分钟到达A2,∴A1A2=30×=10,又∵A2B2=10,∠A1A2B2=60°,∴△A1A2B2是等边三角形;(2)如图,∵B1N∥A1A2,∴∠A1B1N=180°﹣∠B1A1A2=180°﹣105°=75°,∴∠A1B1B2=75°﹣15°=60°.∵△A1A2B2是等边三角形,∴∠A2A1B2=60°,A1B2=A1A2=10,∴∠B1A1B2=105°﹣60°=45°.在△B1A1B2中,∵A1B2=10,∠B1A1B2=105°﹣60°=45°,∠A2A1B2=60°,由阅读材料可知,=,解得B1B2==,所以乙船每小时航行:÷=20海里.。

九年级数学上册《第二十四章-解直角三角形》单元测试卷及答案-华东师大版

九年级数学上册《第二十四章-解直角三角形》单元测试卷及答案-华东师大版

九年级数学上册《第二十四章 解直角三角形》单元测试卷及答案-华东师大版班级 姓名 学号一、选择题1.如图,利用标杆BE 测量建筑物的高度.已知标杆BE 高1.2m ,AB :AC=1:9,则建筑物CD 的高是( )A .9.6mB .10.8mC .12mD .14m2.如图,在矩形ABCD 中,已知AE BD ⊥于E ,∠BDC=60°,BE=1,则AB 的长为( )A .3B .2C .3D 33.已知33tanA =,A ∠是锐角,则A ∠的度数为( ) A .30︒B .45︒C .60︒D .90︒4.用计算器求 sin 2437︒' 的值,以下按键顺序正确的是( )A .B .C .D .5.如图,在Rt ABC 中,90C ∠=︒和13cosA =,则tanB 的值为( )A .2B .3C 32D 2 6.如图,利用标杆BE 测量建筑物的高度,已知标杆BE 高2m ,测得3m 6m AB BC ==,.则建筑物CD 的高是( )A .4mB .9mC .8mD .6m7.边长为5,7,8的三角形的最大角和最小角的和是( ).A .90°B .150°C .135°D .120°8.如图,在Rt ABC 中,∠BAC=90°,若AB=6,AC=8,点D 是AC 上一点,且13CD AD =,则sin DBC ∠的值为( ).A .25B .210C .26D .159.如图,某超市电梯的截面图中,AB 的长为15米,AB 与AC 的夹角为α,则高BC 是( )A .15αsin 米B .15αcos 米C .15αsin 米 D .15αcos 米 10.如图,在一笔直的沿湖道路l 上有A 、B 两个游船码头,观光岛屿C 在码头A 北偏东60︒的方向,在码头B 北偏西45︒的方向4km AC =游客小张准备从观光岛屿C 乘船沿CA 回到码头A 或沿CB 回到码头B ,设开往码头A 、B 的游船速度分别为1v 、2v ,若回到A 、B 所用时间相等,则12v v =:( )A 2B .22C .4D .6二、填空题11.如图,身高为1.5米的某学生想测量一棵大树的高度,她沿着树影BA 由B 向A 走去当走到C 点时,她的影子顶端正好与树的影子顶端重合,测得BC =3米,CA =1米,则树的高度为 米.12.已知在ABC 中=AB AC ,∠C=30°,AB ⊥AD ,AD=2cm ,则BC 的长等于 .13.如图,已知大正方形ABCD 的面积是25,小正方形EFGH 的面积是1,那么sin ADF ∠= .14.河堤横断面如图所示,斜坡AB 的坡度3i =:(即BC :AC ),6m AB =则BC 的长是 .三、解答题15.为测量一棵大树的高度,设计的测量方案如图所示:标杆高度3m CD = 人的眼睛A 、标杆的顶端C 和大树顶端M 在一条直线上,标杆与大树的水平距离14m DN =,人的眼睛与地面的高度1.6m AB = 人与标杆CD 的水平距离2m BD =,B 、D 、N 三点共线 AB BN CD BN MN BN ⊥⊥⊥,, 求大树MN 的高度.16.如图,在矩形ABCD 中,两条对角线相交于点O ,120 2.5AOD AB ∠=︒=,求这个矩形对角线的长.17.先化简,再求代数式2311442a a a a +⎛⎫÷+ ⎪+++⎝⎭的值,其中2cos302tan45a =︒-︒.18.如图,小聪全家自驾到某风景区旅游,到达A 景点后,导航显示沿北偏西60︒方向行驶8千米到达B 景点,在B 景点查询C 景点显示在北偏东45︒方向上,到达C 景点,小聪发现C 景点恰好在A 景点的正北方向,求B ,C 两景点的距离.四、综合题19.小明和小华利用阳光下的影子来测量一建筑物顶部旗杆的高.如图所示,在某一时刻,他们在阳光下,分别测得该建筑物OB 的影长OC 为16米,OA 的影长OD 为20米,小明的影长FG 为2.4米,其中O 、C 、D 、F 、G 五点在同一直线上,A 、B 、O 三点在同一直线上,且AO OD ⊥,EF FG ⊥已知小明的身高EF 为1.8米.(1)求建筑物OB的高度;(2)求旗杆的高AB.20.如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点.(1)求证:AC2=AB•AD;(2)求证:CE∥AD;(3)若AD=8,AB=12,求DEDF的值.21.如图,点E是矩形ABCD中CD边上一点,BCE沿BE折叠为BFE,点F落在AD上.(1)求证:ABF DFE~;(2)若2sin=3DFE∠,AF=6,求BF的值.22.如图,在一片海域中有三个岛屿,标记为A,B,C.经过测量岛屿B在岛屿A的北偏东65︒,岛屿C在岛屿A的南偏东85︒,岛屿C在岛屿B的南偏东70︒.(1)直接写出ABC 的三个内角度数;(2)小明测得较近两个岛屿10km AB =,求BC 、AC 的长度(最终结果保留根号,不用三角函数表示).参考答案与解析1.【答案】B【解析】【解答】解:∵EB ∥CD∴△ABE ∽△ACD ∴BE AB CD AC = ,即 1.219CD = ∴CD=10.8(米). 故答案为:B.【分析】利用EB ∥CD 可证得△ABE ∽△ACD ,利用相似三角形的对应边成比例,可得比列式,即可求出CD 的长.2.【答案】B 【解析】【解答】解:四边形ABCD 为矩形60BDC ∠=︒=60ABD ∴∠︒AE BD ⊥30BAE ∴∠=︒AB 2∴=故答案为:B .【分析】由矩形的性质求出∠ABD=90°,利用三角形内角和求出∠BAE=30°,再根据含30°角的直角三角形的性质即可求解.3.【答案】A【解析】【解答】解:∵3tanA =,且A ∠是锐角∴30A ∠=︒ 故答案为:A.【分析】根据特殊角的三角函数值进行解答.4.【答案】A【解析】【解答】解:先按键“sin ”,再输入角的度数24°37′,按键“=”即可得到结果.故答案为:A .【分析】利用计算器的使用步骤得到结论。

初三数学解直角三角形试题答案及解析

初三数学解直角三角形试题答案及解析

初三数学解直角三角形试题答案及解析1.一测量爱好者,在海边测量位于正东方向的小岛高度AC,如图所示,他先在点B测得山顶点A的仰角为30°,然后向正东方向前行62米,到达D点,在测得山顶点A的仰角为60°(B、C、D三点在同一水平面上,且测量仪的高度忽略不计).求小岛高度AC(结果精确的1米,参考数值:,)【答案】53米.【解析】首先利用三角形的外角的性质求得∠BAD的度数,得到AD的长度,然后在直角△ADC 中,利用三角函数即可求解.试题解析:∵∠ADC=∠B+∠BAD,∴∠BAD=∠ADC-∠B=60°-30°=30°,∴∠B=∠BAD,∴AD=BD=62(米).在直角△ACD中,AC=AD•sin∠ADC=62×=31≈31×1.7=52.7≈53(米).答:小岛的高度约为53米.【考点】解直角三角形的应用-仰角俯角问题.2.如图,等腰△ABC中,AB=AC,∠BAC=36°,BC=1,点D在边AC上且BD平分∠ABC,设CD=x.(1)求证:△ABC∽△BCD;(2)求x的值;(3)求cos36°-cos72°的值.【答案】(1)证明见解析;(2);(3).【解析】(1)由等腰三角形ABC中,顶角的度数求出两底角度数,再由BD为角平分线求出∠DBC的度数,得到∠DBC=∠A,再由∠C为公共角,利用两对角相等的三角形相似得到三角形ABC与三角形BCD相似;(2)根据(1)结论得到AD=BD=BC,根据AD+DC表示出AC,由(1)两三角形相似得比例求出x的值即可;(3)过B作BE垂直于AC,交AC于点E,在直角三角形ABE和直角三角形BCE中,利用锐角三角函数定义求出cos36°与cos72°的值,代入原式计算即可得到结果.试题解析:(1)∵等腰△ABC中,AB=AC,∠BAC=36°,∴∠ABC=∠C=72°,∵BD平分∠ABC,∴∠ABD=∠CBD=36°,∵∠CBD=∠A=36°,∠C=∠C,∴△ABC∽△BCD;(2)∵∠A=∠ABD=36°,∴AD=BD,∵BD=BC,∴AD=BD=CD=1,设CD=x,则有AB=AC=x+1,∵△ABC∽△BCD,∴,即,整理得:x2+x-1=0,解得:x1=,x2=(负值,舍去),则x=;(3)过B作BE⊥AC,交AC于点E,∵BD=CD,∴E为CD中点,即DE=CE=,在Rt△ABE中,cosA=cos36°=,在Rt△BCE中,cosC=cos72°=,则cos36°-cos72°=-=.【考点】1.相似三角形的判定与性质;2.等腰三角形的性质;3.黄金分割;4.解直角三角形.3.如图,在△ABC中,∠BAC=90°,AD⊥BC于D,AD=3,cosB=3/5,则AC等于()A.4B.5C.6D.7【答案】B.【解析】∵∠BAC=90°,AD⊥BC于D,∴∠BAD+∠CAD=90°,∠BAD+∠B=90°,∴∠CAD=∠B,∴cos∠CAD=cosB=,在直角△ACD中,∵∠ADC=90°,AD=3,∴cos∠CAD=,∴AC=5.故选B.【考点】解直角三角形.4.在△ACB中,∠C=90°,AB=10,,,.则BC的长为()A.6B.7.5C.8D.12.5【答案】A.【解析】∵∠C=90°,∴.又∵AB=10,∴.故选A.【考点】1.解直角三角形;2.锐角三角函数定义.5.已知:如图,斜坡AP的坡度为1:2.4,坡长AP为26米,在坡顶A处的同一水平面上有一座古塔BC,在斜坡底P处测得该塔的塔顶B的仰角为45°,在坡顶A处测得该塔的塔顶B的仰角为76°.求:(1)坡顶A到地面PQ的距离;(2)古塔BC的高度(结果精确到1米).(参考数据:sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)【答案】(1)10米;(2)19米.【解析】(1)过点A作AH⊥PQ,垂足为点H,利用斜坡AP的坡度为1:2.4,得出AH,PH,AH的关系求出即可;(2)利用矩形性质求出设BC=x,则x+10=24+DH,再利用tan76°=,求出即可.试题解析::(1)过点A作AH⊥PQ,垂足为点H.∵斜坡AP的坡度为1:2.4,∴,设AH=5k,则PH=12k,由勾股定理,得AP=13k.∴13k=26.解得k=2.∴AH=10.答:坡顶A到地面PQ的距离为10米.(2)延长BC交PQ于点D.∵BC⊥AC,AC∥PQ,∴BD⊥PQ.∴四边形AHDC是矩形,CD=AH=10,AC=DH.∵∠BPD=45°,∴PD=BD.设BC=x,则x+10=24+DH.∴AC=DH=x-14.在Rt△ABC中,tan76°=,即,解得x=,即x≈19,答:古塔BC的高度约为19米.【考点】1.解直角三角形的应用-坡度坡角问题;2.解直角三角形的应用-仰角俯角问题.6.超速行驶是引发交通事故的主要原因之一.上周末,小明和三位同学尝试用自己所学的知识检测车速,如图,观测点设在A处,离益阳大道的距离(AC)为30米.这时,一辆小轿车由西向东匀速行驶,测得此车从B处行驶到C处所用的时间为8秒,∠BAC=75°.(1)求B、C两点的距离;(2)请判断此车是否超过了益阳大道60千米/小时的限制速度?(计算时距离精确到1米,参考数据:sin 75°≈0.965 9,cos 75°≈0.258 8,tan 75°≈3.732,≈1.732,60千米/小时≈16.7米/秒)【答案】(1)112(米) (2)此车没有超过限制速度【解析】解:(1)在Rt△ABC中,∠ACB=90°,∠BAC=75°,AC=30,∴BC=AC·tan ∠BAC=30×tan 75°≈30×3.732≈112(米).(2)∵此车速度=112÷8=14(米/秒)<16.7(米/秒)=60(千米/小时)∴此车没有超过限制速度.7.在△ABC中,若∠A、∠B满足|cos A-|+=0,则∠C=________.【答案】75°【解析】∵|cos A-|+=0,∴cos A-=0,sin B-=0,∴cos A=,sin B=,∴∠A=60°,∠B=45°,则∠C=180°-∠A-∠B=180°-60°-45°=75°.8.在△ABC中,∠C=90°,,则().A.B.C.D.【答案】D.【解析】由sin A=,设∠A的对边是3k,则斜边是5k,∠A的邻边是4k.再根据正切值的定义,得tanA=.故选D.【考点】锐角三角函数.9.如图,将45°的∠AOB按下面的方式放置在一把刻度尺上:顶点O与尺下沿的端点重合,OA与尺下沿重合,OB与尺上沿的交点B在尺上的读数恰为2cm.若按相同的方式将37°的∠AOC放置在该刻度尺上,则OC与尺上沿的交点C在尺上的读数约为cm.(结果精确到0.1cm,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【答案】2.7【解析】过点B作BD⊥OA于D,过点C作CE⊥OA于E.在△BOD中,∠BDO=90°,∠DOB=45°,∴BD=OD=2cm,∴CE=BD=2cm.在△COE中,∠CEO=90°,∠COE=37°,∵tan37°=≈0.75,∴OE≈2.7cm.∴OC与尺上沿的交点C在尺上的读数约为2.7 cm.10.如图,一段河坝的横截面为梯形ABCD,试根据图中数据,求出坝底宽AD.(i=CE∶ED,单位:m)【答案】(7.5+4)m【解析】解:作BF⊥AD于点F.则BF=CE=4m,在直角△ABF中,AF===3m,在直角△CED中,根据i=,则ED===4m.则AD=AF+EF+ED=3+4.5+4=(7.5+4)m.11.如图,A、B两地之间有一座山,汽车原来从A地到B地经过C地沿折线A→C→B行驶,现开通隧道后,汽车直接沿直线AB行驶.已知AC=10千米,∠A=30°,∠B=45°.则隧道开通后,汽车从A地到B地比原来少走多少千米?(结果保留根号)【答案】(5+5-5)千米【解析】解:过C作CD⊥AB于D,在Rt△ACD中,∵AC=10,∠A=30°,∴DC=ACsin30°=5,AD=ACcos30°=5,在Rt△BCD中,∵∠B=45°,∴BD=CD=5,BC=5,则用AC+BC-(AD+BD)=10+5-(5+5)=5+5-5(千米).答:汽车从A地到B地比原来少走(5+5-5)千米.12.在Rt△ABC中,若∠C=90°,cosA=,则sinA的值为()A.B.C.D.【答案】A.【解析】先根据特殊角的三角函数值求出∠A的值,再求出sinA的值即可.∵Rt△ABC中,∠C=90°,∴∠A是锐角,∵cosA==,∴设AB=25x,BC=7x,由勾股定理得:AC=24x,∴sinA=.故选A.考点:同角三角函数的关系.13.如图,在△中,,,则△的面积是()A.B.12C.14D.21【答案】A【解析】如图,作因为,所以.由勾股定理得.又,所以所以所以所以14.计算下列各题:(1);(2).【答案】(1)2 (2)【解析】解:(1)(2)15.在Rt△ABC中,∠C=90°,sinA=,则cosB的值为()A.B.C.D.【答案】C.【解析】在Rt△ABC中,∠C=90°,sinA=,设BC=3x,则AB=5x,∴AC=4x.∴cosB=.故选C.考点: 互余两角三角函数的关系.16.计算:【答案】-2.【解析】本题涉及零指数幂、特殊角的三角函数值、二次根式化简、负整数指数幂以及绝对值等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:考点: 实数的混合运算.17.若(为锐角),则=【答案】1.【解析】因为所以得,代入可得值为1【考点】正切和正、余弦函数的关系.18.如图所示,直角三角形纸片的两直角边长分别为6,8,现将如图那样折叠,使点与点重合,折痕为,则的值是________【答案】.【解析】折叠后形成的图形相互全等,利用三角函数的定义可求出.根据题意,BE=AE.设CE=x,则BE=AE=8-x.在Rt△BCE中,根据勾股定理得:BE2=BC2+CE2,即(8-x)2=62+x2解得x=,∴tan∠CBE==考点:(1)锐角三角函数的定义;(2)勾股定理;(3)翻折变换(折叠问题).19.(1)一个人由山底爬到山顶,需先爬450的山坡200m,再爬300的山坡300m,求山的高度(结果可保留根号)。

九年级上《24.2直角三角形的性质》同步练习含答案解析

九年级上《24.2直角三角形的性质》同步练习含答案解析

华师大版数学九年级上册第24章解直角三角形24.2直角三角形的性质同步练习一、选择题1、将一副直角三角尺如图放置,若∠AOD=20°,则∠BOC的大小为()A、140°B、160°C、170°D、150°2、Rt△ABC中,∠C=90°,∠B=46°,则∠A=()A、44°B、34°C、54°D、64°3、若一个三角形的三条高线交点恰好是此三角形的一个顶点,则此三角形一定是()A、等腰三角形B、等边三角形C、等腰直角三角形D、直角三角形4、在一个直角三角形中,有一个锐角等于60°,则另一个锐角的度数是()A、120°B、90°C、60°D、30°5、直角三角形的一个锐角是23°,则另一个锐角等于()A、23°B、63°C、67°D、77°6、在直角三角形中,其中一个锐角是另一个锐角的2倍,则此三角形中最小的角是()C、60°D、90°7、满足下列条件的△ABC ,不是直角三角形的是()A、∠C=∠A+∠BB、a:b:c=3:4:5C、∠C=∠A-∠BD、∠A:∠B:∠C=3:4:58、在直角三角形中,两个锐角的度数比为2:3,则较小锐角的度数为()A、20°B、32°C、36°D、72°9、已知△ABC是直角三角形,且∠C=Rt∠,若∠A=34°,则∠B=()A、66°B、56°C、46°D、146°10、若直角三角形中的两个锐角之差为16°,则较大的一个锐角的度数是()A、37°B、53°C、26°D、63°11、如果直角三角形的一个锐角是另一个锐角的4倍,那么这个直角三角形中一个锐角的度数是()A、9°B、18°C、27°D、36°12、△ABC中,∠C=90°,∠A:∠B=2:3,则∠A的度数为()A、18°B、36°C、54°D、72°13、若直角三角形中的两个锐角之差为22°,则较小的一个锐角的度数是()A、24°B、34°14、Rt△ABC中,∠A=90°,角平分线AE、中线AD、高线AH的大小关系是()A、AH<AE<ADB、AH<AD<AEC、AH≤AD≤AED、AH≤AE≤AD15、直角三角形两锐角的平分线相交得到的钝角为()A、150oB、135oC、120oD、120o或135o二、填空题16、如图所示的三角板中的两个锐角的和等于________度.17、Rt△ABC中,∠C=90°,∠A=35°30′,则∠B=________.18、如图所示,在△ABC中,∠C=90°,EF∥AB ,∠1=50°,则∠B的度数是________度.19、如图所示,BD⊥AC于点D , DE∥AB , EF⊥AC于点F ,若BD平分∠ABC ,则与∠CEF相等的角(不包括∠CEF)的个数是________.20、已知Rt△ABC的两直角边长分别为3cm , 4cm ,斜边长为5cm ,则斜边上的高等于________cm.三、综合题21、如图,在直角三角形ABC中,∠ACB=90°,D是AB上一点,且∠ACD=∠B.求证:CD⊥AB.22、在直角三角形中,有一个锐角是另一个锐角的4倍,求这个直角三角形各个角的度数.23、如图所示,在△ACB中,∠ACB=90゜,CD⊥AB于D.(1)求证:∠ACD=∠B;(2)若AF平分∠CAB分别交CD、BC于E、F ,求证:∠CEF=∠CFE.24、如图,△ABC中,AD是BC边上的高线,BE是一条角平分线,它们相交于点P ,已知∠EPD=125°,求∠BAD的度数.25、在直角△ABC中,∠ACB=90°,∠B=30°,CD⊥AB于D , CE是△ABC的角平分线.(1)求∠DCE的度数.(2)若∠CEF=135°,求证:EF∥BC.答案解析部分一、选择题1、【答案】B【考点】解直角三角形【解析】【解答】∵将一副直角三角尺如图放置,∠AOD=20°,∴∠COA=90°-20°=70°,∴∠BOC=90°+70°=160°.故选:B.【分析】利用直角三角形的性质以及互余的关系,进而得出∠COA的度数,即可得出答案.2、【答案】A【考点】解直角三角形【解析】【解答】∵∠C=90°,∠B=46°,∴∠A=90°-46°=44°.故选A.【分析】根据直角三角形两锐角互余列式计算即可得解.3、【答案】D【考点】解直角三角形【解析】【解答】A、等腰三角形,三条高线交点在三角形内或外或某一顶点处,故A错误;B、等边三角形,三条高线交点在三角形内,故B错误;C、因为已知无法确定其两腰相等,而只要是直角三角形就行了,不一定非得是等腰直角三角形,故C错误;D、因为直角三角形的直角所在的顶点正好是三条高线的交点,所以可以得出这个三角形是直角三角形,故D正确.故选:D.【分析】根据直角三角形的判定方法,对选项进行一一分析,排除错误答案.4、【答案】D【考点】解直角三角形【解析】【解答】∵直角三角形中,一个锐角等于60°,∴另一个锐角的度数=90°-60°=30°.故选:D.【分析】根据直角三角形两锐角互余列式计算即可得解.5、【答案】C【考点】解直角三角形【解析】【解答】∵直角三角形的一个锐角是23°,∴另一个锐角是:90°-23°=67°.故选:C.【分析】直角三角形的两个锐角互余.6、【答案】B【考点】解直角三角形【解析】【解答】设较小的锐角是x ,则另一个锐角是2x ,由题意得,x+2x=90°,解得x=30°,即此三角形中最小的角是30°.故选B.【分析】设较小的锐角是x ,然后根据直角三角形两锐角互余列出方程求解即可.7、【答案】D【考点】解直角三角形【解析】【解答】A.∵∠C=∠A+∠B ,∴∠C=90°,是直角三角形,故本选项错误;B.∵32+42=25=52,∴△ABC是直角三角形,故本选项错误;C.∵∠C=∠A-∠B ,∴∠C+∠B=∠A ,∴∠A=90°,是直角三角形,故本选项错误;D.∵∠A:∠B:∠C=3:4:5,∴最大的角∠C=180°× <90°,是锐角三角形,故本选项正确.故选D.【分析】根据三角形的内角和定理和勾股定理逆定理对各选项分析判断利用排除法求解.8、【答案】C【考点】解直角三角形【解析】【解答】设两锐角分别为2k、3k ,由题意得,2k+3k=90°,解得k=18,所以,较小锐角的度数为18×2=36°.故选C.【分析】根据比例设两锐角分别为2k、3k ,然后利用直角三角形两锐角互余列方程求解即可.9、【答案】B【考点】解直角三角形【解析】【解答】∵∠C=Rt∠,∠A=34°,∴∠B=90°-∠A=90°-34°=56°.故选B.【分析】根据直角三角形两锐角互余列式计算即可得解.10、【答案】B【考点】解直角三角形【解析】【解答】设两个锐角分别为x、y ,根据题意得,x+y=90°①x−y=16°②①+②得,2x=106°,解得x=53°,①-②得,2y=74°,解得y=37°,所以方程组的解为x=53°y=37°故较大的一个锐角的度数是53°.故选B.【分析】设两个锐角分别为x、y ,然后根据直角三角形两锐角互余列出一个方程,再根据题意列出方程另一个方程,解方程组即可.11、【答案】B【考点】解直角三角形【解析】【解答】设较小的锐角是x度,则另一角是4x度.则x+4x=90,解得:x=18°.故选B.【分析】根据直角三角形的两个角互余即可求解.12、【答案】B【考点】解直角三角形【解析】【解答】∵∠A:∠B=2:3,∴设∠A=2k ,∠B=3k ,∵∠C=90°,∴∠A+∠B=90°,即2k+3k=90°,解得k=18°,∴∠A=36°.故选B.【分析】根据比例设∠A=2k ,∠B=3k ,然后根据直角三角形两锐角互余列出方程求出k ,即可得解.13、【答案】B【考点】解直角三角形【解析】【解答】∵两个锐角和是90°,∴一个直角三角形两个锐角的差为22°,设一个锐角为x ,则另一个锐角为90°-x ,得:90°-x-x=22°,得:x=34°.故选B.【分析】根据直角三角形中两锐角和为90°,再根据两个锐角之差为22°,设其中一个角为x ,则另一个为90°-x ,即可求出最小的锐角度数.14、【答案】D【考点】解直角三角形【解析】【解答】①Rt△ABC中,AB=AC;(图①)根据等腰三角形三线合一的性质知:AD、AH、AE互相重合,此时AD=AH=AE;②Rt△ABC中,AB≠AC;(设AC>AB ,如图②)在Rt△AHE中,由于AE是斜边,故AE>AH;同理可证AD>AH;∵∠AED>∠AHD=90°,∠ADH<∠AHE=90°∴∠AED>∠ADE;根据大角对大边知:AD>AE;即AD>AE>AH;综上所述,角平分线AE、中线AD、高线AH的大小关系是AH≤AE≤AD;故选D.【分析】此题应分两种情况讨论:①等腰直角三角形,②普通的直角三角形.然后根据各边所对角的大小来判断各线段的大小关系.15、【答案】B【考点】解直角三角形【解析】【解答】直角三角形中,两锐角三角形度数和为90°,则两锐角的各一半度数和为45°,根据三角形内角和为180°,可得钝角度数为135°,故选B.【分析】本题可根据直角三角形内角的性质和三角形内角和为180°进行求解.二、填空题16、【答案】90【考点】解直角三角形【解析】【解答】直角三角板中的两个锐角的和等于90度.故答案为:90.【分析】根据直角三角形两锐角互余解答.17、【答案】54.5°【考点】解直角三角形【解析】【解答】Rt△ABC中,∵∠C=90°,∠A=35°30′,∴∠B=90°-∠A=90°-35°30′=54°30′=54.5°.故答案为:54.5°.【分析】根据直角三角形两锐角互余,即可求出∠B的度数.18、【答案】40【考点】解直角三角形【解析】【解答】∵∠1=50°,∴∠CEF=50°,∵EF∥AB ,∴∠A=∠CEF=50°,∵△ABC是直角三角形,∴∠B=90°-∠A=90°-50°=40°.故答案为:40.【分析】先根据∠1=50°得出∠CEF的度数,再由平行线的性质求出∠A的度数,根据直角三角形两锐角互余的性质即可求出∠B的度数.19、【答案】4【考点】解直角三角形【解析】【解答】如图,∵BD⊥AC , EF⊥AC ,∴BD∥EF ,∵BD平分∠ABC ,∴∠1=∠2,∴与∠CEF相等的角有∠1、∠2、∠3、∠4共4个.故答案为:4.【分析】根据两直线平行,同位角相等,两直线平行,内错角相等以及角平分线的定义找出与∠CEF相等的角即可.20、【答案】2.4【考点】解直角三角形【解析】【解答】如图,AC=3cm , BC=4cm , AB=5cm , CD为斜边AB上的高∵S△ABC= AC•BC= CD•AB ,∴×3×4= ×5•CD∴CD=2.4cm.【分析】根据两直线平行,同位角相等,两直线平行,内错角相等以及角平分线的定义找出与∠CEF相等的角即可.三、综合题21、【答案】证明:∵∠ACB=90°,∴∠A+∠B=90°,∵∠ACD=∠B ,∴∠A+∠ACD=90°,∴∠ADC=90°,∴CD⊥AB.【考点】解直角三角形【解析】根据∠ACB=90°,得出∠A+∠B=90°,根据∠ACD=∠B ,得出∠A+∠ACD=90°,再根据两锐角互余的三角形是直角三角形即可得出答案.22、【答案】解答:设设一个锐角为x度,则另一个锐角为4x度,那么根据三角形内角和定理:三角形内角之和为180°,所以x+4x+90°=180°,x=18°,4x=72°,答:三角分别为18°,72°,90°.【考点】解直角三角形【解析】设一个锐角为x度,则另一个锐角为4x度,然后根据三角形的内角和定理列方程求解即可.23、【答案】(1)证明:∵∠ACB=90゜,CD⊥AB于D ,∴∠ACD+∠BCD=90°,∠B+∠BCD=90°,∴∠ACD=∠B;(2)在Rt△AFC中,∠CFA=90°-∠CAF ,同理在Rt△AED中,∠AED=90°-∠DAE.又∵AF平分∠CAB ,∴∠CAF=∠DAE ,∴∠AED=∠CFE ,又∵∠CEF=∠AED ,∴∠CEF=∠CFE.【考点】解直角三角形【解析】(1)由于∠ACD与∠B都是∠BCD的余角,根据同角的余角相等即可得(2)根据直角三角形两锐角互余得出∠CFA=90°-∠CAF ,∠AED=90°-∠DAE ,再根据角平分线的定义得出∠CAF=∠DAE ,然后由对顶角相等的性质,等量代换即可证明∠CEF=∠CFE.24、【答案】解答:∵AD是BC边上的高线,∠EPD=125°,∴∠CBE=∠EPD-∠ADB=125°-90°=35°,∵BE是一条角平分线,∴∠ABD=2∠CBE=2×35°=70°,在Rt△ABD中,∠BAD=90°-∠ABD=90°-70°=20°.故答案为:20°.【考点】解直角三角形【解析】根据三角形的一个外角等于与它不相邻的两个内角的和求出∠CBE的度数,再根据角平分线的定义求出∠ABC的度数,然后利用直角三角形的两锐角互余列式计算即可得解.25、【答案】(1)解答:∵∠B=30°,CD⊥AB于D ,∴∠DCB=90°-∠B=60°.∵CE平分∠ACB ,∠ACB=90°,∴∠ECB= ∠ACB=45°,∴∠DCE=∠DCB-∠ECB=60°-45°=15°;(2)∵∠CEF=135°,∠ECB= ∠ACB=45°,∴∠CEF+∠ECB=180°,∴EF∥BC.【考点】平行线的判定,解直角三角形【解析】(1)由图示知∠DCE=∠DCB-∠ECB ,由∠B=30°,CD⊥AB于D ,利用内角和定理,求出∠DCB的度数,又由角平分线定义得∠ECB= ∠ACB ,则∠DCE的度数可求;(2)根据∠CEF+∠ECB=180°,由同旁内角互补,两直线平行可以证明EF∥BC.11 / 11。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学 第24章《解直角三角形》测试卷及答案 沪
科版
(满分:90分 时间:60分钟)
一、选择题(每题4分,共40分)
1.如果∠A 是锐角,且A cos A sin =,那么∠A = ( )
A.30°
B.45°
C.60°
D.90°
2.如果α是锐角,且5
4
sin =
α,则)90cos(α-︒= ( ) A. 54 B.43 C.53 D.5
1
3.在△ABC 中,A ,B 为锐角,且有 B A cos sin =,则这个三角形是 ( ) A.等腰三角形 B.直角三角形 C.钝角三角形 D.锐角三角形
4.当0
9045<<A 时,下列不等式中正确的是 ( ) A.A A A sin cos tan >> B.A A A sin tan cos >> C.A A A cos tan sin >> D.A A A cos sin tan >> 5.在Rt△ABC 中,∠C=90°,cosA =
5
4
,那么tanB 的值为 ( ) A.53 B.45 C.43 D.3
4 6.若等腰三角形腰长为4,面积是4,则这个等腰三角形顶角的度数为 ( ) A.30° B.30°或150° C.60° D.60°或120° 7.如图,梯子(长度不变)跟地面所成的锐角为A ,关于A ∠的三角函数值与梯子的倾斜程度之间,叙述正确的是 ( ) A .sin A 的值越大,梯子越陡 B .cos A 的值越大,梯子越陡 C .tan A 的值越小,梯子越陡 D .陡缓程度与A ∠的函数
8.如图,在等腰梯形ABCD 中,AB ∥CD , 对角线AC 平分∠BAD ,∠B =60º,CD =2cm ,则梯形
ABCD 的面积为 ( )
A .33cm 2
B .6 cm 2
C .63 cm 2
D .12 cm 2
9.如图,沿AE 折叠矩形纸片ABCD ,使点D 落在BC 边的点F 处.已知AB =8,BC =10,则
tan∠EFC 的值为 ( ) A .
34
B .
43
C .
35
D .
45
(第7题图) (第8题图) (第9题图)
10.某水库大坝的横断面是梯形,坝内斜坡的坡度3:1=i ,坝外斜坡的坡度1:1=i ,则
B A C
D
两个坡角的和为 ( ) A.0
90 B.0
60 C.0
75 D.0
105 二、填空题(每小题5分,共20分) 11.若∠A 为锐角,cosA =
13
5
,则sinA =_________. 12.在坡度为1:2的山坡上种树,要求株距(相邻两树间的水平距离)是6米,斜坡上相邻两
树间的坡面距离是_________米. 13.已知2
3
cos sin =
+αα,则ααcos sin ⋅=_________. 14.某飞机在离地面1200的上空测得地面控制点的俯角为60°,此时飞机与地面控制点之
间的距离是_________米.
三、解答下列各题(每题10分,共60分) 15.根据下列条件,解直角三角形:
(1) 在Rt △ABC 中,∠C =90°,a =8, ∠B =60°;
(2) 在Rt △ABC 中,∠C =90°,∠A =45°,b =6.
16.如图,在一次夏令营活动中,小明从营地A 出发,沿北偏东60°方向走了m 3500到
达B 点,然后再沿北偏西30°
方向走了500m 到达目的地C 点.求①A 、C 两地之间的距离;②确定目的地C 在营地A 的什么方向.
17.如图,在△ABC 中∠C 是锐角,BC =a ,AC =b .
⑴证明:C ab S ABC sin 2
1
=∆ ⑵△ABC 是等边三角形,边长为4,求△ABC 的面积.
18.如图,某居民小区内A B ,两楼之间的距离30MN =米,两楼的高都是20米,A 楼在
B 楼正南,B 楼窗户朝南.B
楼内一楼住户的窗台离小区地面的距离2DN =米,窗户高 1.8CD =米.当正午时刻太
阳光线与地面成30角时,A
楼的影子是否影响B 楼的一楼住户采光?若影响,挡住该住户窗户多高?若不影响,请说明理由.
(参考数据:2 1.414=,3 1.732=,5=
19.如图所示,已知:在△ABC 中,∠A =60°,∠B =45°,AB =8.求:△ABC 的面积(结果可保留根号).
20.在△ABC 中∠A 、∠B 、∠C 所对的边分别用a 、b 、c 表示.已知∠A =2∠B 且∠A =60°,求证:)c b (b a 2+=.
A 楼
B 楼 C D
M N
21.一段路基的横断面是直角梯形,如左下图所示,已知原来坡面的坡角α的正弦值为0.6,现不改变土石方量,全部利用原有土石方进行坡面改造,使坡度变小,达到如右下图所示的技术要求.试求出改造后坡面的坡度是多少?
22.会堂里竖直挂一条幅AB,如图5,小刚从与B成水平的C点观察,视角∠C=30°,当他沿CB方向前进2米到达到D时,视角∠ADB=45°,求条幅AB的长度.
23.已知:如图,在山脚的C处测得山顶A的仰角为︒
45,沿着坡度为︒
30的斜坡前进400米到D处(即︒
=
∠30
DCB,400
=
CD米),测得A的仰角为︒
60,求山的高度AB.
D
C B
A
第24章《解直角三角形》测试卷答案
一、1.B 2.A 3.B 4.D 5.D 6.B 7.A 8.A 9.A 10.C 二、11.
1312; 12.53; 13.8
1
; 4.3800 三、15. (1)∠A =30° c =16 b =83.
(2)∠B =45° a =6 c =23.
16.①AC =1000m ;②目的地C 在营地A 的北偏东30°的方向. 17.(1)作AD ⊥BC ;(2)34. 18.如图,设光线FE 影响到B 楼的E 处,
作EG FM ⊥于G ,由题知,30m EG MN ==,30FEG ∠=,
则30tan 303017.32FG =⨯===, 则2017.32 2.68MG FM GF =-=-=,
因为2 1.8DN CD ==,,所以 2.6820.68ED =-=, 即A 楼影子影响到B 楼一楼采光,挡住该户窗户0.6819. 过C 作CD ⊥AB 于D ,
在Rt △ADC 中,∵∠CDA =90°

60cot DAC cot CD
DA
=∠==33,即AD = CD 33⨯. 在Rt △BDC 中,∵∠B =45° ∴∠BCD =45° ∴CD =BD . ∵AB =DB +DA =CD + CD 3
3

=8 ∴CD =12-43. ∴S △ABC =31648)3412(82
12
1-=-⨯⨯=⨯CD AB .
20.∵∠A =60°,∠A =2∠B ,∴∠C =90°.
在Rt △ABC 中,2
1c b A cos 23c a A sin ====,, 即c 21
b c 23a ==
,. ∴22c 43a =,2c 4
3
)c c 21(c 21)c b (b =+=+
∴)c b (b a 2+= 21.
CEM
N
30m
30
解:由左图可知:BE ⊥DC ,BE =30m ,sin α=0.6 由Rt △BEC 中,)(506
.030sin sin m BE BC BC BE ===∴=
αα, 由勾股定理得,EC =40m
在不改变土石方量,全部充分利用原有土石方的前提下进行坡面改造,使坡度变小,则梯形ABCD 面积=梯形A 1B 1C 1D 面积.
1202
1
20204030213020EC ⋅⨯+⨯=⨯⨯+⨯∴
解得EC 1=80(m )
∴改建后的坡度
22.设AB =x ,利用等量关系BC -BD =DC ,列方程可求解.即2tan 30tan 45
x x
-=,解这
个方程,得31x =

23.作DE ⊥AB 于E ,作DF ⊥BC 于F ,在CDF Rt ∆中
︒⋅=∴=︒=∠30sin 40030CD DF CD DCF 米,,=4002
1
⨯=200(米)
4002
3
30cos ⨯=
︒⋅=CD CF =3200(米) 在ADE Rt ∆中,︒=∠60ADE ,设DE =x 米, ∴x x AE 360tan =
⋅︒=(米)
在矩形DEBF 中,BE =DF =200米,
在︒=∠∆45ACB ACB Rt 中,,∴AB =BC , 即:x x +=+32002003
∴x =200, ∴)(2003200+=+=BE AE AB 米.
F
E
D
C
B
A。

相关文档
最新文档