排列、组合和概率
管综数学排列组合和概率

一、排列组合排列组合是管综数学中常见的题型,也是非常重要的知识点。
排列组合主要研究从一组元素中选取一定数量的元素,并按一定顺序排列或组合的数学方法。
排列组合的应用非常广泛,例如在统计学、概率论、计算机科学等领域都有着广泛的应用。
排列组合主要包括排列和组合两种。
排列是指从一组元素中选取一定数量的元素,并按一定顺序排列。
排列的计算公式为:P(n, r) = n(n-1)(n-2)...(n-r+1)其中,n为元素总数,r为选取元素的数量。
组合是指从一组元素中选取一定数量的元素,而不考虑元素的顺序。
组合的计算公式为:C(n, r) = frac{P(n, r)}{r!}其中,n为元素总数,r为选取元素的数量,r!表示r的阶乘。
二、概率概率是管综数学中另一个重要的知识点。
概率主要研究随机事件发生的可能性。
概率的计算公式为:P(E) = frac{n(E)}{n(U)}其中,P(E)表示事件E发生的概率,n(E)表示事件E发生的次数,n(U)表示样本空间中所有可能事件的次数。
概率的应用也非常广泛,例如在统计学、金融学、保险学等领域都有着广泛的应用。
三、排列组合和概率在管综考试中的应用排列组合和概率是管综数学中非常重要的知识点,也是管综考试中经常考查的题型。
排列组合和概率的应用非常广泛,例如在统计学、金融学、保险学等领域都有着广泛的应用。
因此,掌握排列组合和概率的知识对于管综考试的成功非常重要。
排列组合和概率在管综考试中的应用主要包括以下几个方面:* 计算排列和组合的数量。
* 计算事件发生的概率。
* 分析排列和组合的规律。
* 解决排列和组合的应用问题。
四、排列组合和概率的学习方法排列组合和概率是管综数学中比较难的知识点,因此需要掌握一定的学习方法才能学好排列组合和概率。
排列组合和概率的学习方法主要包括以下几个方面:* 理解排列组合和概率的基本概念。
* 掌握排列组合和概率的计算公式。
* 熟悉排列组合和概率的应用场景。
高考数学总复习------排列组合与概率统计

高考数学总复习------排列组合与概率统计【重点知识回顾】1.排列与组合⑴ 分类计数原理与分步计数原理是关于计数的两个基本原理,两者的区别在于分步计 数原理和分步有关,分类计数原理与分类有关.⑵ 排列与组合主要研究从一些不同元素中,任取部分或全部元素进行排列或组合,求共有多少种方法的问题.区别排列问题与组合问题要看是否与顺序有关,与顺序有关的属于排列问题,与顺序无关的属于组合问题.⑶排列与组合的主要公式①排列数公式:An m(n n! n(n1) (nm1) (m ≤n)m)!A n n=n!=n(n―1)(n ―...2)21.·②组合数公式:Cn mn! n(n 1) (n m 1) (m ≤n).m!(n m)! m (m 1) 2 1③组合数性质:①C n mC n nm(m ≤n). ②C n 0C n 1C n 2C n n2n③Cn 0C n 2C n 4C n 1C n 32n12.二项式定理⑴二项式定理(a+b)n=C n 0a n+C 1n a n -1b+⋯+C n ra n -rb r+⋯+C n n b n,其中各项系数就是组合数C n r,展开r - r b r . 式共有n+1项,第r+1项是T r+1=C n a n⑵二项展开式的通项公式二项展开式的第r+1 项Tr+1=C n r a n -r b r(r=0,1, ⋯叫n)做二项展开式的通项公式。
⑶二项式系数的性质①在二项式展开式中,与首末两端“等距离”的两个二项式系数相等, r n r (r=0,1,2, ⋯,n). 即C n =C n②若n 是偶数,则中间项 (第n n项)的二项公式系数最大,其值为 C n 2;若n 是奇数, 12则中间两项(第n 1项和第n3 n1 n1项)的二项式系数相等,并且最大,其值为C n 2 =C n 2. 2 2③所有二项式系数和等于 2n,即C 0n +C 1n +C 2n +⋯+C nn =2n.④奇数项的二项式系数和等于偶数项的二项式系数和,10213n ―1 即C n +C n +⋯=C n +C n +⋯=2 . 3.概率(1)事件与基本事件:随机事件: 在条件下, 可能发生也可能不发生的事件S事件不可能事件:在条件下,一定不会发生的事件 确定事件 S必然事件:在条件下,一定会发生的事件 S基本事件:试验中不能再分的最简单的 “单位”随机事件;一次试验等可能的产生一个基本事件;任意两个基本事件都是互斥的; 试验中的任意事件都可以用基本事件或其和的形式来表示.( 2)频率与概率:随机事件的频率是指此事件发生的次数与试验总次数的比值.频率往往在概率附近摆动,且随着试验次数的不断增加而变化,摆动幅度会越来越小.随机事件 的概率是一个常数,不随具体的实验次数的变化而变化.(3)互斥事件与对立事件:事件定义集合角度理解 关系事件 A 与B 不可能同时两事件交集为空事件A 与B 对立,则A互斥事件与B 必为互斥事件;发生事件 A 与B 不可能同时两事件互补 事件A 与B 互斥,但不对立事件一是对立事件 发生,且必有一个发生(4)古典概型与几何概型:古典概型:具有“等可能发生的有限个基本事件 ”的概率模型.几何概型:每个事件发生的概率只与构成事件区域的长度(面积或体积)成比例.两种概型中每个基本事件出现的可能性都是相等的, 但古典概型问题中所有可能出现的 基本事件只有有限个,而几何概型问题中所有可能出现的基本事件有无限个.(5)古典概型与几何概型的概率计算公式:古典概型的概率计算公式:P(A)A 包含的基本事件的个数 .基本事件的总数构成事件A 的区域长度(面积或体积) 几何概型的概率计算公式: P (A ).试验全部结果构成的区域长度(面积或体积)两种概型概率的求法都是 “求比例”,但具体公式中的分子、分母不同.(6)概率基本性质与公式①事件A 的概率P(A)的X 围为:0≤P(A)≤1.②互斥事件A 与B 的概率加法公式: P(AB)P(A) P(B).③对立事件A与B的概率加法公式:P(A) P(B) 1.(7)如果事件A在一次试验中发生的概率是p,则它在n次独立重复试验中恰好发生k次的概率是p kkn―kn的展开式的第k+1 项.n (1 ―p).实际上,它就是二项式[(1 ―p)+p] (k)=C n p2(8)独立重复试验与二项分布①.一般地,在相同条件下重复做的n次试验称为n次独立重复试验.注意这里强调了三点:(1)相同条件;(2)多次重复;(3)各次之间相互独立;②.二项分布的概念:一般地,在n次独立重复试验中,设事件A发生的次数为X,在每次试验中事件A发生的概率为p,那么在n次独立重复试验中,事件A恰好发生k次的概率为( X k )k k (1)nk(012 )P Cp p,k ,,,,nn.此时称随机变量X服从二项分布,记作X~B(n,p),并称p为成功概率.4、统计(1)三种抽样方法①简单随机抽样简单随机抽样是一种最简单、最基本的抽样方法.抽样中选取个体的方法有两种:放回和不放回.我们在抽样调查中用的是不放回抽取.简单随机抽样的特点:被抽取样本的总体个数有限.从总体中逐个进行抽取,使抽样便于在实践中操作.它是不放回抽取,这使其具有广泛应用性.每一次抽样时,每个个体等可能的被抽到,保证了抽样方法的公平性.实施抽样的方法:抽签法:方法简单,易于理解.随机数表法:要理解好随机数表,即表中每个位置上等可能出现0,1,2,⋯,9这十个数字的数表.随机数表中各个位置上出现各个数字的等可能性,决定了利用随机数表进行抽样时抽取到总体中各个个体序号的等可能性.②系统抽样系统抽样适用于总体中的个体数较多的情况.系统抽样与简单随机抽样之间存在着密切联系,即在将总体中的个体均分后的每一段中进行抽样时,采用的是简单随机抽样.系统抽样的操作步骤:第一步,利用随机的方式将总体中的个体编号;第二步,将总体的编号分段,要确定分段间隔k,当N(N为总体中的个体数,n为样本容量)是整数时,nk N;当N不是整数时,通过从总体中剔除一些个体使剩下的个体个数N能被n整除,n n这时k N;第三步,在第一段用简单随机抽样确定起始个体编号l,再按事先确定的规则n抽取样本.通常是将l加上间隔 k得到第2个编号(l k),将(l k)加上k,得到第3个编号(l 2k),这样继续下去,直到获取整个样本.③分层抽样当总体由明显差别的几部分组成时,为了使抽样更好地反映总体情况,将总体中各个个体按某种特征分成若干个互不重叠的部分,每一部分叫层;在各层中按层在总体中所占比例进行简单随机抽样.分层抽样的过程可分为四步:第一步,确定样本容量与总体个数的比;第二步,计算出各层需抽取的个体数;第三步,采用简单随机抽样或系统抽样在各层中抽取个体;第四步,将各层中抽取的个体合在一起,就是所要抽取的样本.(2)用样本估计总体样本分布反映了样本在各个X围内取值的概率,我们常常使用频率分布直方图来表示相应样本的频率分布,有时也利用茎叶图来描述其分布,然后用样本的频率分布去估计总体分布,总体一定时,样本容量越大,这种估计也就越精确.3①用样本频率分布估计总体频率分布时, 通常要对给定一组数据进行列表、作图处理.作 频率分布表与频率分布直方图时要注意方法步骤. 画样本频率分布直方图的步骤: 求全距→决定组距与组数→分组→列频率分布表→画频率分布直方图.②茎叶图刻画数据有两个优点: 一是所有的信息都可以从图中得到; 二是茎叶图便于记录和表示,但数据位数较多时不够方便.③平均数反映了样本数据的平均水平,而标准差反映了样本数据相对平均数的波动程1 n 2.有时也用标准差的平方———方差来代替标准差,度,其计算公式为s(x i x)ni1两者实质上是一样的.(3)两个变量之间的关系变量与变量之间的关系,除了确定性的函数关系外,还存在大量因变量的取值带有一定随机性的相关关系.在本章中,我们学习了一元线性相关关系,通过建立回归直线方程就可以根据其部分观测值, 获得对这两个变量之间的整体关系的了解. 分析两个变量的相关关系 时 ,我们可根据样本数据散点图确定两个变量之间是否存在相关关系,还可利用最小二乘估 计求出回归直线方程.通常我们使用散点图,首先把样本数据表示的点在直角坐标系中作出,形成散点图.然后从散点图上,我们可以分析出两个变量是否存在相关关系: 如果这些点大致分布在通过散点图中心的一条直线附近, 那么就说这两个变量之间具有线性相关关系, 这 条直线叫做回归直线, 其对应的方程叫做回归直线方程. 在本节要经常与数据打交道, 计算量大,因此同学们要学会应用科学计算器. (4)求回归直线方程的步骤:n n 2;第一步:先把数据制成表,从表中计算出 ,, x i y i , xy x ii1 i1 第二步:计算回归系数的 a ,b ,公式为n n nn x i y i ( x i )( y i ) b i 1 i1 i 1 , n 2 n x i )2n x i (i 1 i 1a y ;bx第三步:写出回归直线方程y bxa . (4)独立性检验①22 列联表:列出的两个分类变量 X 和Y ,它们的取值分别为{x 1,x 2}和{y 1,y 2}的 样本频数表称为 2 2列联表1分类y1 y2 总计x1 a b a bx2cdc d总计 a c b da bcd构造随机变量K2(an(ad bc)2d)(其中n ab cd)b)(c d)(a c)b4得到K2的观察值k常与以下几个临界值加以比较:如果k 2.706,就有9000的把握因为两分类变量X和Y是有关系;如果k 3.841 就有9500的把握因为两分类变量如果k 6.635 就有9900的把握因为两分类变量如果低于k 2.706,就认为没有充分的证据说明变量【典型例题】考点一:排列组合【方法解读】1、解排列组合题的基本思路:X和Y是有关系;X和Y是有关系;X和Y是有关系.①将具体问题抽象为排列组合问题,是解排列组合应用题的关键一步②对“组合数”恰当的分类计算是解组合题的常用方法;③是用“直接法”还是用“间接法”解组合题,其前提是“正难则反”;2、解排列组合题的基本方法:①优限法:元素分析法:先考虑有限制条件的元素的要求,再考虑其他元素;位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置;②排异法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。
数学中的排列组合与概率计算

数学中的排列组合与概率计算排列组合与概率计算是数学中重要的概念和工具,广泛应用于各个领域,包括统计学、物理学、计算机科学等。
本文将介绍排列组合与概率计算的基本概念和方法,并探讨它们在实际问题中的应用。
一、排列组合的基本概念1.1 排列排列是从一组元素中选取若干元素按一定顺序排列的方式。
对于n 个不同的元素,从中选取m个元素进行排列,可以表示为P(n,m)。
排列的计算公式为:P(n,m) = n! / (n-m)!其中,n!表示n的阶乘,即n! = n × (n-1) × (n-2) × … × 2 × 1。
1.2 组合组合是从一组元素中选取若干元素不考虑顺序的方式。
对于n个不同的元素,从中选取m个元素进行组合,可以表示为C(n,m)。
组合的计算公式为:C(n,m) = n! / (m! × (n-m)!)二、概率计算的基本原理概率是用来描述事件发生可能性的数值,它的取值范围在0到1之间,0表示不可能发生,1表示一定会发生。
概率计算基于排列组合的概念和原理,通过对事件的样本空间和事件的发生情况进行计数和分析,来得出事件发生的概率。
2.1 样本空间样本空间是指一个随机试验的所有可能结果的集合。
例如,掷一枚普通的硬币,它的样本空间包括正面和反面两个可能的结果。
2.2 事件事件是样本空间的子集,表示我们关心的某种结果。
例如,掷一枚硬币出现正面是一个事件。
2.3 概率概率是事件发生的可能性。
对于一个随机试验和事件,概率的计算公式为:P(A) = n(A) / n(S)其中,P(A)表示事件A发生的概率,n(A)表示事件A的发生情况数,n(S)表示样本空间的元素个数。
三、排列组合与概率计算的应用排列组合和概率计算在各个领域都有广泛的应用。
下面以几个具体的例子说明它们的具体应用。
3.1 组合在概率计算中的应用在扑克牌游戏中,计算一个牌型的概率就可以使用组合的概念。
高中数学中的排列组合与概率统计

高中数学中的排列组合与概率统计高中数学是我们学习的重要学科之一,其中排列组合与概率统计是数学中的两个重要概念。
它们在数学中的应用广泛,不仅帮助我们解决实际问题,还培养了我们的逻辑思维和分析能力。
一、排列组合排列组合是数学中的一种方法,用于计算一组对象的不同排列或组合的数量。
在排列中,对象的顺序是重要的,而在组合中,对象的顺序是不重要的。
排列的计算方法可以通过以下例子来理解。
假设有3个球,分别是红球、蓝球和绿球,现在要将这3个球放在一个篮子里。
那么,一共有多少种不同的排列方式呢?首先,我们可以将红球放在篮子的第一个位置,然后将蓝球放在第二个位置,最后将绿球放在第三个位置。
这样的排列方式是一种情况。
同样的,我们可以将红球放在第一个位置,绿球放在第二个位置,蓝球放在第三个位置,这样的排列方式也是一种情况。
根据这个思路,我们可以得出结论,一共有3个球,所以一共有3!(3的阶乘)种不同的排列方式。
组合的计算方法则是通过以下例子来理解。
假设有5个人,我们要从中选出3个人组成一个小组。
那么,一共有多少种不同的组合方式呢?首先,我们可以从5个人中选出一个人作为小组的第一个成员,然后从剩下的4个人中选出一个人作为第二个成员,最后从剩下的3个人中选出一个人作为第三个成员。
这样的组合方式是一种情况。
同样的,我们可以从5个人中选出一个人作为第一个成员,从剩下的4个人中选出一个人作为第二个成员,从剩下的3个人中选出一个人作为第三个成员,这样的组合方式也是一种情况。
根据这个思路,我们可以得出结论,一共有5个人,我们要选出3个人,所以一共有5C3(5的组合数)种不同的组合方式。
二、概率统计概率统计是研究随机事件发生的可能性的一门学科。
它可以帮助我们预测事件发生的概率,并根据概率进行决策和分析。
概率的计算方法可以通过以下例子来理解。
假设有一个装有10个红球和10个蓝球的箱子,现在我们从中随机抽取一个球。
那么,抽到红球的概率是多少呢?首先,我们可以计算出总共有20个球,其中10个是红球。
掌握简单的排列组合和概率计算

掌握简单的排列组合和概率计算排列组合和概率计算是数学中非常重要的概念和方法,它们在实际生活和各个领域中都有广泛的应用。
本文将介绍简单的排列组合和概率计算的概念、原理和应用,并提供一些练习题供读者巩固所学知识。
1. 排列的概念和计算方法排列是指从给定的一组对象中,选取若干个对象按照一定的顺序排列组合的方式。
在排列中,每个对象只能使用一次。
例如,有3个不同的字母A、B、C,从中选取2个字母排列,可以得到以下6种排列:AB、AC、BA、BC、CA、CB。
计算排列的方式为:使用阶乘的方法,即对于给定的n个对象中,选取r个对象排列,计算公式为P(n, r) = n!/(n-r)!,其中n!表示n的阶乘。
2. 组合的概念和计算方法组合是指从给定的一组对象中,选取若干个对象按照任意顺序排列组合的方式。
在组合中,每个对象只能使用一次。
例如,有3个不同的字母A、B、C,从中选取2个字母组合,可以得到以下3种组合:AB、AC、BC。
计算组合的方式为:使用阶乘的方法,即对于给定的n个对象中,选取r个对象组合,计算公式为C(n, r) = n!/(r!(n-r)!)。
3. 概率的概念和计算方法概率是指某个事件发生的可能性大小。
概率的计算方法可以通过排列组合的方式得到。
对于一个随机事件A,其概率的计算公式为P(A) = 事件A发生的总数/总的可能发生的事件数。
例如,从一副扑克牌中取出5张牌,计算其中4张是红心牌的概率。
首先计算红心牌的总数,扑克牌中共有52张牌,其中红心总数为13张,因此红心牌的总数为C(13, 4)。
然后计算总的可能取牌的事件数,即从52张牌中取出5张牌,其计算公式为C(52, 5)。
最后,将红心牌的总数除以总的可能取牌的事件数即可得到概率。
4. 应用案例排列组合和概率计算在现实生活中有许多应用。
以下是几个常见的案例:a. 彩票中奖概率计算:彩票中奖概率的计算就是应用了排列组合和概率计算的原理。
通过计算选中的号码在所有可能的号码组合中所占的比例,得到中奖的概率大小。
高考数学排列组合与概率计算重点清单

高考数学排列组合与概率计算重点清单一、背景介绍在高考数学中,排列组合和概率计算是不可忽视的重要内容。
掌握了这两个知识点,可以帮助学生在考试中获得更好的成绩。
本文将为大家列出高考数学排列组合与概率计算的重点清单,帮助大家快速掌握这些知识点。
二、排列组合的重点1. 排列的定义和运算法则- 不重复元素的全排列:n!- 重复元素的全排列:n!/(n1!×n2!×...)- 部分相同元素的排列:n!/(n1!×n2!×...),其中n1、n2等表示重复出现的元素个数2. 组合的定义和运算法则- 不重复元素的组合:C(n, k) = n!/(k!(n-k)!)- 重复元素的组合:C(n+k-1, k-1)- 全部选或全不选的方案数:2^n3. 排列组合的应用- 在几何问题中,通过排列组合可以确定数量关系、判断位置关系等- 在概率问题中,通过排列组合可以计算事件发生的概率- 在工程问题中,通过排列组合可以计算不重复的方案数三、概率计算的重点1. 事件的概率定义- 事件发生的概率:P(A) = n(A)/n(S),其中n(A)为事件A发生的可能性,n(S)为样本空间中的所有可能性数- 事件的对立事件:P(A') = 1-P(A)- 事件的必然事件:P(S) = 1,其中S为样本空间2. 概率的运算性质- 事件的和事件概率:P(A∪B) = P(A) + P(B) - P(A∩B)- 事件的积事件概率:P(A∩B) = P(A) × P(B|A),其中P(B|A)表示在事件A发生的条件下事件B发生的概率3. 条件概率与独立事件- 条件概率的计算:P(A|B) = P(A∩B)/P(B)- 事件的独立性:如果P(A∩B) = P(A) × P(B),则事件A与事件B 相互独立4. 一些常见的概率问题- 排列组合与概率计算相结合的问题- 球与盒子问题、扑克牌问题等四、总结通过本文的介绍,我们了解到高考数学中排列组合与概率计算的重点知识点,这些内容对于考生来说至关重要。
组合数学:排列、组合与概率

组合数学是数学中一门重要的学科,它研究的是“选择”的问题,这种选择可以是排列、组合或者概率中的各种情况。
在组合数学中,排列、组合与概率是三个关键的概念。
首先,我们来看排列。
排列是指从一组元素中,按照一定的顺序选择几个元素进行排列。
例如,有A、B、C三个字母,我们要从中选择两个字母进行排列,那么可能的排列方式就是AB、AC、BA、BC、CA、CB。
排列的数量可以通过阶乘来计算,即 n! = n * (n-1) * (n-2) * … * 2 * 1,其中n表示元素的数量。
接着,我们来看组合。
组合是指从一组元素中,不考虑顺序选择几个元素进行组合。
例如,有A、B、C三个字母,我们要从中选择两个字母进行组合,那么可能的组合方式就是AB、AC、BC。
组合的数量可以通过公式 C(n,r) = n! /(r! * (n-r)!) 进行计算,其中n表示元素的数量,r表示选择的元素个数。
最后,我们来看概率。
概率是指某个事件发生的可能性的大小,它是一个介于0和1之间的实数。
概率可以通过排列和组合的方法来计算。
例如,有一副扑克牌,从中随机抽取一张牌,如果我们想计算摸到黑桃牌的概率,那么可以用排列的方法计算。
黑桃牌的数量为13张,总牌数为52张,所以摸到黑桃牌的概率为 P = 13/52 = 1/4。
又如,有4个红色球和6个蓝色球,从中抽取两个球,如果我们想计算摸到一个红色球和一个蓝色球的概率,那么可以用组合的方法计算。
红色球的数量为4个,蓝色球的数量为6个,总球数为10个,所以摸到一个红色球和一个蓝色球的概率为 P = C(4,1) * C(6,1) / C(10,2) =24/45。
综上所述,组合数学是一门研究“选择”的数学学科,其中排列、组合与概率是三个重要的概念。
通过排列和组合的方法,可以计算出各种“选择”的可能性。
而概率则用来计算某个事件发生的可能性大小。
组合数学在实际应用中有着广泛的应用,例如在概率统计、密码学、图论等领域。
高中数学知识点:九_排列、组合、二项式、概率

九、排列、组合、二项式、概率:一、分类计数原理和分步计数原理:分类计数原理:如果完成某事有几种不同的方法,这些方法间是彼此独立的,任选其中一种方法都能达到完成此事的目的,那么完成此事的方法总数就是这些方法种数的和。
分步计数原理:如果完成某事,必须分成几个步骤,每个步骤都有不同的方法,而—个步骤中的任何一种方法与下一步骤中的每一个方法都可以连接,只有依次完成所有各步,才能达到完成此事的目的,那么完成此事的方法总数就是这些方法种数的积。
区别:如果任何一类办法中的任何一种方法都能完成这件事,则选用分类计数原理,即类与类之间是相互独立的,即“分类完成”;如果只有当n 个步骤都做完,这件事才能完成,则选用分步计数原理,即步与步之间是相互依存的,连续的,即“分步完成”。
二、排列与组合:(1)排列与组合的区别和联系:都是研究从一些不同的元素中取出n 个元素的问题; 区别:前者有顺序,后者无顺序。
(2)排列数、组合数: 排列数的公式:)()!(!)1()2)(1(n m m n n m n n n n A m n ≤-=+---= 注意:①全排列:!n A n n =; ②记住下列几个阶乘数,1!=1,2!=2,3!=6,4!=24,5!=120,6!=720; 排列数的性质:①1-=m m nA A (将从n 个不同的元素中取出)(n m m ≤个元素,分两步完成:第一步从n 个元素中选出1个排在指定的一个位置上;第二步从余下1-n 个元素中选出1-m 个排在余下的1-m 个位置上)②m m m A mA A 1-+=(将从n 个不同的元素中取出)(n m m ≤个元素,分两类完成:第一类:m 个元素中含有a ,分两步完成:第一步将a 排在某一位置上,有m 不同的方法。
第二步从余下1-n 个元素中选出1-m 个排在余下的1-m 个位置上)即有11--m n mA 种不同的方法。
第二类:m 个元素中不含有a ,从1-n 个元素中取出m 个元素排在m 个位置上,有m n A 1-种方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
; ( 3 )A
11 r 46
; ( 4 )A
12 X 10
解
4 A4 4! 24
A
56 234
234! 178!
A
11 r 46
46! (35 r)!
( x 10)! ( x 2)!
A
12 x 10
求证:A nA
m n
m1 n1
证明:
m An 17 16
5 4, 则n ___, 17 m ___ 14
全排列 n个不同元素全部取出的一个排列
n An n (n 1) (n 2) 3 2 1 n An n!
1!
2!
3!
4!
5!
6!
7!
1
2
6
24 120 720 5040
3 2 1
结构特点 : (1) m个 连 续 正 整 , 它 是A的 下 标 n
( 3) 第m个 因 数 (即 最 后 一 个 因 数 )最 小, 它 是A的 下 标 n减 去 上 标 m再 加 上 1
例1 计 算: ( 1 )A ; ( 2 )A
4 4 56 234
温故知新
排列与排列数
从n个不同元素中取出m(m≤n)个元素,按照 一定的顺序排成一列,叫做从n个不同元素中取 出m个元素的一个排列 注:①从n个不同元素中取出m个元素 ② 按顺序排成一列 ③ m≤n 当两个排列的元素完全相同,且元素的排 列顺序相同称两个排列相同
从n个不同元素中取出m(m≤n)个元素的所有 排列的个数,叫做从n个不同元素中取出m个元素 的排列数 m 表示方法 An
n! A n m !
m n
nA
m 1 n 1
(n 1)! n n m ! n! n m !
m n m1 n1
A nA
小结与作业
从n个不同元素中取出m(m≤n)个元素,按照 一定的顺序排成一列,叫做从n个不同元素中取 出m个元素的一个排列 当两个排列的元素完全相同,且元素的排 列顺序相同称两个排列相同 从n个不同元素中取出m(m≤n)个元素的所有 排列的个数,叫做从n个不同元素中取出m个元素 的排列数
排列数公式
从n个不同元素中取出m(m≤n)个元素的所有排列的 个数,叫做从n个不同元素中取出m个元素的排列数
第1位 第2位 第3位 第M位
……
n
m
n-1
n-2
n-m+1
n,m∈N*,m≤n
An =n(n-1)(n-2) …(n-m+1)
排列数公式
m An
n(n 1)(n 2)(n m 1)
; ( 3 )A
11 r 46
; ( 4 )A
12 X 10
解
A 4 3 2 1
4 4
56 A234 234 233 232 231 230 179
11 r A46 46 45 44 43 (r+36)
A12 (x-1) x 10 ( x 10)( x 9)( x 8)
(n+1) · n!= (n 1) n (n 1) (n 2) =(n+1)! (n+2)(n+1) · n! (n 2) (n 1) n (n 1) (n 2) =(n+2)!
3 2 1
求证:A 8 A 7 A A
n! ( n m)!
21
m 当m=n时, An n!
为了使上面的公式在m=n时也能成立,我们规定
作用:1.当n,m较大时,由于从计算器上可直接按出相 应的阶乘数,因此用上面的公式计算排列数较为方便. 2.当对含有字母的排列数的式子进行变形和论证时, 常写成这种形式去互相沟通.
0!=1
例1 计 算: ( 1 )A ; ( 2 )A
气の,尤其是在浮岛之上,还有十一些像迷雾壹样の地方,闪着阵阵仙光,却楚里面有什么东西."恩,这个老头不简单,和老铁有得壹拼."根汉和南天冰云,现在交流都换成了传音了,不再说话了,怕被人家给听了去了."以他这样の水平,或许在这天府应该有点地位."南天冰云猜想道.根汉却咧嘴 笑了:"那可未必,这天府の实力,或许远超出咱们の想像了.""哦?你怎么知道の?"南天冰云问他.根汉也不好和她说,是因为自己の天眼,能够人の壹些脑海中の信息,刚刚自己扫描了这个灰袍青年の元灵,所以获得了壹些信息.虽说这个灰袍青年在这天府の地位可以说是极低の,仅仅算是初入 门の弟子,算不得核心弟子,但是这天府の人本来就不多,而且这家伙在这里呆了也有近百年了,所以还是知道不少东西の."你者穿の也不怎么样,身上也没有多少秘宝,穿の戴の都比较普通,应该不是什么高地位の人."根汉说,南天冰云也觉得有道理:"穿の还真是有些普通呢,难道这天府有壹 大票の绝强者?""完全有可能,咱们过去听听会说些什么."根汉说,带着南天冰云又往那边飞了近百里,直到能听到他们两人の谈话后便停了下来."不错,这の确就是九龙珠,想不到你竟然真の带回来了,这回你真是大功壹件."老者接过这灰袍青年の宝袋子,啧啧叹道,"咱们天府寻这东西寻了十 几万年了,到现在也不过只寻到过几颗而已.""都是师父庇护弟子,才能侥幸找到它."灰袍青年说.老者微笑着说:"你这回立了大功,为师便破例传你暗袭之法.""多谢师父."灰袍青年连忙跪下,老者右手放在他眉心按了按,壹阵白光钻进了他の元灵之中,灰袍青年大喜道:"多谢师父成全,弟子 壹定努力修行.""恩,等为师将此物献给府主,府主壹定会赏你进入仙池の,到时你百年の心愿就可以完成了."老者说.灰袍青年道:"多谢师父,弟子壹定谨记壹生,不辜负师父の期望.""恩,你能找到这东西,也说明你与此物有缘."老者欣慰の说道:"说明你の天赋还有提升の机会,等为师去和 府主说壹下能赐你仙丹壹枚.""仙,仙丹?"灰袍青年内心颤抖,不敢相信自己听到の.老者微笑着说:"为师只是替你去试壹下,毕竟仙丹只有立了大功の人,才有资格服用,咱们天府の仙丹の数量也不多,只有府主身上有壹些而已.""多谢师父."灰袍青年心中壹阵狂喜,没想到自己这回捡到了这 颗宝珠,竟然会是这么大の壹件功劳."起来吧,不必这么客气."老者笑道:"说不定用不了多久,以后你就能和师父平起平坐了.""弟子不敢,无论何时,您都是小鹰の师父,永远都是小鹰最敬仰の人."灰袍青年嘴倒是挺甜.老者也感觉比较欣慰,然后对灰袍青年道:"你先下去吧,好好修行暗袭功, 府主现在不在这里,等师父の通知.""好,弟子先退下了."灰袍青年连忙恭敬の退下了,他往前面の壹座飘浮岛飞了过去,由于整个傲仙谷有方圆七八万里之巨.他飞走了之后,老者拿取出了蓝色の九龙珠,夹在指间仔细の端详.嘴里喃喃自语の说:"想不到九龙珠竟然还真の有,竟然被这蠢货给 找到了,真是天助咱也."那弟子刚走,这老者便骂开了,脸上露出了壹脸不屑の神情."就你也配去仙池?服用仙丹?你也太你自己了.""这东西只有本座可以使用."老者壹改刚刚の壹脸慈祥之色,换成了壹脸の阴戾之色,这变化不是壹般の大.远处の南天冰云也是壹脸の无语,传音根汉道:"这老 不死の怎么这么不要脸呀,抢自己徒弟拿来の至宝,真是令人毛骨耸然,找了这么壹师父の话.""呵呵,世上の人可并不都是那么善良の,有些人就是这样の."根汉见多了这种人,倒没觉得有什么可稀奇の.只是他很困惑,这老家伙,难道知道如何使用九龙珠吗?听他の口气,好像这天府中还有几枚 九龙珠.现在自己已经有五枚九龙珠了,就只差四枚,就可以集齐九枚九龙珠了,如果这天府中有四枚の话,自己就可以凑齐了."九龙珠是什么呀,那东西连天府の府主也在找?还找了十几万年了?"南天冰云没听说过九龙珠.根汉传音她:"咱也不知道有什么用,只是听这名字应该就很恐怖吧,或 许会有惊天の用处.""那这老家伙,难道敢自己留着用?不给他们の府主?"南天冰云觉得有些不可信."呵呵,这老家伙修为也不弱,自己留着用也未尝不可以."根汉从那叫小鹰の灰袍青年の元灵中得知,这个老者他の师父,人称天朽,这个天朽是这天府の三十六位议事长老之壹.而在这三十六位 议事长老上面,还有十二位太上长老,天府中权势比较大の,就是这十二位太上长老,平时主要管事の都是这十二位太上长老.议事长老也就是这段时间,被轮派到天府の四个出口处防守,守着人进出の.也就是说,刚刚除了这个议事长老在这里,没有人知道这件事情,而刚刚天朽又和小鹰说了,这 件事情在得到府主回复之前,切不可告诉别人.到时只要找个机会,将那小鹰给杀了,这蓝龙珠就是他の专属物品了,不会再有人知道此事了."那咱们现在去哪尔?到前面去?"南天冰云问根汉.根汉の目光壹直盯着那天朽,在想着如何夺走蓝龙珠,但是现在想想要夺取の话,可能会有大麻烦.毕竟 那老东西修为比较高,达到了绝强者之境,而且身上肯定还有至宝,再加上这附近还是天府の地盘."如果他要杀了那小鹰,壹定会找机会带那小鹰出去の,到时就是咱の机会."根汉思考再三之后,决定现在先不动手,先和南天冰云往前飞,飞到了前面の壹座比较大の飘浮岛の面前.这座飘浮岛大 概有方圆壹千里大小,岛外有四五座很强の法阵守护,阵外还有四五个天府の弟子在这里巡逻之类の,刚刚那小鹰便是壹路飞到了这里然后进入了岛上.这里应该是他们这些弟子の修行之地,也是平常の居住之所,会有不少の天府中人.根汉和南天冰云顺利の进入了这座飘浮岛上,岛上灵物飞窜, 林子茂.密,更有几条灵河在岛上穿过,最终形成了壹个灵气の循环之体.岛上有不少の