高考数学复习导数应用题的解答技巧

合集下载

高中数学导数难题怎么解题

高中数学导数难题怎么解题

高中数学导数难题怎么解题导数是高考数学必考的内容,近年来高考加大了对以导数为载体的知识问题的考查,题型在难度、深度和广度上不断地加大、加深,从而使得导数相关知识愈发显得重要。

下面是小编为大家整理的关于高中数学导数难题解题技巧,希望对您有所帮助。

欢迎大家阅读参考学习!1.导数在判断函数的单调性、最值中的应用利用导数来求函数的最值的一般步骤是: (1)先根据求导公式对函数求出函数的导数; (2)解出令函数的导数等于 0 的自变量; (3)从导数性质得出函数的单调区间; (4)通过定义域从单调区间中求出函数最值。

2.导数在函数极值中的应用利用导数的知识来求函数极值是高中数学问题比较常见的类型。

利用导数求函数极值的一般步骤是: (1)首先根据求导法则求出函数的导数; (2)令函数的导数等于 0,从而解出导函数的零点; (3)从导函数的零点个数来分区间讨论,得到函数的单调区间; (4)根据极值点的定义来判断函数的极值点,最后再求出函数的极值。

3.导数在求参数的取值范围时的应用利用导数求函数中的某些参数的取值范围,成为近年来高考的热点。

在一般函数含参数的题中,通过运用导数来化简函数,可以更快速地求出参数的取值范围。

导数知识在函数解题中的妙用函数知识是高中数学的重点内容,其中包括极值、图像、奇偶性、单调性等方面的分析,具有代表性的题型就是极值的计算和单调性的分析,按照普通的解题过程是通过图像来分析,可是对于较难的函数来说,制作图像不仅浪费时间,而且极容易出错,而在函数解题中应用导数简直就是手到擒来。

例如:函数 f(x)=x3+3x2+9x+a,分析 f(x)的单调性。

这是高中数学中常见的三次函数,在对这道题目进行单调性分析时,很多学生根据思维定式会采用常规的手法画图去分析单调区间,但由于未知数a 的存在而遇到困难。

如果考虑用导数的相关知识解决这一问题,解:f’(x)=-3x2+6x+9,令 f’(x)>0,那么解得 x<-1 或者 x>3,也就是说函数在(- ∞ ,-1), (3,+∞)这个单调区间上单调递减,这样就能非常容易的判断函数的单调性。

高考导数的题型及解题技巧

高考导数的题型及解题技巧

高考导数的题型及解题技巧高考中,导数是数学必修内容之一,也是考生需要重点掌握的知识点之一。

导数作为微积分的基础,不仅能帮助我们求出函数的极值、最大值、最小值等,还能证明函数的性质,解决数学问题。

在高考中,涉及导数的题目类型有很多,以下是常见的几种题型及解题技巧。

一、求导数求导数是导数的基础操作,也是高考中出现频率最高的题型之一。

求导数的方法有很多,如极限法、公式法、差商法、反函数法等。

在解题时,需要掌握各种方法,依据题目的具体情况选择合适的方法求解。

二、函数的单调性和极值要判断函数的单调性和极值,需要先求出函数的导数,然后通过导数的符号来判断函数的单调性和极值。

如果导数为正,则函数单调递增;如果导数为负,则函数单调递减;如果导数为0,则函数取极值。

在解题时,需要注意导数为0时,还需要判断函数是否具有拐点。

三、曲线的凹凸性和拐点要判断曲线的凹凸性和拐点,同样需要求出函数的导数和二阶导数,然后通过二阶导数的符号来判断曲线的凹凸性和拐点。

如果二阶导数为正,则曲线凹向上;如果二阶导数为负,则曲线凹向下;如果二阶导数为0,则曲线具有拐点。

在解题时,需要注意拐点处是否是函数的极值点。

四、函数的应用题导数在实际生活中有很多应用,如速度、加速度、最优化等。

在解决这类题目时,需要将问题转化为函数的导数问题,然后根据导数的性质求解。

在解题时,需要理解速度、加速度等概念,并注意题目中给定的条件。

总之,导数是高考数学的重点和难点,需要考生认真掌握,熟练运用。

在复习时,建议多做例题,掌握各种求导方法和计算技巧,熟悉各种题型的解题思路,才能在考试中发挥出自己的水平。

高中数学导数的应用解题技巧

高中数学导数的应用解题技巧

高中数学导数的应用解题技巧导数是高中数学中的重要概念,它不仅在微积分中起到关键作用,还有广泛的应用领域。

在解题过程中,合理运用导数的应用解题技巧,能够提高解题效率,帮助我们更好地理解问题,并得到准确的答案。

本文将通过具体的例子,介绍一些常见的导数应用解题技巧,帮助高中学生和他们的父母更好地掌握这一知识点。

一、最值问题最值问题是导数应用中的常见题型,它要求我们通过导数的性质,求出函数在某个区间内的最大值或最小值。

以一个简单的例子来说明:例题1:求函数$f(x)=x^3-3x^2+2x+1$在区间[-1,2]上的最大值和最小值。

解析:首先,我们需要求出函数的导数。

对函数$f(x)$求导得到$f'(x)=3x^2-6x+2$。

接下来,我们需要找到导数$f'(x)$的零点,即解方程$3x^2-6x+2=0$。

解这个二次方程可以得到两个根$x_1=1-\sqrt{3}$和$x_2=1+\sqrt{3}$。

我们将区间[-1,2]分成三个部分:[-1,1-√3]、[1-√3,1+√3]和[1+√3,2]。

然后,我们在这三个区间内分别求出$f(x)$的导数值,并找出最大值和最小值。

在区间[-1,1-√3],导数$f'(x)$的值为正,说明函数$f(x)$在这个区间内单调递增。

因此,最小值出现在$x=1-√3$时,即$f(1-√3)$为最小值。

在区间[1-√3,1+√3],导数$f'(x)$的值为负,说明函数$f(x)$在这个区间内单调递减。

因此,最大值出现在$x=1+√3$时,即$f(1+√3)$为最大值。

在区间[1+√3,2],导数$f'(x)$的值为正,说明函数$f(x)$在这个区间内单调递增。

因此,最大值出现在$x=2$时,即$f(2)$为最大值。

综上所述,函数$f(x)$在区间[-1,2]上的最大值为$f(2)$,最小值为$f(1-√3)$。

通过这个例题,我们可以看出,最值问题的关键在于求出函数的导数,并通过导数的符号来判断函数在不同区间内的单调性。

高考数学复习讲义:破解导数问题常用到的4种方法

高考数学复习讲义:破解导数问题常用到的4种方法

(-∞,-a-1),(a,+∞),f(x)的极小值为 f(-a-1)=-a2,极大
值为 f(a)=1.当 a<0 时,f(x)的递增区间是(-∞,a),(-a-1,
+∞),递减区间是(a,-a-1),f(x)的极小值为 f(-a-1)=-a2,
极大值为 f(a)=1.
返回
[题后悟通] 求导后,若导函数中的二次三项式能因式分解需考虑首 项系数是否含有参数.若首项系数有参数,就按首项系数为 零、为正、为负进行讨论.可归纳为“首项系数含参数,先 证系数零正负”.
函数,当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(3)=0,则不
等式f(x)g(x)>0的解集是
()
A.(-3,0)∪(3,+∞)
B.(-3,0)∪(0,3)
C.(-∞,-3)∪(3,+∞)
D.(-∞,-3)∪(0,3)
返回
[解析] 利用构造条件中“f′(x)g(x)+f(x)g′(x)”与待 解不等式中“f(x)g(x)”两个代数式之间的关系,可构造函数 F(x)=f(x)g(x),由题意可知,当x<0时,F′(x)>0,所以F(x) 在(-∞,0)上单调递增.又因为f(x),g(x)分别是定义在R上 的奇函数和偶函数,所以F(x)是定义在R上的奇函数,从而 F(x)在(0,+∞)上单调递增,而F(3)=f(3)g(3)=0,所以 F(-3)=-F(3),结合图象可知不等式f(x)g(x)>0⇔F(x)>0的 解集为(-3,0)∪(3,+∞),故选A.

f′(x)=0⇒x1=-a-3
a2-3,x2=-a+3
a2-3 .
x (-∞,x1) (x1,x2) (x2,+∞)

如何快速解决高考数学中的导数问题

如何快速解决高考数学中的导数问题

如何快速解决高考数学中的导数问题作为高中数学的一个难点,导数问题是很多考生头疼不已的题目。

但是,掌握了一些解题技巧与方法,我们可以轻松应对导数问题,提高解题的效率。

在这篇文章中,我们将分享一些如何快速解决高考数学中的导数问题的技巧与方法。

一、掌握基本概念在解决导数问题之前,我们首先要掌握基本概念。

在高中数学中,导数是一个数学分支,是描述函数怎样随自变量的变化而变化的一种工具。

在学习导数时,我们需要掌握导数的定义、性质、公式与几何意义等基本概念。

在解决导数问题时,我们需要掌握导数的求解步骤,例如利用导数的基本公式求导、利用链式法则、反函数求导、隐函数求导等方法求导等等。

二、做好基础练习在掌握了基本概念之后,我们要进行基础练习。

在做基础练习的时候,可以从简单到复杂、从易到难的顺序逐步练习。

在做基础练习时,我们需要注意题目的解题方法与技巧,例如如何根据导数的基本公式求导、如何利用链式法则求导等等。

此外,在做练习的过程中,我们还要注意细节,尤其是符号的使用、计算的准确性等。

三、掌握常见题型在做基础练习的过程中,我们可以逐步掌握常见题型。

在高考数学中,导数问题的题型非常多,例如求函数在某点的导数值、求函数在某点的切线方程、求函数的最值等等。

在掌握常见题型的过程中,我们需要注意题目的特点与难点,例如如何根据题目条件求解问题等等。

四、多练习真题多练习真题是巩固知识的重要方法。

在做高考数学真题时,我们可以有针对性地练习导数问题。

在做真题的过程中,我们需要注意不同年份、不同省份的高考数学试卷的出题特点,例如不同年份、不同省份对导数问题的出题难度、范围等等。

在做真题时,我们还可以掌握解题的技巧与方法,例如如何运用公式、如何化简计算等等。

五、学会总结经验学会总结经验也是提高解题效率的重要方法。

在做练习与真题的过程中,我们可以总结解题方法、经验与技巧,并归纳整理成笔记。

在总结经验时,我们要注重理解与应用,将概念、公式、方法等整理出来,形成系统化的知识框架,以便复习时更加方便、快捷。

高考数学导数解题技巧及方法

高考数学导数解题技巧及方法

高考数学导数解题技巧及方法数学是许多人难以攻克的短板,你的数学学得如何?千万不要焦虑,下面就是小编给大家带来的,希望大家喜欢!1.通过选择题和填空题,全面考查函数的基本概念,性质和图象。

2.在解答题的考查中,与函数有关的试题常常是以综合题的形式出现。

3.从数学具有高度抽象性的特点出发,没有忽视对抽象函数的考查。

4.一些省市对函数应用题的考查是与导数的应用结合起来考查的。

5.涌现了一些函数新题型。

6.函数与方程的思想的作用不仅涉及与函数有关的试题,而且对于数列,不等式,解析几何等也需要用函数与方程思想作指导。

7.多项式求导(结合不等式求参数取值范围),和求斜率(切线方程结合函数求最值)问题。

8.求极值,函数单调性,应用题,与三角函数或向量结合。

1.单调性问题研究函数的单调性问题是导数的一个主要应用,解决单调性、参数的范围等问题,需要解导函数不等式,这类问题常常涉及解含参数的不等式或含参数的不等式的恒成立、能成立、恰成立的求解。

由于函数的表达式常常含有参数,所以在研究函数的单调性时要注意对参数的分类讨论和函数的定义域。

2.极值问题求函数 y=f(x)的极值时,要特别注意 f'(x0)=0 只是函数在 x=x0 有极值的必要条件,只有当 f'(x0)=0 且在_0 时,f'(x0)异号,才是函数 y=f(x)有极值的充要条件,此外,当函数在 x=x0 处没有导数时,在 x=x0 处也可能有极值,例如函数 f(x)= |x|在 x=0 时没有导数,但是,在 x=0 处,函数 f(x)= |x| 有极小值。

还要注意的是,函数在 x=x0 有极值,必须是 x=x0 是方程 f'(x)=0 的根,但不是二重根(或 2k 重根),此外,在确定极值点时,要注意,由 f'(x)=0 所求的驻点是否在函数的定义域内。

3.切线问题曲线 y=f(x)在 x=x0 处的切线方程为 y-f(x0)=f'(x0)(x-x0),切线与曲线的综合,可以出现多种变化,在解题时,要抓住切线方程的建立,切线与曲线的位置关系展开推理,发展理性思维。

高考数学导数解题技巧

高考数学导数解题技巧

高考数学导数解题技巧
在高考数学中,导数是一个常见的解题工具。

以下是一些解题技巧:
1. 使用定义法求导数:如果需要求一个函数在某个点的导数,可以使用定义法,即计算函数在该点附近的斜率。

具体步骤是计算函数在点x处的斜率极限,即Lim(h→0)[f(x+h)-f(x)]/h。

2. 使用基本导数公式:熟记一些基本导数公式可以帮助简化计算过程。

例如,常数函数的导数为0,幂函数的导数等于幂次乘以原函数的导数,指数函数的导数等于常数乘以指数。

3. 使用导数的性质:导数具有一些重要的性质,如线性性质和乘积规则。

线性性质表示导数是线性运算,即对于两个函数
f(x)和g(x),以及常数a和b,有导数[a*f(x) + b*g(x)]' = a*f'(x) + b*g'(x)。

乘积规则表示两个函数的乘积的导数等于其中一个函数的导数乘以另一个函数,再加上另一个函数的导数乘以第一个函数。

4. 使用链式法则:当一个函数由两个复合函数相乘或相除构成时,可以使用链式法则简化导数的计算。

链式法则可以表示为如果y = f(g(x)),则y' = f'(g(x)) * g'(x)。

5. 注意求导的顺序:当需要求一个复合函数的导数时,要注意求导的顺序。

通常,外函数的导数应该先求出来,再将其嵌入到内函数中求导。

以上是一些常见的高考数学导数解题技巧。

通过熟练掌握这些技巧,可以在考试中更快、更准确地解题。

高考数学导数大题技巧(精选5篇)

高考数学导数大题技巧(精选5篇)

高考数学导数大题技巧(精选5篇)高考数学导数大题技巧【篇1】1、选择题部分,高考的选择题部分题型考试的方向基本都是固定的,当你在一轮二轮复习过程中总结出题目的出题策略时,答题就变得很简单了。

比如立体几何三视图,概率计算,圆锥曲线离心率等等试题中都有一些特征,只要掌握思考的切入方法和要点,再适当训练基本就可以全面突破,但是如果不掌握核心方法,单纯做题训练就算做很多题目,突破也非常困难,学习就会进入一个死循环,对照答案可以理解,但自己遇到新的题目任然无从下手。

2、关于大题方面,基本上三角函数或解三角形、数列、立体几何和概率统计应该是考生努力把分数拿满的题目。

对于较难的原则曲线和导数两道题目基本要拿一半的分数,考生复习时可把数学大题的每一道题作为一个独立的版块章节,先总结每道大题常考的几种题型,再专项突破里面的运算方法,图形处理方法以及解题的思考突破口,只要把这些都归纳到位,那么总结的框架套路,都是可以直接秒刷的题目的高考数学导数大题技巧【篇2】1个、多项选择部分,高考选择题的方向基本是固定的,当你在二轮复习过程中总结出题策略时,答案变得很简单。

比如三维几何三视图,概率计算,试题中存在圆锥截面偏心等特点,只要掌握了入门方法和思维要点,经过适当的训练,基本可以全面突破,但是如果不掌握核心方法,单纯做练习题也算做了很多题,也很难突破,学习会进入死循环,比对答案,但是遇到新问题还是无从下手。

2个、关于大话题,基本上是三角函数或求解三角形、顺序、三维几何和概率统计应该是考生努力拿满分的科目。

比较难的原理曲线和导数,基本要一半分,考生在复习时可以将数学大题的每一题作为一个独立的section,先总结一下每个大题经常考的几类题型,然后在计算方法上特别突破,解题的图形处理方法与思维突破,把它全部放在适当的位置,然后总结框架套路,都是可以直接秒刷的话题高考数学导数大题技巧【篇3】1、函数与导数主要考查数学集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年高考数学复习导数应用题的解答技

导数应用
导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。

在高中阶段对于导数的学习,主要是以下几个方面:1、导数的常规问题:
(1)刻画函数(比初等方法精确细微);
(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);
(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于次多项式的导数问题属于较难类型。

2、关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。

3、导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。

知识整合
01、导数概念的理解。

02、利用导数判别可导函数的极值的方法及求一些实际问题的最大值与最小值。

复合函数的求导法则是微积分中的重点与难点内容。

课本中先通过实例,引出复合函数的求导法则,接下来对法则进行了证明。

03、要能正确求导,必须做到以下两点:
唐宋或更早之前,针对“经学”“律学”“算学”和“书学”各科目,其相应传授者称为“博士”,这与当今“博士”含义已经相去甚远。

而对那些特别讲授“武事”或讲解“经籍”者,又称“讲师”。

“教授”和“助教”均原为学官称谓。

前者始于宋,乃“宗学”“律学”“医学”“武学”等科目的讲授者;而后者则于西晋武帝时代即已设立了,主要协助国子、博士培养生徒。

“助教”在古代不仅要作入流的学问,其教书育人的职责也十分明晰。

唐代国子学、太学等所设之“助教”一席,也是当朝打眼的学官。

至明清两代,只设国子监(国子学)一科的“助教”,其身价不谓显赫,也称得上朝廷要员。

至此,无论是“博士”“讲师”,还是“教授”“助教”,其今日教师应具有的基本概念都具有了。

单靠“死”记还不行,还得“活”用,姑且称之为“先死后活”吧。

让学生把一周看到或听到的新鲜事记下来,摒弃那些假话套话空话,写出自己的真情实感,篇幅可长可短,并要求运用积累的成语、名言警句等,定期检查点评,选择优秀篇目在班里朗读或展出。

这样,即巩固了所学的材料,又锻炼了学生的写作能力,同时还培养了学生的观察能力、思维能力等等,达到“一石多鸟”的效果。

(1)熟练掌握各基本初等函数的求导公式以及和、差、积、商的求导法则,复合函数的求导法则。

(2)对于一个复合函数,一定要理清中间的复合关系,弄清各
分解函数中应对哪个变量求导。

我国古代的读书人,从上学之日起,就日诵不辍,一般在几年内就能识记几千个汉字,熟记几百篇文章,写出的诗文也是字斟句酌,琅琅上口,成为满腹经纶的文人。

为什么在现代化教学的今天,我们念了十几年书的高中毕业生甚至大学生,竟提起作文就头疼,写不出像样的文章呢?吕叔湘先生早在1978年就尖锐地提出:“中小学语文教学效果差,中学语文毕业生语文水平低,……十几年上课总时数是9160课时,语文是2749课时,恰好是30%,十年的时间,二千七百多课时,用来学本国语文,却是大多数不过关,岂非咄咄怪事!”寻根究底,其主要原因就是腹中无物。

特别是写议论文,初中水平以上的学生都知道议论文的“三要素”是论点、论据、论证,也通晓议论文的基本结构:提出问题――分析问题――解决问题,但真正动起笔来就犯难了。

知道“是这样”,就是讲不出“为什么”。

根本原因还是无“米”下“锅”。

于是便翻开作文集锦之类的书大段抄起来,抄人家的名言警句,抄人家的事例,不参考作文书就很难写出像样的文章。

所以,词汇贫乏、内容空洞、千篇一律便成了中学生作文的通病。

要解决这个问题,不能单在布局谋篇等写作技方面下功夫,必须认识到“死记硬背”的重要性,让学生积累足够的“米”。

相关文档
最新文档