专科微积分期末复习题
微积分期末考试试题及答案

微积分期末考试试题及答案一、选择题(每题2分,共20分)1. 函数 \( f(x) = x^2 \) 在 \( x = 0 \) 处的导数是()A. 0B. 1C. 2D. -1答案:A2. 曲线 \( y = x^3 - 2x^2 + x \) 在 \( x = 1 \) 处的切线斜率是()A. 0B. 1C. -1D. 2答案:B3. 函数 \( f(x) = \sin(x) \) 的原函数是()A. \( -\cos(x) \)B. \( \cos(x) \)C. \( x - \sin(x) \)D. \( x + \sin(x) \)答案:A4. 若 \( \int_{0}^{1} f(x) \, dx = 2 \),且 \( f(x) = 3x^2 +1 \),则 \( \int_{0}^{1} x f(x) \, dx \) 等于()A. 3B. 4C. 5D. 6答案:C5. 函数 \( g(x) = \ln(x) \) 在 \( x > 0 \) 时的反导数是()A. \( e^x \)B. \( x^e \)C. \( e^{\ln(x)} \)D. \( x \ln(x) - x \)答案:D6. 若 \( \lim_{x \to 0} \frac{\sin(x)}{x} = 1 \),则\( \lim_{x \to 0} \frac{\sin(2x)}{x} \) 等于()A. 2B. 1C. 4D. 0答案:A7. 函数 \( h(x) = e^x \) 的泰勒展开式在 \( x = 0 \) 处的前三项是()A. \( 1 + x + \frac{x^2}{2} \)B. \( 1 + x + \frac{x^2}{2!} \)C. \( 1 + x + \frac{x^3}{3!} \)D. \( 1 + x + \frac{x^2}{3!} \)答案:B8. 若 \( \frac{dy}{dx} = 2y \),且 \( y(0) = 1 \),则 \( y(x) \) 是()A. \( e^{2x} \)B. \( e^{-2x} \)C. \( 2^x \)D. \( 2^{-x} \)答案:A9. 函数 \( F(x) = \int_{0}^{x} e^t \, dt \) 的导数是()A. \( e^x \)B. \( e^0 \)C. \( x \cdot e^x \)D. \( e^0 \cdot x \)答案:A10. 曲线 \( y = x^2 + 3x \) 与直线 \( y = 6x \) 交点的横坐标是()A. 0B. 3C. -1D. 2答案:C二、填空题(每空3分,共15分)11. 若 \( f(x) = 2x - 1 \),则 \( f''(x) \) 等于 _________。
电大微积分初步专科期末复习题

微积分初步一、填空题⒈函数)2ln(1)(-=x x f 的定义域是 .答案:),3()3,2(+∞⋃⒉函数1322+--=x x x y 的间断点是= .答案:1-=x⒊曲线1)(+=x x f 在)1,0(点的斜率是 .答案:21⒋若⎰+=c x x x f 2cos d )(,则)(x f ' .答案:x 2cos 4-⒌微分方程0)(3='+''y y x 的阶数是 2 .6.函数x x x f 2)1(2+=+,=)(x f .答案:12-x7.函数⎪⎩⎪⎨⎧=≠+=0,20,2sin )(x x k xx x f 在0=x 处连续,则k = 2 . 8.曲线1)(+=x x f 在)1,0(点的斜率是 .答案:219.=+-⎰-x x x d )253(113.答案:4 10.微分方程0sin )(3=-'+''y y y x 的阶数是 .答案:2 11.函数241)(xx f -=的定义域是 .答案:)2,2(-12.若24sin lim0=→kxxx ,则=k .答案:213.已知x x f ln )(=,则)(x f ''= .答案:21x - 14.若⎰=x x s d in .答案:c x +-cos 15.微分方程yx ex y y x +='+'''sin )(4的阶数是 3 .16.函数x x x f -++=4)2ln(1)(的定义域是(-2,-1)∪(-1,4】.17.若24sin lim0=→kxxx ,则=k 2. 18.曲线x y e =在点)1,0(处的切线方程是_y=x+1__. 19.=+⎰e 12d )1ln(d d x x x 0 .20.微分方程1)0(,=='y y y 的特解为 y=e 的x 次方 . 21.函数24)2ln(1)(x x x f -++=的定义域是]2,1()1,2(-⋃-- .22.若函数⎩⎨⎧=≠+=0,0,2)(2x k x x x f ,在0=x 处连续,则=k 2 .23.曲线x y =在点)1,1(处的斜率是 21.24.=⎰x xd 2 c x+2ln 2 .25.微分方程x y 2='满足初始条件1)0(=y 的特解为12+=x y .26.函数)2ln(1)(-=x x f 的定义域是 . 答案:),3()3,2(+∞⋃ 27.函数x x f -=51)(的定义域是 . 答案:)5,(-∞ 28.函数24)2ln(1)(x x x f -++=的定义域是 . 答案:]2,1()1,2(---29.函数72)1(2+-=-x x x f ,则=)(x f .答案:62+x30.函数⎩⎨⎧>≤+=0e 02)(2x x x x f x,则=)0(f .答案:231.函数x x x f 2)1(2-=-,则=)(x f . 答案: 12-x32.函数1322+--=x x x y 的间断点是 . 答案: 1-=x33.=∞→x x x 1sinlim .答案: 134.若2sin 4sin lim0=→kx xx ,则=k .答案: 235.若23sin lim0=→kx xx ,则=k .答案: 2336.曲线1)(+=x x f 在)2,1(点的斜率是21. 37.曲线x x f e )(=在)1,0(点的切线方程是1+=x y . 38.曲线21-=x y 在点)1,1(处的切线方程是2321+-=x y . 39.=')2(xx x22ln 21.40.若y = x (x – 1)(x – 2)(x – 3),则y '(0) = -6 . 41.已知xx x f 3)(3+=,则)3(f '=)3ln 1(27+. 42.已知x x f ln )(=,则)(x f ''=21x -.43.若xx x f -=e )(,则='')0(f -2 .44.函数1)(2+=ax x f 在区间),0(∞+内单调增加,则a 应满足 大于零45.若)(x f 的一个原函数为2ln x ,则=)(x f 。
微积分复习试题及答案10套(大学期末复习资料)

微积分复习试题及答案10套(大学期末复习资料)习题一(A) 1、求下列函数的定义域:ln(4),x2(1) (2) (3) y,y,logarcsinxyx,,4a||2x,113y,,log(2x,3)(4) (5) yx,,,1arctanax,2x2、求下列函数的反函数及其定义域xx,32(1) (2) (3) yy,,yx,,,1ln(2)x2,1x,3x,,(4)yx,,,2sin,[,] 3223、将下列复合函分解成若干个基本初等函数2x(1) (2) (3) yx,lnlnlnyx,,(32ln)ye,,arcsin123(4) y,logcosxa4、求下列函数的解析式:112,求. (1)设fxx(),,,fx()2xx2(2)设,求 fgxgfx[()],[()]fxxgxx()1,()cos,,,5、用数列极限定义证明下列极限:1232n,1,,(1)lim(3)3 (2) lim, (3) ,lim0nn,,n,,n,,3353n,n6、用函数极限定义证明下列极限:x,31x,32lim(8)1x,,lim1,lim,(1) (2) (3) 23x,x,,x,,3xx,967、求下列数列极限22nn,,211020100nn,,3100n,limlimlim(1) (2) (3)32n,,n,,n,,54n,n,144nn,,,12n111,,,,?,lim,,lim,,,(4)? (5) ,,222,,x,,x,,1223n(n1),,,nnn,,,,1111,,k,0(6) (7)() lim,,,?lim,,2x,,x,,n,31541,,nknnkn,,,111,,,,?12n222lim(1)nnn,,(8) (9) limx,,x,,111,,,,?12n5558、用极限的定义说明下列极限不存在:1x,3limcosx(1) (2) (3) limsinlimx,,x,0x,3x|3|x,9、求下列函数极限:22xx,,56xx,,562(1) (2) (3) limlimlim(21)xx,,x,x,13x,3x,3x,2222256x,xx,,44()xx,,,(4) (5) (6) limlimlim2x,x,,,220xx,,21x,2,nx,1x,9x,1(7) (8) (9) limlimlimm3,1xx,9x,1x,1x,3x,1 2nnxxx,,,,?13x,,12(10), (11)lim() (12)limlim33x,1,x1x,1xx,,111,xx,110、求下列函数极限:22xx,,56xx,,56 (2) (1)limlim2x,,x,,x,3x,3nn,1axaxaxa,,,,?011nn,lim(11)xx,,,(3) (4)lim,(,0)ab,00mm,1x,,x,,bxbxbxb,,,,?011mm,lim(11)xxx,,,(5) x,,11、求下列极限式中的参变量的值:2axbx,,6lim3,(1)设,求的值; ab,x,,23x,2xaxb,,lim5,,(2)设,求的值; ab,x,11x,22axbxc,,lim1,(3)设,求的值; abc,,x,,31x,12x,0arcsin~xxtan~xx1cos~,xx12、证明:当时,有:(1),(2) ,(3); 213、利用等价无穷小的性质,求下列极限:sin2xsin2xsecxlimlimlim(1) (2) (3) 2x,0x,0x,0,tan5x3x2x3sinx21111sin,,x,limlim()(4) (5)lim (6)x,0x,0x,0xxx,tansinxxtansin1cos,x14、利用重要极限的性质,求下列极限:sin2xsinsinxa,xxsin(1) (2) (3) limlimlimx,0xa,x,0,sin3xxa,1cos2x xsinxx,tan3sin2xx,4,,(4) (5) (6) limlimlim1,,,x,0x,0,,xsinxx,3xx,, xxx,3xk,21,,,,,,(7) (8) (9) limlim1,,lim1,,,,,,,,,,xxx,,xxxk,,,,,,, 1/x(10)lim12,x ,,,,x15、讨论下列函数的连续性:,,,xx1,,2fxxx()11,,,,(1) ,,211xx,,,x,x,0,sinx,x,0(2)若,在处连续,则为何值. fxax()0,,a,,1,1sin1,,xxx,x,e(0,x,1)(3) 为何值时函数f(x),在[0,2]上连续 a,a,x(1,x,2),53xx,,,52016、证明方程在区间上至少有一个根. (0,1)32x,0x,317、证明曲线在与之间至少与轴有一交点. xyxxx,,,,252(B)arccoslg(3,x)y,1、函数的定义域为 ( ) 228,3x,x(A) ,,,,,7,3 (B) (-7, 3) (C) ,7,2.9 (D) (-7, 2.9),1 2、若与互为反函数,则关系式( )成立。
《微积分》期末考试试卷附答案

《微积分》期末考试试卷附答案一、填空题(共5小题,每小题4分,共20分)1、已知2)(x e x f =,x x f -=1)]([ϕ,且0)(≥x ϕ,则=)(x ϕ2、已知a 为常数,1)12(lim 2=+-+∞→ax x x x ,则=a .3、已知2)1(='f ,则=+-+→xx f x f x )1()31(lim 0 . 4、函数)4)(3)(2)(1()(----=x x x x x f 的拐点数为 . 5、=⎰xx dx 22cos sin .二、选择题(共5小题,每小题4分,共20分)1、设)(x f 为偶函数,)(x ϕ为奇函数,且)]([x f ϕ有意义,则)]([x f ϕ是(A) 偶函数; (B) 奇函数;(C) 非奇非偶函数; (D) 可能奇函数也可能偶函数.2、0=x 是函数⎪⎩⎪⎨⎧=≠-=.0 ,0,0 ,cos 1)(2x x x x x f 的(A) 跳跃间断点; (B) 连续点; (C) 振荡间断点; (D) 可去间断点.3、若函数)(x f 在0x 处不可导,则下列说法正确的是(A) )(x f 在0x 处一定不连续; (B) )(x f 在0x 处一定不可微;(C) )(x f 在0x 处的左极限与右极限必有一个不存在;(D) )(x f 在0x 处的左导数与右导数必有一个不存在.4、仅考虑收益与成本的情况下,获得最大利润的必要条件是:(A) )()(Q C Q R ''>''; (B) )()(Q C Q R ''<''; (C) )()(Q C Q R ''='';(D) )()(Q C Q R '='.5、若函数)(x f '存在原函数,下列错误的等式是: (A) )()(x f dx x f dx d ⎰=; (B) )()(x f dx x f ⎰=';(C) dx x f dx x f d )()(⎰=; (D) C x f x df +=⎰)()(.三、计算题(共4小题,每小题15分,共60分)1、设x x f x x-=--422)2(,求)2(+x f .2、计算)1cos(lim n n n -+∞→.3、求极限)21(lim 222n n n n n n n n ++++++∞→ .4、求极限xx x x cos sec )1ln(lim 20-+→.微积分参考答案:一、填空1. 答案:)1ln(x -2. 答案:13. 答案:44. 答案:25. 答案:C x x +-cot tan二、选择1. A2. D3. B4. D5. B三、计算题1、设x x f x x -=--422)2(,求)2(+x f .答案:42)2(42--=++x x f xx解:令2-=x t ,则 2222)2(2)(48444)2(4)2(222--=+-=+-=---+++-+t t t t f t t t t t t ,于是 42422)2(2)2(44444)2(222--=--=-+-=++-++-+x x x x f x x x x x .2. 计算)1cos(lim n n n -+∞→. 答案:1 解:nn n n n n ++=-+∞→∞→11cos lim )1cos(lim 11010cos 1111cos lim =++=++=∞→nn n .3、求极限)21(lim 222n n n n n n n n ++++++∞→ . 答案:1解:由于1)21(2222222+≤++++++≤+n n n n n n n n n n n n , 而1111lim lim 22=+=+∞→∞→n n n n n n , 1111lim 1lim 222=+=+∞→∞→n n n n n , 所以1)21(lim 222=++++++∞→n n n n n n n n .4、求极限xx x x cos sec )1ln(lim 20-+→. 答案:1 解:x x x xx x x x x x x x x x cos sin 212lim sin )1ln(lim cos lim cos sec )1ln(lim 20220020+=+=-+→→→→ 1sin lim cos )1(1lim020=+=→→x x x x x x .。
微积分(全册)期末复习题

《微积分》(全册)期末复习题 黄士叶 老师一、填空题1、复合函数x y 5sin 4=可分解为______________________;2、若y=f (x )的定义域是[0,1],则)(2x f 的定义域是__________;3、=-→)13(lim 1x x ___ 4、=++→21lim1x x x ____ 5、=+∞→22342limxx x ____6、=-+-→265lim22x x x x _______;7、=++-∞→3223lim232x x x x ___8、=→x x x 5sin lim_ 9.=→xx x ωsin lim_____10、=-→xxx x sin tan lim______;11、=→xx x tan lim_____12.xx xx 21lim )(+∞→=____ 13.x x x 1)1lim -→( = ___ 14、xx x)81lim -∞→( = __;15、43)31lim +∞→+x x x( = ______; 16xx x2)21lim +∞→( = ______;17、函数2)2(1+=x y 的间断点是______;是第______类间断点;18、函数2212)(2>≤⎩⎨⎧-=x x x x x f ,当2→x 时的左极限是______;右极限是______;在2=x 处______;(填是否连续) 19、函数3313)(≥<⎩⎨⎧-=x x x xx f ,当3→x 时的左极限是______;右极限是______;极限是______;在3=x 处______;(填是否连续) 20、函数2)1(1-=x y 当______时,是无穷大量;当______时,是无穷小量;21、函数11)2(1++-=x x y 的间断点是______和______;22、函数)(x f y =在点x 处的导数)(x f '表示曲线)(x f y =在点(x ,y )处的______和______; 23、曲线x y ln =在点M (e ,1)处的切线方程是____________ ;24、若函数)(x f y =在点0x 处可导,则)(x f y =在点0x 处必______,且=→)(lim 0x f x x ______;25、函数112)(3++=x x x f 在定义域内是单调______的; 26、函数6)1()(-=x x f 的凹区间为________ ;27、已知函数)(x f y =在点0x 处可导,且)(0x f 是极小值,则=')(0x f ___ ; 28、若点(1,4)是曲线23bx ax y +=的拐点,则a =_____,=b ___ ;29、已知函数F (x )和G (x )都是函数f (x )的原函数,且G (x )=2x e ,F (0)=0,则F(x )=________ ;30、已知不定积分⎰+=,)()(C x F dx x f 则⎰=dx x F x f )()(________ ;31、根据定积分的几何意义可知:⎰=-1021dx x ____;32、已知0)2(1⎰=+dx b x ,则b=________ ; 33、已知连续函数)(x f 是奇函数,且1)(10-=⎰dx x f ,则⎰-=01)(dx x f ________ ;34、曲线y=x 3在点A(2,8)处的切线斜率为_________; 二、选择题1、=→x x e 1lim ( )A 0; B -∞; C +∞; D 不存在。
微积分(下)期末复习试题完整版

期末复习题一、填空题1、=⎰→xt t xx 020d cos lim.2、若)(x f 在],[b a 上连续, 则=⎰bxx x f x 2d )(d d .3、已知)(x F 是)(x f 的原函数,则⎰>+x x t a t f t)0( d )(1等于 . 4、若2e x -是)(xf 的一个原函数,则='⎰10d )(x x f .5、=++⎰-112d 1||x x x x .6、已知21)(xxx f +=,则)(x f 在]2,0[上的平均值为 .7、设⎰=+π0),(sin d )(x f x x x f 且)(x f 连续, 则=)(x f .8、设曲线kx y =<0,0>>x k >与直线1=y 及y 轴围成的图形面积为31,则=k . 9、设yx y y x y x f arcsin)1()2(),(22---=,则=∂∂)1,0(y f .10、设yx z 2e =,则=∂∂∂yx z2. 11、交换积分次序 =⎰⎰x y y x f x ln 0e 1d ),(d . 12、交换积分次序 =⎰⎰---xx y y x f x 11122d ),(d .13、交换积分次序⎰⎰-2210d ),(d y yx y x f y =.二、选择题1、极限xtt x x cos 1d )1ln(lim2sin 0-+⎰→等于〔 〔A1〔B2〔C4〔D82、设x x t t f xe d )(d d e 0=⎰-,则=)(xf 〔 <A>21x<B> 21x - <C> x 2e - <D> x2e -- 3、设)(x f 是连续函数,且C x F x x f +=⎰)(d )(,则必有〔 B〔A )(d )(x F t t f x a =⎰ 〔B )(]d )([x F t t F x a ='⎰ 〔C)(d )(x f t t F x a='⎰〔D )()(]d )([a f x f t t F xa-=''⎰4、设)(x f 在],[b a 上连续,则)(x f 在],[b a 上的平均值是〔〔A2)()(b f a f + 〔B ⎰b a x x f d )(〔C ⎰-b a x x f a b d )(1 〔D ⎰-b a x x f ba d )(15、积分⎰=t sx x t f tI 0d )(与〔 有关。
微积分期末试卷附详细标准答案2

一、填空题(每小题3分,共15分)1、已知 f(x)=e x , f N(x)] =1—x ,且中(x)之0,则9(x) = v'ln(1—x)…2c解 f(u)=e =1-x ,u =ln(1-x) ,u = .J 〕n(1 - x).2、已知 a 为常数,lim (--2— ax +1) =1,则 a =1.i : x一-ax 1) = lim (1 4 - a —) = 1 - a .x'二 x x3、已知 f ⑴=2,则 limf(1 3x)-f(1 x)=4.x )Dx解:lim[f(1 3x)-f(1)]-[f(1 x)-f(1)]=4x—0x4、函数 f(x)=(x —1)(x —2)(x —3)(x —4)地拐点数为 2.解:f (x)有 3 个零点 £,焦二:1 <彳 <2<^<3<^3<4, f "(x)有 2 个零点 %尸2:1<。
<2 <之2 <”2 <4,f "(x) =12(x —1)(x —”2),显然 f*(x)符号是:+「,+,故有 2 个拐点. dx-5、 -2 ------ - = tan x -cot x C .sin xcos x,2. 2 , ,dx cos x sin x , dx dx 斛: -- —2 --------------- 2- = 2 2-dx = ------- 2- ------------- -2- = tan x - cot x C .sin xcos x sin xcos x cos x sin x二、选择题(每小题3分,共15分)1、设f(x)为偶函数,甲(x)为奇函数,且f /(x)]有意义,则f [邛(x)]是A(A)偶函数; (B)奇函数;(C)非奇非偶函数;(D)可能奇函数也可能偶函数.1 - cosx C2—, x : 0,,,2、x=0 是函数 f (x) = { x 地 D0, x = 0.2「 1 1 x 1 斛:0 = lim — = lim ( ----(A)跳跃间断点; (B)连续点;(C)振荡间断点;(D)可去间断点.3、若函数f(x)在X0处不可导,则下列说法正确地是 B(A)f(x)在%处一定不连续;(B) f (x)在X o处一定不可微;(C)f(x)在X o处地左极限与右极限必有一个不存在;(D) f (x)在x0处地左导数与右导数必有一个不存在^4、仅考虑收益与成本地情况下,获得最大利润地必'要条件是: D(A) R"(Q)>C"(Q) ; (B) R"(Q) <C"(Q);(C) R"(Q) =C“(Q) ;(D) R'(Q) =C'(Q).5、若函数f '(x)存在原函数,下列错误地等式是: Bd(A) 一ff(x)dx=f (x) ;(B)』f (x)dx=f(x);dx(C) d f f (x)dx =f (x)dx;(D) f df (x) =f (x) +C .三、计算题(每小题6分,共60分)1、设f (x —2) =2x2"x— x,求f(x +2).答案:f(x + 2) =2x244x—x—4解:令t =x - 2,则f ⑴=2(t均24t物_(t+2) =2「*七54 T+2=2t2/_t_2,(3 分)于是f(x+2) =2(x阳2u — (x+2) -2 =2x2 七、七“ 一x —4 = 2x2 七x— x —4. (6 分)2、计算1吧m05( J n十1 一J n).答案:1n mc 0sin有-«户n m8s舄十二(3 分)解:1=lim cos —^n— n1二 11-1 nsin 11nx解:y' = (e x )'(2 分)6、求曲线xln y + y —2x=1在点(1,1)处地法线方程.答案:x+y —2 = 0解:方程两边对x 求导得:ln y + xy + y '- 2 = 0 , y_ Cos 「0 一 -1 .(6分) cos,1 0 - 13、求极限lim ( 2 n——n 2n +… 2 n 2).答案: 解:由于— nn n 21n n 22 +…2n八-7, (3分)而 lim 一=lim—=1 1 lim 一=limn —i彳二1,2 n所以lim(+…+)=1. (6 分)4、求极限lim 2ln(1 x )x —0 secx - cos x,〃2、解:lim1n(1 x)x—0secx - cosx x 02ln(1 x ) 二 lim cosxlim ——2-- x 0sin x=lim 2x1+ x 2(4 分)x 0 2sinxcosx =limx —02、 (1 x )cosx.. x lim --- x 「° sin x =1. (6 分) sin 15、求函数y = x x 地导数.答案:.1 sin —x y = xcos'nx 1sin 1)x.1 , sin - ln x 11 1 1 =e x [cos-( --2) ln x sin ] .1 , , , ,sin — 1 1 1 1 =x x ( 2cos — ln x sin ) .(6 分)1将(x, y) = (1,1)代入得法线斜率k = 一—― = _1, (3分) y⑴从而法线方程为:y_1=_1,(x—1),即:* + 丫—2 = 0.(6分),一八 1 4 3 r 一、7、求曲线y= x —x +1地凹凸区间和拐点.24答案:曲线在区间(―吗0]和[1,+“)是凹地,在区间[Q1]是凸地拐点为(0,1), (1;).31 x _ 1 x _ 1 x _ 1x_ 1x_ e cos2x e d sin 2x e cos2x e sin 2x - e sin 2xdx ,2 4 2 4 4 x 一 . 4 x.1 .一 一 、一 … , J e cos2xdx =^e (asin 2x-cos2x)+C .(6 分)10、设某商品地需求函数为 Q =100 -5P 淇中P,Q 分别表示需求量和价格,试求当总收益达到最大时,此时地需求弹性,并解释其经济意义.b5E2RGbCAP解:⑴ f (x) C(-::, ::),(2)3 2 _ .. 2f (x) =2x -3x , f (x) =6x -6x =6x(x -1),4f "(x)=0,得 x 1 =0, x 2 =1. f(0) = 1, f (1) =43 (3分)(4).... ... 4 曲线地拐点为(0,1)、(1,-).(6) 曲线在区间(―g,0]和[1,+比)是凹地,在区间[0,1]是凸地. (6分)8、计算dx.答案:66G - 6 arctan 6x + Cdx dx解 (1 3 x) x -(6x)3[1 (6x)2]56t 5dt八----- 了(3分)2A (1 t )-1 6 2dtdt =6 ! dt - = 6 । 1 t=6t -6arctant +C =66/x -6arctan6/x +C .(6分)9、计算 [exsin 2xdx 答案• —e x(-sin 2x -cos2x) +C1021 V斛: e sin 2xdx e d cos2x =一 21e xcos2x 1 2 2fe xcos2xdx (3 分)列表如答案:。
微积分专复习题

微积分复习题第一章 函数与极限一、单项选择题1.函数y=5-x +ln(x -1)的定义域是( B )A. (0,5)B. (1,5 )C. (1,5)D. (1,+∞) 2.函数f(x)=21xx -的定义域是( D )A.(-∞,+∞)B.(0,1)C.(-1,0)D.(-1,1)3.下列函数中为奇函数的是( D )A.y=cos 3xB.y=x 2+sinxC.y=ln(x 2+x 4)D.y=1e 1e x x +-4.函数f(x)=1+xsin2x 是( B ) A.奇函数B.偶函数C.有界函数D.非奇非偶函数5.下列极限正确的是( A ) A.11sinlim =∞→x x x B.11sin lim 0=→x x x ; C.1sin lim =∞→x x x ; D.12sin lim 0=→xx x ;6.=→2xtan3xlimx ( B ) A.∞B.23C.0D.17.xmxx sin lim0→ (m 为常数) 等于 ( D )A.0B. 1C.m1D. m8.设⎪⎩⎪⎨⎧=≠=00sin )(x ax xx x f 在x=0处连续,则常数a=( B )A.0B.1C.2D.39.设⎪⎩⎪⎨⎧=≠--+=0011)(x k x x x x x f , , 在0=x 点处连续,则k 等于( B ) A.0; B.1; C. 21; D. 2;10.设函数⎪⎩⎪⎨⎧=≠-+=0024)(x k x x x x f , ,在点0=x 处连续,则k 等于 ( B ) A. 0 B. 41 C. 21 D. 2二、填空题1.=-∞→xxx x sin lim ______1_____2.x x x)21(lim +∞→= 2e . 3.设f(x)=⎩⎨⎧>-≤+010sin x e x ax x在x=0处连续,则常数a=____0_________. 三、解答题 1. 求下列各极限:(1) 64lim 222-+-→x x x x解:原式22(2)(2)24limlim (3)(2)35x x x x x x x x →→+-+===+-+ (2) xxx x cos 1sin lim 0-→解:原式=00022sin cos cos2222limlim 2lim cos 211222sin sin sin222x x x x x x xx x x x x x →→→⋅⋅==⋅=⋅⋅= (3) )1312(lim 321---→x x x 解:原式= 22211232(1)3(1)lim lim (1)(1)(1)(1)(1)(1)(1)x x x x x x x x x x x x x x →→⎛⎫++-+-= ⎪-+-++-+++⎝⎭ = 2221121(21)(1)lim lim (1)(1)(1)(1)(1)(1)x x x x x x x x x x x x x x →→--+-=-+++-+++ 21(21)31lim(1)(1)232x x x x x →+===+++⋅第二章 导数及其应用一、单项选择题:1.如果f(x 0)=0且f '(x 0)存在,则=-→0x x x x )x (f lim 0( A ) A.f '(x 0)B. 0C. 不存在D. ∞2.设y=log a x (a>0,a ≠1),则dy=( D ) A.x1dx B.x 1 C.ax ln 1 D.ax ln 1dx 3.设函数u(x),v(x)可导,且u(x)≠0,若)()(x v x u y =,则y '等于( B )A .)()()()()(2x v x v x u x v x u ''+' B .)()()()()(2x v x v x u x v x u '-' C .)()()()()(2x v x v x u x v x u +'' D .)()()(2x v x v x u ''4.设y=2x +e 2,则y ′=( C )A.x2x-1 B.2x ln2+e 2 C.2x ln2 D.2x 5.设y=sin(7x+2),则=dxdy( B ) A. 7sin(7x+2) B.7cos(7x+2) C. cos(7x+2) D.sin(7x+2) 6.曲线y=lnx 的与直线y=x 平行的切线方程为( B ) A.x-y=0B.x-y-1=0C.x-y+1=0D.x-y+2=07.函数)1ln(2x y +=的单调减少区间是( A )A.)0,(-∞B. ),(+∞-∞C.),0(+∞D.(-1,1) 8.函数y=x 2-2x+5的单调增加的区间是( A ) A.),1(+∞ B.)1,(-∞ C.),(+∞-∞D.),2(+∞二、填空题1.曲线2x x y +=上点(1,2)处的切线平行于直线13-=x y .2.设y=xlnx+x 2,则dy=(ln 12)x x dx ++.3.函数2x 11y +=的单调递减区间是(0,)+∞ 4.若函数)(x f 在0x 点取得极小值,且)(x f 在0x 点可导,则)(0x f '必为____0_______.5.已知函数c x ax y ++=22在点1=x 处取极大值2,则=a - 1,=c ___1____.6.设)(),(x g x f 可导,0)0()0(==g f ,当0≠x 时0)(≠'x g ,且A x g x f x =''→)()(lim,则=→)()(limx g x f x A . 三、解答题: 1.求下列函数的导数:(1) +=xxe y xxsin 解:22cos sin cos sin (1)x x xx x x x x x y e xe e x x x⋅-⋅-'=++=++ (2) ()1ln +=x x y解:1ln(1)(1)ln(1)11x y x x x x x x ''=++⋅+=++++ (3)2sin )32cos(xx y +-=解:1sin(23)(23)cos 3sin(23)cos 2222x x xy x x x '⎛⎫''=--⋅-+⋅=-+ ⎪⎝⎭2.方程0=+-y x e e xy 确定y 是x 的隐函数, 求0='x y . 解:方程两边对x 求导: 0x y y xy e e y ''+-+⋅=解得:x y e y y x e -'=+ 当0x =时,0y = 于是000|10x e y e=-'==+ 3.求下列极限:(1)xxe x x sin cos lim 0-→;解:原式0sin 10lim1cos 1x x e x x →++=== (2) 30sin lim x xx x -→解:原式2001cos sin 1lim lim 366x x x x x x →→-=== (3) )1e 1x 1(lim x 0x --→ 解:原式0001111lim lim lim (1)(1)1102x x x x x x x x x x x x e x e e x e e xe e e xe →→→---=====--+++++ 四、证明题1.证明:当x>0时,e x >1+x.证:设()(1)x f x e x =-+,则0(0)(10)0f e =-+=()10x f x e '=->,显然()f x 在[0,)+∞上连续,在(0,)+∞上可导所以()f x 在[0,)+∞上单调增加,则()(1)(0)0xf x e x f =-+>=即0x >时,1xe x >+第三章 不定积分一、单项选择题1.若⎰⎰=++=dx )1x 2(f ,C )x (F dx )x (f 则( B )A. 2F(2x+1)+CB.C )1x 2(F 21++ C.C )x (F 21+ D.2F(x)+C2.设)()(x f x F =',则下列正确的表达式是( B ) A.⎰+=C x f x dF )()( B.⎰+=C x F dx x f )()(C.⎰+=C x f dx x F dxd)()( D. ⎰+='C x f dx x F )()( 3.设⎰+=C xxdx x f ln )(,则=)(x f ( D ) A.21ln x x - B.2)(ln 21x C.x ln ln D.2ln 1xx - 4.⎰=xdx 3sin ( B ) A.C x 3cos 31+B. -C x 3cos 31+C. –cos3x+CD. cos3x+C5.下列等式计算正确的是( A )A.⎰+-=C x xdx cos sinB.⎰+=---C x dx x 43)4(C.⎰+=C x dx x32D.⎰+=C dx x x336.下列微分方程中为一阶线性方程的是 ( C ) A. y x e y +=' B.0ln ln =+xdy y ydx x C. xx y x y sin 1'=+D. x y y ='+''2 二、填空题1.⎰=-dx x )12sin( 1cos(21)2x C --+. 2.不定积分⎰=dx x33ln 3xC +. 3.微分方程0y dxdy =-的通解为xy Ce = 4.微分方程2y x 3dy dx +-=0的通解是132y Cx =- 三、解答题 1.求下列不定积分:(1)⎰++dx x x x )1(21222;解:原式222222(1)111arctan (1)1x x dx dx x C x x x x x ++⎛⎫==+=-++ ⎪++⎝⎭⎰⎰(2)⎰+dx x )1ln(2;解:原式22222ln(1)ln(1)ln(1)1xx x xd x x x x dx x =+-+=+-⋅+⎰⎰22222(1)11ln(1)2ln(1)2(1)11x x x dx x x dx x x +-=+-=+--++⎰⎰ 2ln(1)2(arctan )x x x x C =+--+2.求解下列微分方程: (1)22x e xy dxdy-=+ 解:2()2,()x P x x Q x e-==由通解公式2()()22()P x dx P x dx xdx xdx x y e Q x e dx C e e e dx C ---⎛⎫⎛⎫⎰⎰⎰⎰=+=+ ⎪ ⎪⎝⎭⎝⎭⎰⎰()()2222xx x xe e e dx C e x C ---=+=+⎰(2)y ′+ycosx=e -sinx解:sin ()cos ,()x P x x Q x e -==由通解公式()()cos cos sin ()P x dx P x dx xdx xdx x y e Q x e dx C e e e dx C ---⎛⎫⎛⎫⎰⎰⎰⎰=+=+ ⎪ ⎪⎝⎭⎝⎭⎰⎰()()sin sin sin sin xx xx e eedx C e x C ---=+=+⎰(3)x y '+y=xe x , y(1)=1 解:两边除以x ,1x y y e x '+=,1(),()x P x Q x e x== 由通解公式11()()()dx dx P x dxP x dx x x x y e Q x e dx C e e e dx C --⎛⎫⎰⎰⎛⎫⎰⎰=+=+ ⎪ ⎪⎝⎭⎝⎭⎰⎰ ()()()ln ln 11xx xxxe e e dx C xe dx C xdeC x x-=+=+=+⎰⎰⎰()()11x x x x xe e dx C xe e C x x =-+=-+⎰ 第四章 定积分及其应用一、单项选择题1.=⎰→320sin limx dt t xx ( B )A.41 B.31 C.21D.12.=⎰-22cos ππxdx x ( C )A. π32B.34 C. 0 D.32 3.⎰-=ππxdx x sin 2( D )A.2B.1C.-2D.04.广义积分⎰+∞1xdx ( B )A.收敛B.发散C.敛散性不能确定D.收敛于15.下列广义积分中,收敛的是( D ) A.⎰∞1dx x B.⎰∞11dx xC.⎰∞11dx xD.⎰∞121dx x二、填空题 1.⎰-=++113.___2___)1cos 3(dx x x x2.已知函数f(x)=⎰-=⎩⎨⎧>+≤-21dx )x (f 0x ,x 10x ,x 1则____112_______. 三、解答题(图自己画)1.计算抛物线x y 22=与直线4-=x y 所围成的图形的面积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题(每小题2分,共20分)
1.下列各组函数中()f x 和()g x 相同的是( ).
A.2()lg ,()2lg f x x g x x ==
B.()sin f x x =
, ()g x = C.()(1)x f x x x =+,1()1
g x x =+ D.()f x x =
, ()g x =2.下列函数为偶函数的是( ).
A.3
y x = B.sin y x x =+ C.2x x
e e y -+= D.3x y = 3.下列变量在给定变化过程中是无穷小量的是 ( )
A. )(cos π→x x
B. )(2∞→x x
C. )(1
2
∞→+x x x D. )(-∞→x e x 4.已知函数sin (0)()1(0)
x x f x x x x ⎧<⎪=⎨⎪-≥⎩,则左极限0lim ()x f x -→的值是( ).
A.1-
B.0
C.1
D.∞
5. 函数3229123y x x x =-+-的单调递减区间是( ).
A.(,1)-∞
B. (1,2)
C. (2,)+∞
D. (,1)(2,)-∞+∞U
6.下列说法错误的是( ).
A. 若函数在区间I 上连续,则在区间I 上一定可导
B. 若函数在区间I 上可导,则在区间I 上一定连续
C. 若函数在区间I 上可导,则在区间I 上一定可微
D. 若函数在区间I 上可微,则在区间I 上一定可导
7.设函数()f x 在开区间(,)a b 内有()0f x '<,()0f x ''<,则函数()f x 在开区间(,)a b 内( )
A. 单调减少,图形是凹的
B. 单调减少,图形是凸的
C. 单调增加,图形是凹的
D. 单调增加,图形是凸的
8. 设函数32x y e
x =+, 则dy =( ) A. 332x e + B. ()332x e dx + C. 32x e + D. ()
32x e dx + 9. xdx d =)(.
10.tdt d ωcos )(=.
二、填空题(每小题2分,共20分)
1.
函数()f x =的定义域是 2.
函数y =的反函数是
3.函数22132
x y x x -=-+的间断点是 4. 3lim(1)x
x x →∞
+= 5. 设n x y x e =+,则()n y =_______________ 6. 函数()f x 在0x 点可导,且在0x 点取得极值,则()0f x '=________
7. ()x f x e x =-的极小值为
8.函数2
11y x =-的水平渐近线为_____________ 9. 函数cos y x =的一个原函数为___________
10. (1)x e dx +=⎰
三、解答题(每小题7分,共42分)
1. 求极限 332132lim 1
x x x x x x →-+--+ 2.
求极限11lim x x
→-. 3.当a 为何值时,函数sin 2,(0)(),(0)
x x f x x a x x ⎧≠⎪=⎨⎪+=⎩为连续函数.
4.求函数2ln 3x y x e x =+的导数.
5.求由方程x y xy e e =-确定的隐函数的微分dy .
6. dx d x 6)(=.
四、应用题(每小题7分,共14分)
1.讨论曲线32
231214y x x x =+++的凹凸区间和拐点.
2. 某厂生产某种产品q 件时的总成本函数为2()2040.01C q q q =++(元),单位销售价格为140.01p q =-(元/件),求
(1)总利润函数()L q ;
(2) 产量为多少时可使利润达到最大?最大利润是多少?
五、证明题(本题4分,共4分)
利用函数的单调性证明:当1x >时, 13x
-
<。