平行四边形的判定——三角形的中位线教学设计

合集下载

人教版八年级数学下册18.1.2平行四边形的判定三角形的中位线及定理公开课说课稿

人教版八年级数学下册18.1.2平行四边形的判定三角形的中位线及定理公开课说课稿
5.利用现代教育技术手段,如多媒体、网络资源等,丰富教学形式,提高学生的学习兴趣。
三、教学方法与手段
(一)教学策略
在本节课中,我将采用探究式教学法和任务驱动教学法为主要教学方法。
探究式教学法是基于建构主义理论,通过引导学生自主探究、发现和解决问题,培养学生的独立思考能力和创新能力。在本节课中,我将设计一系列具有启发性的问题,让学生在探究过程中理解和掌握平行四边形的判定方法和三角形中位线定理。
(二)学习障碍
学生在学习本节课之前,已经掌握了平面几何的基本概念、三角形的基本性质以及平行线的相关性质。但可能存在以下学习障碍:
1.对平行四边形判定方法的掌握不够熟练,容易混淆。
2.对三角形中位线定理的理解不够深入,不能灵活运用。
3.在解决实际问题时,不能将所学知识运用到解题过程中,缺乏解题思路和方法。
四、教学过程设计
(一)导入新课
为了快速吸引学生的注意力和兴趣,我将采用以下方式导入新课:
1.以生活实例导入:向学生展示一些生活中常见的平行四边形实物图片,如篮球场、梯子等,引导学生观察并思考这些实物中的平行四边形特点。
2.提出问题:根据上一节课的知识,提问学生:“如何判断一个四边形是平行四边形?”让学生在思考问题的过程中,自然过渡到本节课的内容。
(2)理解三角形的中位线定理,能够利用中位线定理解决相关问题。
(3)能够运用所学知识解决实际问题。
2.过程与方法目标
(1)通过动手操作、观察、思考,培养学生的空间想象能力和逻辑推理能力。
(2)通过小组合作、讨论,培养学生的团队协作能力和交流表达能力。
3.情感态度与价值观目标
(1)激发学生对几何学习的兴趣,提高学生的学习积极性。
(三)互动方式

三角形的中位线案例

三角形的中位线案例

《三角形的中位线》教学案例教学内容:人教版八年级数学下册第十八章第1节第2部分《平行四边形的判定》第三课时——三角形的中位线。

教材分析:本课是人教版八年级数学下册第十八章第1节平行四边形的判定第二部分内容——三角形的中位线。

主要包括三角形中位线的概念、性质定理及其证明方法和定理的应用。

本课是在已经学完平行四边形的性质和判定之后的一节新课,它是以平行四边形的有关性质和判定为依据来研究的,是对平行四边形的性质和判定的综合运用。

它不但是学习梯形中位线定理的基础,同时也是证明一些四边形问题和中点问题的重要依据。

所以本节内容放在四边形知识体系中,既承上启下,又能使研究四边形的方法更灵活多变。

学情分析:1.学生已经学习了全等三角形的性质与判定和平行四边形的性质与判定等有关知识和方法,为本节课的学习奠定了基础。

2.学生基础相对较好,他们善于观察、操作、猜想,但演绎推理、归纳和运用数学知识解决问题的能力比较薄弱,思维的广阔性、敏捷性、灵活性比较欠缺。

再加上近几年来自社会、家长和老师的压力较大,学生学的非常被动,几乎不重视学习方法,不注意归纳总结,不善于思考,无法体验学习的乐趣。

所以我想通过本节课引导学生学会学习,学会思考,从而使其感受到学习的快乐。

3.通过合理运用现代化教育辅助手段,调动学生思维的积极性,尽可能多的给他们活动时间,激发学生内在的思维潜力,提高学习的兴趣,培养学生自主探究和合作学习的能力。

教学目标:知识与技能目标:1.通过画图,亲身体验三角形中位线的概念以及与三角形中线的区别,掌握三角形中位线定理。

2.通过三角形中位线性质的探索、证明、应用,渗透数学学习中的转化思想,培养学生自主探究、猜想、推理论证的能力。

3.通过进行三角形中位线定理有关的论证和计算,培养学生观察问题、分析问题、应用所学知识解决实际问题的能力。

过程与方法目标:1.通过设置问题让学生猜想三角形的中位线与第三边的关系,进而用推理论证的方法证明猜想是否正确,经历探索、猜想、论证的过程,进一步发展推理论证的能力。

平行四边形的判定——三角形的中位线教学设计讲解学习

平行四边形的判定——三角形的中位线教学设计讲解学习

19.1.2 平行四边形的判定——三角形的中位线教学设计丹江口市土台中学刘桂林一、教学目标:1.理解三角形中位线的概念,掌握它的性质.2.能较熟练地应用三角形中位线性质进行有关的证明和计算.3.经历探索、猜想、证明的过程,进一步发展推理论证的能力.4.能运用综合法证明有关三角形中位线性质的结论.理解在证明过程中所运用的归纳、类比、转化等思想方法.二、重点、难点1.重点:掌握和运用三角形中位线的性质.2.难点:三角形中位线性质的证明(辅助线的添加方法).3.难点的突破方法:(1)本教材三角形中位线的内容是由一道例题从而引出其概念和性质的,新教材与老教材在这个知识的讲解顺序安排上是不同的,它这种安排是要降低难度,但由于学生在前面的学习中,添加辅助线的练习很少,因此无论讲解顺序怎么安排,证明三角形中位线的性质(例1)时,题中辅助线的添加都是一大难点,因此教师一定要重点分析辅助线的作法的思考过程.让学生理解:所证明的结论既有平行关系,又有数量关系,联想已学过的知识,可添加辅助线构造平行四边形,利用平行四边形的对边平行且相等来证明结论成立的思路与方法.(2)强调三角形的中位线与中线的区别:中位线:中点与中点的连线;中线:顶点与对边中点的连线.(3)要把三角形中位线性质的特点、条件、结论及作用交代清楚:特点:在同一个题设下,有两个结论.一个结论表明位置关系,另一个结论表明数量关系;条件(题设):连接两边中点得到中位线;结论:有两个,一个表明中位线与第三边的位置关系,另一个表明中位线与第三边的数量关系(在应用时,可根据需要选用其中的结论);作用:在已知两边中点的条件下,证明线段的平行关系及线段的倍分关系.(4)可通过题组练习,让学生掌握其性质.三、例题的意图分析例1是教材P98的例4,这是三角形中位线性质的证明题,教材采用的是先证明后引出概念与性质的方法,它一是要练习巩固平行四边形的性质与判定,二是为了降低难度,因此教师们在教学中要把握好度.建议讲完例1,引出三角形中位线的概念和性质后,马上做一组练习,以巩固三角形中位线的性质,然后再讲例2.例2是一道补充题,选自老教材的一个例题,它是三角形中位线性质与平行四边形的判定的混合应用题,题型挺好,添加辅助线的方法也很巧,结论以后也会经常用到,可根据学生情况适当的选讲例2.教学中,要把辅助线的添加方法讲清楚,可以借助与多媒体或教具.四、课堂引入1.平行四边形的性质;平行四边形的判定;它们之间有什么联系?2.你能说说平行四边形性质与判定的用途吗?(答:平行四边形知识的运用包括三个方面:一是直接运用平行四边形的性质去解决某些问题.例如求角的度数,线段的长度,证明角相等或线段相等等;二是判定一个四边形是平行四边形,从而判定直线平行等;三是先判定一个四边形是平行四边形,然后再眼再用平行四边形的性质去解决某些问题.)3.创设情境实验:请同学们思考:将任意一个三角形分成四个全等的三角形,你是如何切割的?(答案如图)图中有几个平行四边形?你是如何判断的?五、例习题分析例1(教材P98例4) 如图,点D 、E 、分别为△ABC 边AB 、AC 的中点,求证:DE ∥BC 且DE=21BC . 分析:所证明的结论既有平行关系,又有数量关系,联想已学过的知识,可以把要证明的内容转化到一个平行四边形中,利用平行四边形的对边平行且相等的性质来证明结论成立,从而使问题得到解决,这就需要添加适当的辅助线来构造平行四边形.方法1:如图(1),延长DE 到F ,使EF=DE ,连接CF ,由△ADE ≌△CFE ,可得AD ∥FC ,且AD=FC ,因此有BD ∥FC ,BD=FC ,所以四边形BCFD 是平行四边形.所以DF ∥BC ,DF=BC ,因为DE=21DF ,所以DE ∥BC 且DE=21BC . (也可以过点C 作CF ∥AB 交DE 的延长线于F 点,证明方法与上面大体相同)方法2:如图(2),延长DE 到F ,使EF=DE ,连接CF 、CD 和AF ,又AE=EC ,所以四边形ADCF 是平行四边形.所以AD ∥FC ,且AD=FC .因为AD=BD ,所以BD ∥FC ,且BD=FC .所以四边形ADCF 是平行四边形.所以DF ∥BC ,且DF=BC ,因为DE=21DF ,所以DE ∥BC 且DE=21BC . 定义:连接三角形两边中点的线段叫做三角形的中位线.【思考】:(1)想一想:①一个三角形的中位线共有几条?②三角形的中位线与中线有什么区别?(2)三角形的中位线与第三边有怎样的关系?(答:(1)一个三角形的中位线共有三条;三角形的中位线与中线的区别主要是线段的端点不同.中位线是中点与中点的连线;中线是顶点与对边中点的连线. (2)三角形的中位线与第三边的关系:三角形的中位线平行与第三边,且等于第三边的一半.)三角形中位线的性质:三角形的中位线平行与第三边,且等于第三边的一半.〖拓展〗利用这一定理,你能证明出在设情境中分割出来的四个小三角形全等吗?(让学生口述理由) 例2(补充)已知:如图(1),在四边形ABCD 中,E 、F 、G 、H 分别是 AB 、BC 、CD 、DA 的中点.求证:四边形EFGH 是平行四边形.分析:因为已知点E 、F 、G 、H 分别是线段的中点,可以设法应用三角形中位线性质找到四边形EFGH 的边之间的关系.由于四边形的对角线可以把四边形分成两个三角形,所以添加辅助线,连接AC 或BD ,构造“三角形中位线”的基本图形后,此题便可得证.证明:连结AC (图(2)),△DAG 中,∵ AH=HD ,CG=GD ,∴ HG ∥AC ,HG=21AC (三角形中位线性质).同理EF ∥AC ,EF=21AC . ∴ HG ∥EF ,且HG=EF .∴ 四边形EFGH 是平行四边形.此题可得结论:顺次连结四边形四条边的中点,所得的四边形是平行四边形.六、课堂练习1.(填空)如图,A、B两点被池塘隔开,在AB外选一点C,连结AC和BC,并分别找出AC和BC的中点M、N,如果测得MN=20 m,那么A、B两点的距离是m,理由是.2.已知:三角形的各边分别为8cm 、10cm和12cm ,求连结各边中点所成三角形的周长.3.如图,△ABC中,D、E、F分别是AB、AC、BC的中点,(1)若EF=5cm,则AB= cm;若BC=9cm,则DE= cm;(2)中线AF与DE中位线有什么特殊的关系?证明你的猜想.七、课后练习1.(填空)一个三角形的周长是135cm,过三角形各顶点作对边的平行线,则这三条平行线所组成的三角形的周长是cm.2.(填空)已知:△ABC中,点D、E、F分别是△ABC三边的中点,如果△DEF的周长是12cm,那么△ABC的周长是cm.3.已知:如图,E、F、G、H分别是AB、BC、CD、DA的中点.求证:四边形EFGH是平行四边形.。

人教版数学八下18.1.3 平行四边形的判定(三)三角形的中位线 课程教学设计

人教版数学八下18.1.3 平行四边形的判定(三)三角形的中位线 课程教学设计

三角形的中位线教学设计一、教材分析《三角形的中位线》是人教版八年级下第十八章《平行四边形》中的一节教学内容,教材安排一个学时完成。

本节教材是在学生学完了三角形、四边形内容之后,作为三角形和四边形知识的应用和深化所引出的一个重要性质定理,它揭示了线与线之间的位置关系,线段与线段间的数量关系,对进一步学习非常有用,尤其是在证明两直线平行和论证线段倍分关系时常常要用到.二、学情分析学生已掌握了如何构造中心对称图形以及中心对称的性质,这将成为本课学生研究和探索三角形中位线性质的基础知识。

初二学生,已具备一定的操作、归纳、推理和论证能力,但在数学意识与应用能力方面尚需要进一步培养。

多数学生对数学学习有一定的兴趣,能够积极参与动手操作与研究,但在合作交流意识方面,发展不够均衡,有待加强;少数学生主动性不够强,尚需通过营造一定学习氛围,来加以带动。

三、教学目标1.理解三角形中位线的概念,会证明三角形的中位线定理,能应用三角形中位线定理解决相关的问题;2.进一步经历“探索—猜想—证明”的过程,发展探究能力、推理论证的能力;培养数学应用意识3.在命题的证明过程中通过相互间的合作与交流,进一步发展学生合作交流的能力和数学表达能力;4.在定理的证明和应用过程中体现归纳、类比、转化等数学思想方法。

四、教学重难点重点:三角形中位线性质定理证明及应用难点:用添加辅助线的方法来推证三角形中位线定理,了解证明线段倍分关系问题的基本要领.五、教学准备:教师准备多媒体课件,实验用三角纸片。

六、教学过程(一)创设情境,导入新课1.出示三角纸片(1)引导学生裁剪一次组成平行四边形,(2)巡视学生操作情况,找到做出来的同学与大家分享作法。

2.教师给出如下问题: ①、你认识中位线吗? ②、三角形有几条中位线? ③、中位线与第三边的关系怎样? ④、什么是三角形中位线定理。

引出三角形中位线 3.引入课题:三角形的中位线有什么性质?本节课探索 ——三角形的中位线(板书课题) (二)合作交流,探索新知1.操作:作△ABC ,并作△ABC 的中位线 问题1:一个三角形有几条中位线?2.探究活动一:探索三角形中位线的性质:(1)猜想:三角形的中位线与第三边有怎样的关系?(注意从位置关系和数量关系两个方面思考)(让学生大胆猜想,开拓思维)(2)交流猜想(鼓励学生说出自己的猜想,并说出猜想的方法) ①三角形的中位线与第三边有怎样的关系? ②你是怎样猜想出这一结论的?归纳猜想方法:①直观感觉 ②度量 ③推理 ④多画几个图观察 ⑤借助几何画板拖动原三角形的顶点观察(感受猜想策略的多样性)教师用几何画板演示:①拖动点A ,随着△ABC 形状的改变,DE 还是△ABC 的中位线吗?线段BC 的长度是否发生改变?DE 和BC 的关系还成立吗?②拖动点B ,随着△ABC 形状的改变,DE 还是△ABC 的中位线吗?线段BC 的长度是否发生改变?DE 和BC 的关系还成立吗?得出结论:ADE CB三角形的中位线平行于第三边,且等于第三边的一半。

18.1.2平行四边形的判定-三角形中位线(教案)

18.1.2平行四边形的判定-三角形中位线(教案)
首先,关于导入新课的部分,我通过提问方式引导学生回顾三角形中位线的定义,希望以此激发他们的学习兴趣。但从课堂反馈来看,部分学生对这个问题显得有些迷茫,可能是因为他们对中位线的概念还不够熟悉。在以后的教学中,我需要更加注重对学生基础知识掌握情况的了解,以便更好地设计导入环节。
其次,在新课讲授环节,我尝试用理论介绍、案例分析和重点难点解析的方式,帮助学生理解三角形中位线与平行四边形之间的关系。但在这个过程中,我发现有些学生在分析案例时仍然存在困难。这可能是因为我讲解得不够透彻,或者课堂实践环节还不够充分。针对这个问题,我打算在接下来的课程中增加一些互动环节,让学生更多地参与到课堂实践中来,以提高他们的理解和应用能力。
举例:通过绘制具体图形,让学生观察并理解三角形中位线的定义;讲解如何利用中位线判定平行四边形,强调步骤和条件;设计实际情境题,让学生将所学知识应用于解决具体问题。
2.教学难点
-难点内容:三角形中位线判定平行四边形的逻辑推理过程,以及在实际问题中的应用。
-难点突破方法:
a.使用直观教具,如模型、图形等,帮助学生形成直观认识。
4.培养学生的合作交流意识:通过小组合作、讨论交流等形式,促进学生分享观点,提高合作解决问题的能力。
三、教学难点与重点
1.教学重点
-核心知识:三角形中位线的性质及其与平行四边形的关系。
-重点细节:
a.理解并掌握三角形中位线的定义。
b.学会运用三角形中位线判定平行四边形。
c.掌握三角形中位线与平行四边形之间的关系,并能应用于解决实际问题。
二、核心素养目标
1.培养学生的逻辑推理能力:通过探究三角形中位线性质,使学生能够运用逻辑推理,理解并掌握平行四边形的判定方法。
2.提升学生的空间想象力:借助实物模型、图形绘制等手段,帮助学生形成对三角形中位线和平行四边形的空间想象,培养空间思维能力。

平行四边形的判定3三角形中位线定理

平行四边形的判定3三角形中位线定理

平行四边形的判定(3)三角形中位线定理杜兴成一.教材分析1.地位和作用:本节教材是八年级数学下册三角形的中位线定理内容。

它是前面已学过的平行线、全等三角形、平行四边形等知识内容的应用和深化,尤其是在判定两直线平行和论证线段倍分关系时常常用到。

在三角形中位线定理的证明及应用中,处处渗透了化归思想,它对拓展学生的思维有着积极的意义。

2.教材处理:课本中三角形中位线定理是单刀直入地以探索式推理方法提出,学生接受起来会感觉突然、生硬。

我采取先让学生经过实验、观察、猜想、归纳、得出结论,然后经推理论证,最后总结形成定理的方式,这样提出的知识联系生活实际,更容易为学生接受和认可。

在定理证明中,由于时间和学生水平等多种因素,因此只讲解了一种证法。

3.重点和难点:重点是:三角形中位线定理及其应用;【设计意图】;三角形中位线定理是解决有关线与线的平行及线段倍分问题的重要理论依据之一,在教材中占有重要地位,依据教学大纲的要求、教材内容以及学生的认知基础,我确定了本节课的重点难点是:三角形中位线定理中辅助线的添加。

二.教学目标:1.理解并掌握三角形中位线的概念,掌握它的性质.2.能较熟练地应用三角形中位线的性质进行有关的证明和计算.重点掌握并运用三角形中位线的性质解决问题.难点三角形中位线性质的证明.(辅助线的添加方法)三.教法和学法教法:采用实验观察、探究归纳、理论证明、巩固深化的四段教学法,在多媒体的辅助下突破常规模式,让学生在活动、探索、和谐的教学中获取新知识,开发学生的创造性思维,达到教学目标。

学法:让学生掌握实验与观察、分析与比较、讨论与释疑、概括与归纳、巩固与提高等科学的学习方法;学会举一反三,灵活转换的学习方法,学会运用化归思想去解决问题。

四.教学过程(一)创设情景,兴趣导学如图,A、B两点被池塘隔开,现在要测量出A、B两点间的距离,但又无法直接去测量,怎么办?这时,在A、B外选一点C,连结AC和BC,并分别找出AC和BC的中点M、N.如果能测量出MN的长度,也就能知道AB 的距离了。

平行四边形的判定——三角形的中位线教学设计

平行四边形的判定——三角形的中位线教学设计

19.1.2 平行四边形的判定——三角形的中位线教学设计丹江口市土台中学刘桂林一、教学目标:1.理解三角形中位线的概念,掌握它的性质.2.能较熟练地应用三角形中位线性质进行有关的证明和计算.3.经历探索、猜想、证明的过程,进一步发展推理论证的能力.4.能运用综合法证明有关三角形中位线性质的结论.理解在证明过程中所运用的归纳、类比、转化等思想方法.二、重点、难点1.重点:掌握和运用三角形中位线的性质.2.难点:三角形中位线性质的证明(辅助线的添加方法).3.难点的突破方法:(1)本教材三角形中位线的内容是由一道例题从而引出其概念和性质的,新教材与老教材在这个知识的讲解顺序安排上是不同的,它这种安排是要降低难度,但由于学生在前面的学习中,添加辅助线的练习很少,因此无论讲解顺序怎么安排,证明三角形中位线的性质(例1)时,题中辅助线的添加都是一大难点,因此教师一定要重点分析辅助线的作法的思考过程.让学生理解:所证明的结论既有平行关系,又有数量关系,联想已学过的知识,可添加辅助线构造平行四边形,利用平行四边形的对边平行且相等来证明结论成立的思路与方法.(2)强调三角形的中位线与中线的区别:中位线:中点与中点的连线;中线:顶点与对边中点的连线.(3)要把三角形中位线性质的特点、条件、结论及作用交代清楚:特点:在同一个题设下,有两个结论.一个结论表明位置关系,另一个结论表明数量关系;条件(题设):连接两边中点得到中位线;结论:有两个,一个表明中位线与第三边的位置关系,另一个表明中位线与第三边的数量关系(在应用时,可根据需要选用其中的结论);作用:在已知两边中点的条件下,证明线段的平行关系及线段的倍分关系.(4)可通过题组练习,让学生掌握其性质.三、例题的意图分析例1是教材P98的例4,这是三角形中位线性质的证明题,教材采用的是先证明后引出概念与性质的方法,它一是要练习巩固平行四边形的性质与判定,二是为了降低难度,因此教师们在教学中要把握好度.建议讲完例1,引出三角形中位线的概念和性质后,马上做一组练习,以巩固三角形中位线的性质,然后再讲例2.例2是一道补充题,选自老教材的一个例题,它是三角形中位线性质与平行四边形的判定的混合应用题,题型挺好,添加辅助线的方法也很巧,结论以后也会经常用到,可根据学生情况适当的选讲例2.教学中,要把辅助线的添加方法讲清楚,可以借助与多媒体或教具.四、课堂引入1.平行四边形的性质;平行四边形的判定;它们之间有什么联系?2.你能说说平行四边形性质与判定的用途吗?(答:平行四边形知识的运用包括三个方面:一是直接运用平行四边形的性质去解决某些问题.例如求角的度数,线段的长度,证明角相等或线段相等等;二是判定一个四边形是平行四边形,从而判定直线平行等;三是先判定一个四边形是平行四边形,然后再眼再用平行四边形的性质去解决某些问题.)3.创设情境实验:请同学们思考:将任意一个三角形分成四个全等的三角形,你是如何切割的?(答案如图)图中有几个平行四边形?你是如何判断的?五、例习题分析例1(教材P98例4) 如图,点D 、E 、分别为△ABC 边AB 、AC 的中点,求证:DE ∥BC 且DE=21BC . 分析:所证明的结论既有平行关系,又有数量关系,联想已学过的知识,可以把要证明的内容转化到一个平行四边形中,利用平行四边形的对边平行且相等的性质来证明结论成立,从而使问题得到解决,这就需要添加适当的辅助线来构造平行四边形.方法1:如图(1),延长DE 到F ,使EF=DE ,连接CF ,由△ADE ≌△CFE ,可得AD ∥FC ,且AD=FC ,因此有BD ∥FC ,BD=FC ,所以四边形BCFD 是平行四边形.所以DF ∥BC ,DF=BC ,因为DE=21DF ,所以DE ∥BC 且DE=21BC . (也可以过点C 作CF ∥AB 交DE 的延长线于F 点,证明方法与上面大体相同)方法2:如图(2),延长DE 到F ,使EF=DE ,连接CF 、CD 和AF ,又AE=EC ,所以四边形ADCF 是平行四边形.所以AD ∥FC ,且AD=FC .因为AD=BD ,所以BD ∥FC ,且BD=FC .所以四边形ADCF 是平行四边形.所以DF ∥BC ,且DF=BC ,因为DE=21DF ,所以DE ∥BC 且DE=21BC . 定义:连接三角形两边中点的线段叫做三角形的中位线.【思考】:(1)想一想:①一个三角形的中位线共有几条?②三角形的中位线与中线有什么区别?(2)三角形的中位线与第三边有怎样的关系?(答:(1)一个三角形的中位线共有三条;三角形的中位线与中线的区别主要是线段的端点不同.中位线是中点与中点的连线;中线是顶点与对边中点的连线. (2)三角形的中位线与第三边的关系:三角形的中位线平行与第三边,且等于第三边的一半.)三角形中位线的性质:三角形的中位线平行与第三边,且等于第三边的一半.〖拓展〗利用这一定理,你能证明出在设情境中分割出来的四个小三角形全等吗?(让学生口述理由)例2(补充)已知:如图(1),在四边形ABCD 中,E 、F 、G 、H 分别是 AB 、BC 、CD 、DA 的中点.求证:四边形EFGH 是平行四边形.分析:因为已知点E 、F 、G 、H 分别是线段的中点,可以设法应用三角形中位线性质找到四边形EFGH 的边之间的关系.由于四边形的对角线可以把四边形分成两个三角形,所以添加辅助线,连接AC 或BD ,构造“三角形中位线”的基本图形后,此题便可得证.证明:连结AC (图(2)),△DAG 中,∵ AH=HD ,CG=GD ,∴ HG ∥AC ,HG=21AC (三角形中位线性质).同理EF ∥AC ,EF=21AC . ∴ HG ∥EF ,且HG=EF .∴ 四边形EFGH 是平行四边形.此题可得结论:顺次连结四边形四条边的中点,所得的四边形是平行四边形.六、课堂练习1.(填空)如图,A、B两点被池塘隔开,在AB外选一点C,连结AC和BC,并分别找出AC和BC的中点M、N,如果测得MN=20 m,那么A、B两点的距离是m,理由是.2.已知:三角形的各边分别为8cm 、10cm和12cm ,求连结各边中点所成三角形的周长.3.如图,△ABC中,D、E、F分别是AB、AC、BC的中点,(1)若EF=5cm,则AB= cm;若BC=9cm,则DE= cm;(2)中线AF与DE中位线有什么特殊的关系?证明你的猜想.七、课后练习1.(填空)一个三角形的周长是135cm,过三角形各顶点作对边的平行线,则这三条平行线所组成的三角形的周长是cm.2.(填空)已知:△ABC中,点D、E、F分别是△ABC三边的中点,如果△DEF的周长是12cm,那么△ABC的周长是cm.3.已知:如图,E、F、G、H分别是AB、BC、CD、DA的中点.求证:四边形EFGH是平行四边形.。

平行四边形、三角形中位线、两条平行线教案

平行四边形、三角形中位线、两条平行线教案

平行四边形的判定、三角形中位线、两平行线距离教案授课时间:2009年4月9号授课地点:昆明铁路五中授课老师:(第10签号)一、学习目标:(一)平行四边形的判定1.探索并掌握平行四边形的判别条件,领会其应用。

2.经历平行四边形判定条件的探索过程,发展学生的合情推理意识和表述能力。

3.培养学生合情推理能力,以及严谨的书写表达,体会几何思维的真正内涵。

(二)三角形中位线定理1.掌握中位线的概念和三角形中位线定理。

2.掌握定理“过三角形一边中点且平行另一边的直线平分第三边”。

3.能够应用三角形中位线概念及定理进行有关的论证和计算,进一步提高学生的计算能力。

(三)两平行线距离1.理解平行线之间的距离的概念。

2.能够测量两条平行线之间的距离,会画到已知直线已知距离的平行线。

3.通过平行线之间的距离转化为点到直线的距离,使学生初步体验转化的数学思想。

二、重难点、关键:(一)平行四边形的判定1.重点:理解和掌握平行四边形的判定定理。

2.难点:几何推理方法的应用。

3.关键:把握动手操作、观察、交流这一思想立线,利用三角形全等的概念加以理解,解决重点突破难点。

(二)三角形中位线定理1.重点:三角形中位线的概论与三角形中位线性质。

2.难点:三角形中位线定理的证明,需要添加适当的辅助线证明。

(三)两平行线距离1.重点:理解平行线之间的距离的概念,其实就是转化为上学期学过的点到直线的距离问题。

2.难点:画到知直线已知距离的平行线是本节的难点.三、教学准备教师准备:教具:三角板、直尺等常用画图工具,从课本P86“探究”内容开始;四、教学过程(一)、19.1.2平行四边形的判定一、回顾交流,逆向思索教师提问:1.平行四边形定义是什么?如何表示?2.平行四边形性质是什么?如何概括?学生活动:(思考后举手回答)回答(定义):1.•两组对边分别平行的四边形叫做平行四边形(画图)回答(性质):2.平行四边形性质:从边考虑(1)对边平行,(2)对边相等,(3)•对边平行且相等(“//”);从角考虑:对角相等;从对角线考虑:两条对角线互相平分.(借助上图直观理解).平行四边形⎧⎧⇒⎪⎨⎩⎪⎪⎧⎪⇒⇒⎨⎨⎩⎪⎪⇒⎪⎪⎩对边平行边对边相等对角相等角邻角互补对角线互相平分【活动方略】(条件允许情况下实施该活动方略)(1)教师活动:打开课本P86和P87“探究”的问题.用问题牵引学生动手操作、思考、发现、归纳、论证,可以让学生分成几个小组(4人小组)讨论,•然后再进行小组汇报,教师同时也拿出教具同学生在一起探索.(2)学生活动:分几个小组(四个小组),拿出准备好的学具探究.在活动中发现:(1)•将两长两短的四根细木条(或用硬纸片),用小钉铰合在一起,做成四边形,如果等长的木条成对边,那么无论如何转动这四边形,它的形状都是平行四边形;(2)•若将两根细木条中点用钉子钉合在一起,用像皮筋连接木条的顶点,做成一个四边形,转动两根木条,这个四边形是平行四边形.(3)将两条等长的木条平行放置,•另外用两根木条(不一定等长)用钉子予以加固,得到的四边形一定是平行四边形.(如下图)提出问题:同学们能否证明出上面所提出的判定呢?学生活动:开始证明上面提出的判定方法.主要是通过辅助线将四边形切割成一对三角形,再证明这对三角形全等把问题归结到定义上去.评析:在教师的指导下,学生学会添加辅助线,并学会数学的化归思想,这是几何学的重要环节,应予以突破.【设计意图】将两个“探究”应用操作感知的方法来发现,再应用数学化归思想,借助辅助线予以推理论证,达到解决重点,突破难点的目的.二、范例点击,应用所学例1(课本P87 图19.1.9)如图,□ ABCD 的对角线AC ,BD 交于点O ,E 、F 是AC 上的两点,并且AE=CF .求证四边形BFDE 是平行四边形.A CBOF ED思路点拨:例1的证明方法有多种,思路1:用课本的证法,依据平行四边形的对角线性质(两条对角线相互平分)为方向,用AE=CF ,可得OE=OF ,OB=OD ,从而得证.思路2:连接BE 、DF ,•利用三角形全等来证明四边形BFDE 的两组对边分别相等. 思路3:证明△ADE•≌△BCF•得到DE=BF ,∠DEO=∠BFO .从而推出DE ∥BF ,也就是说用一组对边平行且相等的方法来证.但课本的证法最简单.教师活动:分析例1,引导学生从不同的思路来证明例1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

19.1.2 平行四边形的判定——三角形的中位线教学设计
丹江口市土台中学刘桂林
一、教学目标:
1.理解三角形中位线的概念,掌握它的性质.
2.能较熟练地应用三角形中位线性质进行有关的证明和计算.
3.经历探索、猜想、证明的过程,进一步发展推理论证的能力.
4.能运用综合法证明有关三角形中位线性质的结论.理解在证明过程中所运用的归纳、类比、转化等思想方法.
二、重点、难点
1.重点:掌握和运用三角形中位线的性质.
2.难点:三角形中位线性质的证明(辅助线的添加方法).
3.难点的突破方法:
(1)本教材三角形中位线的内容是由一道例题从而引出其概念和性质的,新教材与老教材在这个知识的讲解顺序安排上是不同的,它这种安排是要降低难度,但由于学生在前面的学习中,添加辅助线的练习很少,因此无论讲解顺序怎么安排,证明三角形中位线的性质(例1)时,题中辅助线的添加都是一大难点,因此教师一定要重点分析辅助线的作法的思考过程.让学生理解:所证明的结论既有平行关系,又有数量关系,联想已学过的知识,可添加辅助线构造平行四边形,利用平行四边形的对边平行且相等来证明结论成立的思路与方法.(2)强调三角形的中位线与中线的区别:
中位线:中点与中点的连线;
中线:顶点与对边中点的连线.
(3)要把三角形中位线性质的特点、条件、结论及作用交代清楚:
特点:在同一个题设下,有两个结论.一个结论表明位置关系,另一个结论表明数量关系;
条件(题设):连接两边中点得到中位线;
结论:有两个,一个表明中位线与第三边的位置关系,另一个表明中位线与第三边的数量关系(在应用时,可根据需要选用其中的结论);
作用:在已知两边中点的条件下,证明线段的平行关系及线段的倍分关系.
(4)可通过题组练习,让学生掌握其性质.
三、例题的意图分析
例1是教材P98的例4,这是三角形中位线性质的证明题,教材采用的是先证明后引出概念与性质的方法,它一是要练习巩固平行四边形的性质与判定,二是为了降低难度,因此教师们在教学中要把握好度.建议讲完例1,引出三角形中位线的概念和性质后,马上做一组练习,以巩固三角形中位线的性质,然后再讲例2.
例2是一道补充题,选自老教材的一个例题,它是三角形中位线性质与平行四边形的判定的混合应用题,题型挺好,添加辅助线的方法也很巧,结论以后也会经常用到,可根据学生情况适当的选讲例2.教学中,要把辅助线的添加方法讲清楚,可以借助与多媒体或教具.
四、课堂引入
1.平行四边形的性质;平行四边形的判定;它们之间有什么联系?
2.你能说说平行四边形性质与判定的用途吗?
(答:平行四边形知识的运用包括三个方面:一是直接运用平行四边形的性质去解决某些问题.例如求角的度数,线段的长度,证明角相等或线段相等等;二是判定一个四边形是平行四边形,从而判定直线平行等;三是先判
定一个四边形是平行四边形,然后再眼再用平行四边形的性质去解决某些问题.)
3.创设情境
实验:请同学们思考:将任意一个三角形分成四个全等的三角形,你是如何切割的?(答
案如图)
图中有几个平行四边形?你是如何判断的?
五、例习题分析
例1(教材P98例4) 如图,点D 、E 、分别为△ABC 边AB 、AC 的中点,求证:DE ∥BC 且DE=21BC . 分析:所证明的结论既有平行关系,又有数量关系,联想已学过的知识,可以把要证明的内
容转化到一个平行四边形中,利用平行四边形的对边平行且相等的性质来证明结论成立,从而
使问题得到解决,这就需要添加适当的辅助线来构造平行四边形.
方法1:如图(1),延长DE 到F ,使EF=DE ,连接CF ,由△ADE ≌△CFE ,可得AD ∥
FC ,且AD=FC ,因此有BD ∥FC ,BD=FC ,所以四边形BCFD 是平行四边形.所以DF ∥BC ,
DF=BC ,因为DE=21DF ,所以DE ∥BC 且DE=21BC . (也可以过点C 作CF ∥AB 交DE 的延长线于F 点,证明方法与上面大体相同)
方法2:如图(2),延长DE 到F ,使EF=DE ,连接CF 、CD 和AF ,又AE=EC ,所以四
边形ADCF 是平行四边形.所以AD ∥FC ,且AD=FC .因为AD=BD ,所以BD ∥FC ,且BD=FC .所
以四边形ADCF 是平行四边形.所以DF ∥BC ,且DF=BC ,因为DE=21DF ,所以DE ∥BC 且DE=21BC . 定义:连接三角形两边中点的线段叫做三角形的中位线.
【思考】:
(1)想一想:①一个三角形的中位线共有几条?②三角形的中位线与中线有什么区别?
(2)三角形的中位线与第三边有怎样的关系?
(答:(1)一个三角形的中位线共有三条;三角形的中位线与中线的区别主要是线段的端点不同.中位线是中点与中点的连线;中线是顶点与对边中点的连线. (2)三角形的中位线与第三边的关系:三角形的中位线平行与第三边,且等于第三边的一半.)
三角形中位线的性质:三角形的中位线平行与第三边,且等于第三边的一半.
〖拓展〗利用这一定理,你能证明出在设情境中分割出来的四个小三角形全等吗?(让学生口述理由) 例2(补充)已知:如图(1),在四边形ABCD 中,E 、F 、G 、H 分别是 AB 、BC 、
CD 、DA 的中点.
求证:四边形EFGH 是平行四边形.
分析:因为已知点E 、F 、G 、H 分别是线段的中点,可以设法应用三角形中位线性质找
到四边形EFGH 的边之间的关系.由于四边形的对角线可以把四边形分成两个三角形,所以添
加辅助线,连接AC 或BD ,构造“三角形中位线”的基本图形后,此题便可得证.
证明:连结AC (图(2)),△DAG 中,
∵ AH=HD ,CG=GD ,
∴ HG ∥AC ,HG=21AC (三角形中位线性质).
同理EF ∥AC ,EF=21AC . ∴ HG ∥EF ,且HG=EF .
∴ 四边形EFGH 是平行四边形.
此题可得结论:顺次连结四边形四条边的中点,所得的四边形是平行四边形.
六、课堂练习
1.(填空)如图,A、B两点被池塘隔开,在AB外选一点C,连结AC和BC,并分别找出
AC和BC的中点M、N,如果测得MN=20 m,那么A、B两点的距离是m,理由是.2.已知:三角形的各边分别为8cm 、10cm和12cm ,求连结各边中点所成三角形的周长.
3.如图,△ABC中,D、E、F分别是AB、AC、BC的中点,
(1)若EF=5cm,则AB= cm;若BC=9cm,则DE= cm;
(2)中线AF与DE中位线有什么特殊的关系?证明你的猜想.
七、课后练习
1.(填空)一个三角形的周长是135cm,过三角形各顶点作对边的平行线,则这三条平行线所组成的三角形的周长是cm.
2.(填空)已知:△ABC中,点D、E、F分别是△ABC三边的中点,如果△DEF的周长
是12cm,那么△ABC的周长是cm.
3.已知:如图,E、F、G、H分别是AB、BC、CD、DA的中点.求证:四边形EFGH是
平行四边形.。

相关文档
最新文档