小学数学牛吃草问题综合讲解及专项练习
小学奥数 牛吃草问题 知识点+例题+练习 (分类全面)

拓展:有一水池,池底有泉水不断涌出。用10部抽水机20小时可以把水抽干,用15部相同的抽水机10小时可以把水抽干。那么用25部这样的抽水机多少小时可以把水抽干?
例5、自动扶梯以均匀速度由下往上行驶着,两位性急的孩子要从扶梯上楼。已知男孩每分钟走20级台阶,女孩每分钟走15级台阶,结果男孩用5分钟到达楼上,女孩用了6分钟到达楼上。问:该扶梯共有多少级台阶?
拓展:自动扶梯以均匀速度行驶着,小明和小红从扶梯上楼。已知小明每分钟走25级台阶,小红 每分钟走20级台阶,结果小明用5分钟,小红用了6分钟分别到达楼上。该扶梯共有多少级台阶?
教学内容
牛吃草问题
教学目标
能理解牛吃草问题并会解决问题
重点
用二元一次方程组求有草量和每天生长草量
难点
用二元一次方程组求原有草量和每天生长草量
教
学
过
程
课堂精讲
知识点详解
牛吃草问题又称为消长问题或牛顿牧场,是17世纪英国伟大的科学家牛顿提出来的。典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。
拓展:牧场上长满了牧草,牧草每天匀速生长,这片牧草可供10头牛吃20天,可供15头牛吃10天。问:这片牧草可供25头牛吃多少天?
例2、一牧区长满牧草,每天牧草都在匀速生长。这牧区的草可供27头牛食用6周,可供23头牛食用9周。多少头牛8周可食完这牧区的草?
拓展:一块1000平方米扩大牧场里的草能够让12头牛吃16个星期,或让18头牛吃8个星期。如果在全部时间内,草能够均匀地生长,那么,一块4000平方米的牧场6个星期能养活多少头牛?
牛吃草问题例题详解(含练习和答案)

牛吃草问题“一堆草可供10头牛吃3天,这堆草可供6头牛吃几天”这道题太简单了,同学们一下就可求出:3×10÷6=5(天)。
如果我们把“一堆草”换成“一片正在生长的草地”,问题就不那么简单了,因为草每天都在生长,草的数量在不断变化。
这类工作总量不固定(均匀变化)的问题就是牛吃草问题。
例1牧场上一片青草,每天牧草都匀速生长。
这片牧草可供10头牛吃20天,或者可供15头牛吃10天。
问:可供25头牛吃几天分析与解:这类题难就难在牧场上草的数量每天都在发生变化,我们要想办法从变化当中找到不变的量。
总草量可以分为牧场上原有的草和新生长出来的草两部分。
牧场上原有的草是不变的,新长出的草虽然在变化,因为是匀速生长,所以这片草地每天新长出的草的数量相同,即每天新长出的草是不变的。
下面,就要设法计算出原有的草量和每天新长出的草量这两个不变量。
设1头牛一天吃的草为1份。
那么,10头牛20天吃200份,草被吃完;15头牛10天吃150份,草也被吃完。
前者的总草量是200份,后者的总草量是150份,前者是原有的草加20天新长出的草,后者是原有的草加10天新长出的草。
200-150=50(份),20—10=10(天),说明牧场10天长草50份,1天长草5份。
也就是说,5头牛专吃新长出来的草刚好吃完,5头牛以外的牛吃的草就是牧场上原有的草。
由此得出,牧场上原有草(l0—5)× 20=100(份)或(15—5)×10=100(份)。
现在已经知道原有草100份,每天新长出草5份。
当有25头牛时,其中的5头专吃新长出来的草,剩下的20头吃原有的草,吃完需100÷20=5(天)。
所以,这片草地可供25头牛吃5天。
在例1的解法中要注意三点:(1)每天新长出的草量是通过已知的两种不同情况吃掉的总草量的差及吃的天数的差计算出来的。
(2)在已知的两种情况中,任选一种,假定其中几头牛专吃新长出的草,由剩下的牛吃原有的草,根据吃的天数可以计算出原有的草量。
五年级数学奥数:牛吃草问题练习及答案【三篇】

【导语】海阔凭你跃,天⾼任你飞。
愿你信⼼满满,尽展聪明才智;妙笔⽣花,谱下锦绣第⼏篇。
学习的敌⼈是⾃⼰的知⾜,要使⾃⼰学⼀点东西,必需从不⾃满开始。
以下是⽆忧考为⼤家整理的《五年级数学奥数:⽜吃草问题练习及答案【三篇】》供您查阅。
【第⼀篇】牧场上⼀⽚青草,每天牧草都匀速⽣长.这⽚牧草可供10头⽜吃20天,或者可供15头⽜吃10天.问:可供25头⽜吃⼏天? 分析:这类题难就难在牧场上草的数量每天都在发⽣变化,我们要想办法从变化当中找到不变的量.总草量可以分为牧场上原有的草和新⽣长出来的草两部分.牧场上原有的草是不变的,新长出的草虽然在变化,因为是匀速⽣长,所以这⽚草地每天新长出的草的数量相同,即每天新长出的草是不变的.即: (1)每天新长出的草量是通过已知的两种不同情况吃掉的总草量的差及吃的天数的差计算出来的. (2)在已知的两种情况中,任选⼀种,假定其中⼏头⽜专吃新长出的草,由剩下的⽜吃原有的草,根据吃的天数可以计算出原有的草量. (3)在所求的问题中,让⼏头⽜专吃新长出的草,其余的⽜吃原有的草,根据原有的草量可以计算出能吃⼏天. 解答:解:设1头⽜1天吃的草为“1“,由条件可知,前后两次青草的问题相差为10×20-15×10=50. 为什么会多出这50呢?这是第⼆次⽐第⼀次多的那(20-10)=10天⽣长出来的,所以每天⽣长的青草为50÷10=5. 现从另⼀个⾓度去理解,这个牧场每天⽣长的青草正好可以满⾜5头⽜吃.由此,我们可以把每次来吃草的⽜分为两组,⼀组是抽出的15头⽜来吃当天长出的青草,另⼀组来吃是原来牧场上的青草,那么在这批⽜开始吃草之前,牧场上有多少青草呢?(10-5)×20=100. 那么:第⼀次吃草量20×10=200,第⼆次吃草量,15×10=150; 每天⽣长草量50÷10=5. 原有草量(10-5)×20=100或200-5×20=100. 25头⽜分两组,5头去吃⽣长的草,其余20头去吃原有的草那么100÷20=5(天). 答:可供25头⽜吃5天. 点评:解题关键是弄清楚已知条件,进⾏对⽐分析,从⽽求出每⽇新长草的数量,再求出草地⾥原有草的数量,进⽽解答题中所求的问题. 这类问题的基本数量关系是: 1、(⽜的头数×吃草较多的天数-⽜头数×吃草较少的天数)÷(吃的较多的天数-吃的较少的天数)=草地每天新长草量. 2、⽜的头数×吃草天数-每天新长量×吃草天数=草地原有的草.【第⼆篇】由于天⽓逐渐冷起来,牧场上的草不仅不长⼤,反⽽以固定的速度在减少.已知某块草地上的草可供20头⽜吃5天,或可供15头⽜吃6天.照此计算,可供多少头⽜吃10天? 分析:20头⽜5天吃草:20×5=100(份):15头⽜6天吃草:15×6=90(份);青草每天减少:(100-90)÷(6-5)=10(份);⽜吃草前牧场有草:100+10×5=150(份); 150份草吃10天本可供:150÷10=15(头);但因每天减少10份草,相当于10头⽜吃掉;所以只能供⽜15-10=5(头). 解:①青草每天减少:(20×5-90)÷(6-5)=10(份); ②⽜吃草前牧场有草 10×5+20×5 =50+100, =150(份). ③150÷10-10, =5(头). 答:可供5头⽜吃10天. 点评:此题属于⽜吃草问题,这类题⽬有⼀定难度.对于本题⽽⾔,关键的是要求出青草每天减少的数量.【第三篇】有⼀个蓄⽔池装有9根⽔管,其中⼀根为进⽔管,其余8根为相同的出⽔管.进⽔管以均匀的速度不停地向这个蓄⽔池注⽔.后来有⼈想打开出⽔管,使池内的⽔全部排光(这时池内已注⼊了⼀些⽔).如果把8根出⽔管全部打开,需3⼩时把池内的⽔全部排光;如果仅打开5根出⽔管,需6⼩时把池内的⽔全部排光.问要想在4.5⼩时内把池内的⽔全部排光,需同时打开⼏个出⽔管? 分析:假设打开⼀根出⽔管每⼩时可排⽔“1份”,那么8根出⽔管开3⼩时共排出⽔8×3=24(份);5根出⽔管开6⼩时共排出⽔5×6=30(份);两种情况⽐较,可知3⼩时内进⽔管放进的⽔是30-24=6(份);进⽔管每⼩时放进的⽔是6÷3=2(份);在4.5⼩时内,池内原有的⽔加上进⽔管放进的⽔,共有8×3+(4.5-3)×2=27(份).由此解答即可. 解:设打开⼀根出⽔管每⼩时可排出⽔“1份”,8根出⽔管开3⼩时共排出⽔8×3=24(份);5根出⽔管开6⼩时共排出⽔5×6=30(份). 30-24=6(份),这6份是“6-3=3”⼩时内进⽔管放进的⽔. (30-24)÷(6-3)=6÷3=2(份),这“2份”就是进⽔管每⼩时进的⽔. [8×3+(4.5-3)×2]÷4.5 =[24+1.5×2]÷4.5 =27÷4.5 =6(根) 答:需同时打开6根出⽔管. 点评:此题属于⽜吃草问题,解答关键是把打开⼀根出⽔管每⼩时可排⽔“1份”,进⼀步分析推理求解.。
精选牛吃草问题(含例题答案讲解)

小学数学牛吃草问题知识点总结:牛吃草问题:牛吃草问题又称为消长问题或牛顿牧场,就是17世纪英国伟大得科学家牛顿提出来得、典型牛吃草问题得条件就是假设草得生长速度固定不变,不同头数得牛吃光同一片草地所需得天数各不相同,求若干头牛吃这片草地可以吃多少天。
由于吃得天数不同,草又就是天天在生长得,所以草得存量随牛吃得天数不断地变化。
小升初冲刺第2讲牛吃草问题基本公式:1) 设定一头牛一天吃草量为“1"2)草得生长速度=(对应得牛头数×吃得较多天数-相应得牛头数×吃得较少天数)÷(吃得较多天数-吃得较少天数);3)原有草量=牛头数×吃得天数—草得生长速度×吃得天数;`4)吃得天数=原有草量÷(牛头数-草得生长速度);5)牛头数=原有草量÷吃得天数+草得生长速度。
例1、牧场上长满了牧草,牧草每天匀速生长,这片牧草可供10头牛吃20天,可供15头牛吃10天。
问:这片牧草可供25头牛吃多少天?解:假设1头牛1天吃得草得数量就是1份草每天得生长量:(200-150)÷(20-10)=5份10×20=200份……原草量+20天得生长量原草量:200-20×5=100或150-10×5=100份15×10=150份……原草量+10天得生长量 100÷(25-5)=5天[自主训练]牧场上长满了青草,而且每天还在匀速生长,这片牧场上得草可供9头牛吃20天,可供15头牛吃10天,如果要供18头牛吃,可吃几天?解:假设1头牛1天吃得草得数量就是1份草每天得生长量:(180-150)÷(20-10)=3份9×20=180份……原草量+20天得生长量原草量:180—20×3=120份或150-10×3=120份15×10=150份……原草量+10天得生长量 120÷(18-3)=8天例2、由于天气逐渐冷起来,牧场上得草不仅不长大,反而以固定速度在减少。
牛吃草问题 非常完整版例题讲解+课后作业

牛吃草问题例题讲解【例题1】青青一牧场,牧草喂牛羊;放牛二十七,六周全吃光。
改养廿三只,九周走他方;若养二十一,可作几周粮?(注:“廿”的读音与“念”相同。
“廿”即二十之意。
)【题意翻译】:一牧场长满青草,27头牛6个星期可以吃完,或者23头牛9个星期可以吃完。
若是21头牛,要几个星期才可以吃完?(注:牧场的草每天都在生长)【巩固】牧场上长满牧草,每天牧草都匀速生长.这片牧场可供10头牛吃20天,可供15头牛吃10天.供25头牛可吃几天?【例题2】牧场上有一片匀速生长的草地,可供27头牛吃6周,或供23头牛吃9周,那么它可供多少头牛吃18周?【巩固】有一块匀速生长的草场,可供12头牛吃25天,或可供24头牛吃10天.那么它可供几头牛吃20天?【例题3】由于天气逐渐冷起来,牧场上的草不仅不生长,反而以固定的速度在减少.已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天.照此计算,可以供多少头牛吃10天?【巩固】由于天气逐渐冷起来,牧场上的草不仅不长,反而以固定的速度在减少。
如果某块草地上的草可供25头牛吃4天,或可供16头牛吃6天,那么可供多少头牛吃12天?【例题4】由于天气逐渐变冷,牧场上的草每天以均匀的速度减少.经计算,牧场上的草可供20头牛吃5天,或可供16头牛吃6天.那么,可供11头牛吃几天?【巩固】由于天气逐渐冷起来,牧场上的草不仅不长,反而以固定的速度在减少。
如果某块草地上的草可供25头牛吃4天,或可供16头牛吃6天,那么可供10头牛吃多少天?【例题5】一块匀速生长的草地,可供16头牛吃20天或者供100只羊吃12天.如果一头牛一天吃草量等于5只羊一天的吃草量,那么这块草地可供10头牛和75只羊一起吃多少天?【巩固】有一片草场,草每天的生长速度相同。
若14头牛30天可将草吃完,70只羊16天也可将草吃完(4只羊一天的吃草量相当于1头牛一天的吃草量)。
那么,17头牛和20只羊多少天可将草吃完?【例题6】有一牧场,17头牛30天可将草吃完,19头牛则24天可以吃完.现有若干头牛吃了6天后,卖掉了4头牛,余下的牛再吃两天便将草吃完.问:原来有多少头牛吃草(草均匀生长)?【巩固】一片草地,可供5头牛吃30天,也可供4头牛吃40天,如果4头牛吃30天,又增加了2头牛一起吃,还可以再吃几天?【例题7】一片匀速生长的牧草,如果让马和牛去吃,15天将草吃尽;如果让马和羊去吃,20天将草吃尽;如果让牛和羊去吃,30天将草吃尽.已知牛和羊每天的吃草量的和等于马每天的吃草量.现在让马、牛、羊一起去吃草,几天可以将这片牧草吃尽?【巩固】现在有牛、羊、马吃一块草地的草,牛、马吃需要45天吃完,于是马、羊吃需要60天吃完,于是牛、羊吃需要90天吃完,牛、羊一起吃草的速度为马吃草的速度,求马、牛、羊一起吃,需多少时间?【例题8】东升牧场南面一块2000平方米的牧场上长满牧草,牧草每天都在匀速生长,这片牧场可供18头牛吃16天,或者供27头牛吃8天.在东升牧场的西侧有一块6000平方米的牧场,可供多少头牛吃6天?【巩固】有甲、乙两块匀速生长的草地,甲草地的面积是乙草地面积的3倍.30头牛12天能吃完甲草地上的草,20头牛4天能吃完乙草地上的草.问几头牛10天能同时吃完两块草地上的草?【例题9】一个农夫有面积为2公顷、4公顷和6公顷的三块牧场.三块牧场上的草长得一样密,而且长得一样快.农夫将8头牛赶到2公顷的牧场,牛5天吃完了草;如果农夫将8头牛赶到4公顷的牧场,牛15天可吃完草.问:若农夫将这8头牛赶到6公顷的牧场,这块牧场可供这些牛吃几天?【巩固】有三块草地,面积分别为5公顷、15公顷和24公顷.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天.问:第三块草地可供多少头牛吃80天?【例题10】4头牛28天可以吃完10公顷牧场上全部牧草,7头牛63天可以吃完30公顷牧场上全部牧草,那么60头牛多少天可以吃完40公顷牧场上全部牧草?(每公顷牧场上原有草量相等,且每公顷牧场上每天生长草量相等)【巩固】有三块草地,面积分别是4公顷、8公顷和10公顷.草地上的草一样厚而且长得一样快.第一块草地可供24头牛吃6周,第二块草地可供36头牛吃12周.问:第三块草地可供50头牛吃几周?【例题11】三块牧场,场上的草长得一样密,而且长得一样快,它们的面积分别是3公顷、10公顷和24公顷.第一块牧场饲养12头牛,可以维持4周;第二块牧场饲养25头牛,可以维持8周.问第三块牧场上饲养多少头牛恰好可以维持18周?【例题12】17头牛吃28公亩的草,84天可以吃完;22头牛吃同样牧场33公亩的草54天可吃完,几头牛吃同样牧场40公亩的草,24天可吃完?(假设每公亩牧草原草量相等,且匀速生长)【例题13】有三片牧场,场上草长得一样密,而且长得一样快.它们的面积分别是133公顷、10公顷和24公顷.已知12头牛4星期吃完第一片牧场的草,21头牛9星期吃完第二片牧场的草,那么多少头牛18星期才能吃完第三片牧场的草?【例题14】如图,一块正方形的草地被分成完全相等的四块和中间的阴影部分,已知草在各处都是同样速度均匀生长.牧民带着一群牛先在①号草地上吃草,两天之后把①号草地的草吃光(在这2天内其他草地的草正常生长).之后他让一半牛在②号草地吃草,一半牛在③号草地吃草,6天后又将两个草地的草吃光.然后牧民把13的牛放在阴影部分的草地中吃草,另外23的牛放在④号草地吃草,结果发现它们同时把草场上的草吃完.那么如果一开始就让这群牛在整块草地上吃草,吃完这些草需要多少时间?【课后作业】1、牧场有一片青草,每天长势一样,已知70头牛24天把草吃完,30头牛60天把草吃完,则头牛96天可以把草吃完.2、仓库里原有一批存货,以后继续运货进仓,且每天运进的货一样多。
牛吃草问题含例题答案讲解

牛吃草问题含例题答案讲解RUSER redacted on the night of December 17,2020小学数学牛吃草问题知识点总结:牛吃草问题:牛吃草问题又称为消长问题或牛顿牧场,是17世纪英国伟大的科学家牛顿提出来的。
典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。
由于吃的天数不同,草又是天天在生长的,所以草的存量随牛吃的天数不断地变化。
小升初冲刺第2讲牛吃草问题基本公式:1) 设定一头牛一天吃草量为“1”2)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);3)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;`4)吃的天数=原有草量÷(牛头数-草的生长速度);5)牛头数=原有草量÷吃的天数+草的生长速度。
例1、牧场上长满了牧草,牧草每天匀速生长,这片牧草可供10头牛吃20天,可供15头牛吃10天。
问:这片牧草可供25头牛吃多少天解:假设1头牛1天吃的草的数量是1份草每天的生长量:(200-150)÷(20-10)=5份10×20=200份……原草量+20天的生长量原草量:200-20×5=100 或150-10×5=100份15×10=150份……原草量+10天的生长量 100÷(25-5)=5天[自主训练] 牧场上长满了青草,而且每天还在匀速生长,这片牧场上的草可供9头牛吃20天,可供15头牛吃10天,如果要供18头牛吃,可吃几天解:假设1头牛1天吃的草的数量是1份草每天的生长量:(180-150)÷(20-10)=3份9×20=180份……原草量+20天的生长量原草量:180-20×3=120份或150-10×3=120份15×10=150份……原草量+10天的生长量 120÷(18-3)=8天例2、由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定速度在减少。
四年级奥数-牛吃草问题例题讲解

四年级奥数-牛吃草问题例题讲解work Information Technology Company.2020YEAR例1:牧场上长满牧草,每天都匀速生长。
这片牧场可供27头牛吃6天或23头牛吃9天。
问可供21头牛吃几天分析:设一头牛一天的吃草量为1份,(1)先算出牧场每天新增的草量为:(23×9-27×6)÷(9-6)=15份,(2)再算牧场原有的草量为:23×9-15×9=72份,(3)21头牛,要安排15头去吃每天新增的草量,剩余的牛21-15=6头去吃原有的草量,这样才可以把草吃完。
可以吃:72÷6=12天。
例2:一片牧场上长满牧草,如牧草每天都匀速生长。
则牧场可供27头牛吃6天或23头牛吃9天。
问想要18天吃完这些草要几头牛?分析:这道题和例1有点互逆的意思。
我们设一头牛一天的吃草量为1份,则(1)牧场每天新增的草量为:(23×9-27×6)÷(9-6)=15份,(2)牧场原有的草量为:23×9-15×9=72份,(3)18天要吃完草,先要安排15头牛去吃每天新增的草量,再安排72÷18=4头牛去吃原有的草量72份,所以要:15+4=19头牛。
例3:一条船有一个漏洞,水以均匀的速度漏进船内,待发现时船舱内已进了一些水。
如果用12人舀水,3小时舀完。
如果只有5个人舀水,要10小时才能舀完。
现在要想在2小时舀完,需要多少人?分析:这是一道有点变异的牛吃草问题,解题的思路也是和牛吃草问题一样。
设每人每小时舀水量为一份,则(1)漏水量(新增的水量):(10×5-12×3)÷(10-3)=2份,(2)船原有的水为:12×3-2×3=30份,要先安排2个人去舀新增的水量,再安排30÷2=15人去舀原有的水量30分,共要15+2=17人。
六年级数学下册《牛吃草问题》例题+答案

原有水量:15×3-15×1=30(份)
需要的时间:30÷(4-1)=10(分钟)
答:10分钟后可以将水排光。
解析∶设1头牛1天吃草1份
每天固定减少的草量:(20×5-15×6)÷(6-5)=10(份/天)
原有草总量=牛吃草量+固定减少草量
原有草量:20×5+10×5=150(份)
牛的头数:150÷10-10=5(头)
答:这块草地可供5头牛吃10天。
4.牧场上有一片青草,每天匀速生长,已知 15 头牛 10 天可以吃完这片青草,25 头牛 5 天可吃完这片青草,如果有 30 头牛,那么几天可吃完这片青草?
六年级数学下册
《牛吃草问题》例题+答案,练习掌握
牛吃草问题的重要公式
前提条件∶每头牛单位时间内吃的草量是相同的四个公式∶
①草长速度=总草量差÷总时间差
②原草量数=总草量数-草长速度×吃草时间
③吃草时间=原草量数÷(牛的总数-吃新草牛数)
④牛的总数=原草量数÷吃草时间+吃新草牛数
1.若这片草地,草匀速生长。该草地可供14头牛吃30天或供20头牛吃20天。那么该片草地每天新长的草可供2头牛吃多少天?
5.小诗博士的实验室内有一个水槽,水槽有1根注水管和6根排水管。打开注水管后,水不停地匀速流入水槽。若干分钟后,小诗博士想把水排出。如果将排水管全部打开,6分钟可以将水排光如果只打开3根排水管,15分钟可以将水排光。如果小诗博士同时打开4根排水管,多少分钟后可以将水排光?
解析∶假设一根排水管一分钟排出1份水
解析∶假设1头牛1天吃1份草;
那么,14头牛30天吃14×1×30=420(份)
20头牛20天吃20×1×20=400(份)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学数学牛吃草问题专项分析吃草问题是小学奥数五年级的内容,学过的同学都知道这是一类比较复杂的应用题,还有一些相应的变形题:排队买票、大坝泄洪、抽水机抽水等等。
那么在这里讲下牛吃草问题的解题思路和解题方法、技巧供大家学习。
一、解决此类问题,孩子必须弄个清楚几个不变量:1、草的增长速度不变2、草场原有草的量不变。
草的总量由两部分组成,分别为:牧场原有草和新长出来的草。
新长出来草的数量随着天数在变而变。
因此孩子要弄清楚三个量的关系:第一:草的均匀变化速度(是均匀生长还是均匀减少)第二:求出原有草量第三:题意让我们求什么(时间、牛头数)。
注意问题的变形:如果题目为抽水机问题的话,会让求需要多少台抽水机二、解题基本思路1、先求出草的均匀变化速度,再求原有草量。
2、在求出“每天新增长的草量”和“原有草量”后,已知头数求时间时,我们用“原有草量÷每天实际减少的草量(即头数与每日生长量的差)”求出天数。
3、已知天数求只数时,同样需要先求出“每天新生长的草量”和“原有草量”。
4、根据(“原有草量”+若干天里新生草量)÷天数”,求出只数三、解题基本公式解决牛吃草问题常用到的四个基本公式分别为:1、草的生长速度=对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数÷(吃的较多天数-吃的较少天数)2、原有草量=牛头数×吃的天数-草的生长速度×吃的天数3、吃的天数=原有草量÷(牛头数-草的生长速度)4、牛头数=原有草量÷吃的天数+草的生长速度四、下面举个例子例题:有一牧场,已知养牛27头,6天把草吃尽;养牛23头,9天把草吃尽。
如果养牛21头,那么几天能把牧场上的草吃尽呢?并且牧场上的草是不断生长的。
一般方法:先假设1头牛1天所吃的牧草为1,那么就有:(1)27头牛6天所吃的牧草为:27×6=162 (这162包括牧场原有的草和6天新长的草。
)(2)23头牛9天所吃的牧草为:23×9=207 (这207包括牧场原有的草和9天新长的草。
)(3)1天新长的草为:(207-162)÷(9-6)=15(4)牧场上原有的草为:27×6-15×6=72(5)每天新长的草足够15头牛吃,21头牛减去15头,剩下6头吃原牧场的草:72÷(21-15)=72÷6=12(天)所以养21头牛,12天才能把牧场上的草吃尽公式解法:(1)草的生长速度=(207-162)÷(9-6)=15(2)牧场上原有草=(27-15)×6=72再把题目中的21头牛分成两部分,一部分15头牛去吃新长的草(因为新长的草每天长15份,刚好可供15头牛吃,剩下(21-15=6)头牛吃原有草:72÷(21-15)=72÷6=12(天))所以养21头牛,12天才能把牧场上的草吃完。
方程解答:设草的生长速度为每天x份,利用牧场上的原有草是不变的列方程,则有27×6-6x =23×9-9x解出x=15份再设21头牛,需要x天吃完,同样是根据原有草不变的量来列方程:27×6-6×15 =23×9-9×15=(21-15)x解出x=12(天)所以养21头牛。
12天可以吃完所有的草。
牛吃草问题在普通工程问题的基础上,工作总量随工作时间均匀的变化,这样就增加了难度.牛吃草问题的关键是求出工作总量的变化率.下面给出几例牛吃草及其相关问题.1. 草场有一片均匀生长的草地,可供27头牛吃6周,或供23头牛吃9周,那么它可供21头牛吃几周?(这类问题由牛顿最先提出,所以又叫“牛顿问题”.)【分析与解】27头牛吃6周相当于27×6=162头牛吃1周时间,吃了原有的草加上6周新长的草;23头牛吃9周相当于23×9=207头牛吃1周时间,吃了原有的草加上9周新长的草;于是,多出了207-162=45头牛,多吃了9-6=3周新长的草.所以45÷3=15头牛1周可以吃1周新长出的草.即相当于给出15头牛专门吃新长出的草.于是27-15=12头牛6周吃完原有的草,现在有21头牛,减去15头吃长出的草,于是21-15=6头牛来吃原来的草;所以需要12×6÷6=12(周),于是2l头牛需吃12周.评注:我们求出单位“1”面积的草需要多少头年来吃,这样就把问题化归为一般工程问题了.一般方法:先求出变化的草相当于多少头牛来吃:(甲牛头数×时间甲-乙牛头数×时间乙)÷(时间甲-时间乙);再进行如下运算:(甲牛头数-变化草相当头数)×时问甲÷(丙牛头数-变化草相当头数)=时间丙.或者:(甲牛头数-变化草相当头数)×时间甲÷时间丙+变化草相当头数丙所需的头数.2.有三块草地,面积分别是4公顷、8公顷和10公顷.草地上的草一样厚而且长得一样快.第一块草地可供24头牛吃6周,第二块草地可供36头牛吃12周.问:第三块草地可供50头牛吃几周?【分析与解】我们知道24×6=144头牛吃一周吃2个(2公顷+2公顷周长的草).36×12=432头牛吃一周吃4个(2公顷+2公顷12周长的草).于是144÷2=72头牛吃一周吃2公顷+2公顷6周长的草.432÷4=108头牛吃一周吃2公顷+2公顷12周长的草.所以108-72=36头牛一周吃2公顷12—6=6周长的草.即36÷6=d 头牛1周吃2公顷1周长的草.对每2公顷配6头牛专吃新长的草,则正好.于是4公顷,配4÷2×6=12头牛专吃新长的草,即24-12=12头牛吃6周吃完4公顷,所以1头牛吃6×1÷(4÷2)=36周吃完2公顷.所以10公顷,需要10÷2×6=30头牛专吃新长的草,剩下50-30=20头牛来吃10公顷草,要36 ×(10÷2)÷20=9周.于是50头牛需要9周吃10公顷的草.3.如图,一块正方形的草地被分成完全相等的四块和中间的阴影部分,已知草在各处都是同样速度均匀生长.牧民带着一群牛先在①号草地上吃草,两天之后把①号草地的草吃光.(在这2天内其他草地的草正常生长)之后他让一半牛在②号草地吃草,一半牛在③号草地吃草,6天后又将两个草地的草吃光.然后牧民把13的牛放在阴影部分的草地中吃草,另外号的牛放在④号草地吃草,结果发现它们同时把草场上的草吃完.那么如果一开始就让这群牛在整块草地上吃草,吃完这些草需要多少时间?【分析与解】 一群牛,2天,吃了1块+1块2天新长的;一群牛,6天,吃了2块+2块2+6=8天新长的;即3天,吃了1块+1块8天新长的.即16群牛,1天,吃了1块1天新长的. 又因为,13的牛放在阴影部分的草地中吃草,另外23的牛放在④号草地吃草,它们同时吃完.所以, ③=2⨯阴影部分面积.于是,整个为19422+=块地.那么需要193624⨯=群牛吃新长的草,于是191262-⨯⨯()=现在314⨯-().所以需要吃:19312130624-⨯⨯÷-()()=天. 所以,一开始将一群牛放到整个草地,则需吃30天.4.现在有牛、羊、马吃一块草地的草,牛、马吃需要45天吃完,于是马、羊吃需要60天吃完,于是牛、羊吃需要90天吃完,牛、羊一起吃草的速度为马吃草的速度,求马、牛、羊一起吃,需多少时间?【分析与解】 我们注意到:牛、马45天吃了 原有+45天新长的草① →牛、马90天吃了2原有+90天新长的草⑤马、羊60天吃了 原有+60天新长的草②牛、羊90天吃了 原有+90天新长的草③↓ ↓ ↓马 90天吃了 原有+90天新长的草④所以,由④、⑤知,牛吃了90天,吃了原有的草;再结合③知,羊吃了90天,吃了90天新长的草,所以,可以将羊视为专门吃新长的草.所以,②知马60天吃完原有的草,③知牛90天吃完原有的草.现在将牛、马、羊放在一起吃;还是让羊吃新长的草,牛、马一起吃原有的草.所需时间为l ÷11()9060+=36天. 所以,牛、羊、马一起吃,需36天. 5. 有三片牧场,场上草长得一样密,而且长得一样快.它们的面积分别是133公顷、10公顷和24公顷.已知12头牛4星期吃完第一片牧场的草,21头牛9星期吃完第二片牧场的草,那么多少头牛18星期才能吃完第三片牧场的草?【分析与解】由于三片牧场的公顷数不一致,给计算带来困难,如果将其均转化为1公顷时的情形.所以表1中,3.6-0.9=2.7头牛吃4星期吃完l公顷原有的草,那么18星期吃完1公顷原有的草需要2.7÷(18÷4)=0.6头牛,加上专门吃新长草的O.9头牛,共需0.6+0.9=1.5头牛,18星期才能吃完1公顷牧场的草.所以需1.5×24=36头牛18星期才能吃完第三片牧场的草.一个牧场长满青草,牛在吃草而草又不断匀速生长,27头牛6天可以把牧场上的草全部吃完;23头牛吃完牧场全部的草则要9天,若21头牛来吃,几天吃完?最佳答案这种问题叫:牛顿问题完整解题思路: 假设每头牛每天的吃草量为1,则27头6天的吃草量为27×6=162;23头牛9天的吃草量为23×9=207。
207与162的差就是(9-6)天新长出的草,所以牧场每天新长出的草量是(207-162)÷(9-6)=15 因为27头牛6天吃草量为162,这6天新长出的草之和为15×6=90,从而可知牧场原有的划量为162-90=72 牧场每天新长的草够15头牛吃一天,每天都让21头牛中的15头牛吃新长出的草,其余的21-15=6(头)专吃原来的草。
所以牧场上的草够吃72÷6=12(天),也就是这个牧场上的草够21头牛吃12天。
综合算式:[27×6-(23×9-27×6)÷(9-6)×6]÷[21-(23×9-27×6)÷(9-6)]=12(天)牛吃草问题是小学奥数的一类难题,记得在某本书上看到过:“牛吃草问题就是追及问题,牛吃草问题就是工程问题。
”对于前半句很好理解,给孩子讲的时候,也是按追及问题的思路来讲的。
而对于后半句,直到上周才算明白。
这个问题是在仁华学校课本六年级下册第六讲最大与最小问题中出现的。
现暂且把这个题放下,看看以前我是如何讲牛吃草问题的。
例1 小军家的一片牧场上长满了草,每天草都在匀速生长,这片牧场可供10头牛吃20天,可供12头牛吃15天。