圆锥曲线高考专题

合集下载

圆锥曲线高考真题专练(含答案)

圆锥曲线高考真题专练(含答案)

(一)数学全国1卷设椭圆22:12x C y +=的右焦点为F ,过F 的直线l 与C 交于,A B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:OMA OMB ∠=∠. 解:(1)由已知得(1,0)F ,l 的方程为x=1.由已知可得,点A 的坐标为或(1,.所以AM 的方程为y x =+y x =. (2)当l 与x 轴重合时,0OMA OMB ∠=∠=︒.当l 与x 轴垂直时,OM 为AB 的垂直平分线,所以OMA OMB ∠=∠.当l 与x 轴不重合也不垂直时,设l 的方程为(1)(0)y k x k =-≠,1221(,),(,)A y x y x B ,则12x x <<MA ,MB 的斜率之和为212122MA MB x x y yk k +=+--. 由1122,y k k x y k x k =-=-得121212(23()42)(2)MA MB x x x x k k x x kk k -+++=--.将(1)y k x =-代入2212x y +=得 2222(21)4220k x k x k +-+-=.所以,21221222422,2121x x x k k k x k -+==++.则3131322244128423()4021k k k k kk k k k x x x x --++-++==+. 从而0MA MB k k +=,故MA ,MB 的倾斜角互补,所以OMA OMB ∠=∠.综上,OMA OMB∠=∠.已知椭圆C:2222=1x ya b+(a>b>0),四点P1(1,1),P2(0,1),P3(–1,P4(1,C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.解:(1)由于3P,4P两点关于y轴对称,故由题设知C经过3P,4P两点.又由222211134a b a b+>+知,C不经过点P1,所以点P2在C上.因此222111314ba b⎧=⎪⎪⎨⎪+=⎪⎩,解得2241ab⎧=⎪⎨=⎪⎩.故C的方程为2214xy+=.(2)设直线P2A与直线P2B的斜率分别为k1,k2,如果l与x轴垂直,设l:x=t,由题设知0t≠,且||2t<,可得A,B的坐标分别为(t,),(t,).则121k k+-=-,得2t=,不符合题设.从而可设l:y kx m=+(1m≠).将y kx m=+代入2214xy+=得222(41)8440k x kmx m+++-=由题设可知22=16(41)0k m∆-+>.设A(x1,y1),B(x2,y2),则x1+x2=2841kmk-+,x1x2=224441mk-+.而12121211y y k k x x --+=+121211kx m kx m x x +-+-=+ 1212122(1)()kx x m x x x x +-+=.由题设121k k +=-,故1212(21)(1)()0k x x m x x ++-+=.即222448(21)(1)04141m kmk m k k --+⋅+-⋅=++.解得12m k +=-.当且仅当1m >-时,0∆>,欲使l :12m y x m +=-+,即11(2)2m y x ++=--,所以l 过定点(2,1-) 数学全国1卷设圆222150x y x ++-=的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E. (I )证明EA EB +为定值,并写出点E 的轨迹方程;(II )设点E 的轨迹为曲线C1,直线l 交C1于M,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.【答案】(I )13422=+y x (0≠y );(II ))38,12[ 【解析】试题分析:(I )利用椭圆定义求方程;(II )把面积表示为关于斜率k 的函数,再求最值。

2024年新高考版数学专题1_9.5 圆锥曲线的综合问题(分层集训)

2024年新高考版数学专题1_9.5 圆锥曲线的综合问题(分层集训)

解析 (1)设动点P的坐标为(x,y),因为| PF | = 5 ,
d5
所以
(x 1)2 y2
=
5 ,即5[(x+1)2+y2]=|x+5|2,整理得 x2 + y2 =1.所以动点P的
| x5|
5
54
轨迹方程为 x2 + y2 =1.
54
(2)设M(x1,y1),N(x2,y2),由(1)可得点A的坐标为(0,-2),故直线AM:y=
AC
·BC
=1,
则点C的轨迹为 ( )
A.圆 B.椭圆 C.抛物线 D.直线
答案 A
3.(2023届贵州遵义新高考协作体入学质量监测,8)已知圆C的方程为(x-1)2
+y2=16,B(-1,0),A为圆C上任意一点,若点P为线段AB的垂直平分线与直线
AC的交点,则点P的轨迹方程为 ( )
A. x2 + y2 =1
2 2
+
y2 b2
=1(a>b>0)的离心率e=
2 ,四
2
个顶点组成的菱形的面积为8 2 ,O为坐标原点.
(1)求椭圆E的方程;
(2)过☉O:x2+y2= 8
上任意点P作☉O的切线l与椭圆E交于点M,N,求证:
PM
·
3
PN
为定值.
解析 (1)由题意得2ab=8 2 ,e= c = 2 ,a2=b2+c2,
2
3
6
,
0
,∴
PM
=
0,
2
3
6
,
PN
=
0,
2
6 3
,

专题9-1 圆锥曲线(选填)(解析版)2023年高考数学二轮专题全套热点题型

专题9-1 圆锥曲线(选填)(解析版)2023年高考数学二轮专题全套热点题型

【答案】1 【详解】 抛物线 y2 8x ,
抛物线的准线为 x 2 ,焦点 F 2,0 ,
过点 P 作直线 l 的垂线交于点 C ,如图所示:
由抛物线的定义可知,| PF || PB || PA | p , 2
则| PA || PF | p | PF | 2 , 2
d | x0 || PC | | PF | 2, 当 F , P , C 三点共线时, | PC | | PF |取得最小值,即 d | x0 | 取得最小值, F (2, 0),
专题 9-1 圆锥曲线(选填)
目录 专题 9-1 圆锥曲线(选填) ................................................................................................................... 1
B. x2 y2 1
32 36
C. x2 y2 1 95
【答案】C 【详解】根据题意,作图如下:
D. x2 y2 1 59
易知 NM NQ ,则 NP NM 6 ,即 NP NQ 6 PQ 4 ,
故点 N 的轨迹是以 P,Q 为焦点且长轴长为 6 的椭圆,
设其方程为 x2 a2
③抛物线的定义:平面内与一个定点 F 和一条定直线 l (其中定点 F 不在定直线 l 上)的距 离相等的点({M || MF | d} )的轨迹叫做抛物线,定点 F 叫做抛物线的焦点,定直线 l 叫做
抛物线的准线.
【变式演练】
1.(2022·四川·成都外国语学校高二期中(理))已知双曲线
x2 9
y2 16
整理得 x2 2ax 2b2 0 ,
由于点 M 在第一象限, x a a2 2b2 ,

(完整版)历年圆锥曲线高考题(带答案)

(完整版)历年圆锥曲线高考题(带答案)

历年高考圆锥曲线2000年:(10)过原点的直线与圆相切,若切点在第三象限,则该直03422=+++x y x 线的方程是( )(A ) (B ) (C )(D )x y 3=x y 3-=x 33x 33-(11)过抛物线的焦点F 作一条直线交抛物线于P 、Q 两点,若线()02>=a ax y段PF 与FQ 的长分别是、,则等于( )p q qp 11+(A )(B )(C ) (D )a 2a21a 4a4(14)椭圆的焦点为、,点P 为其上的动点,当为钝角14922=+y x 1F 2F 21PF F ∠ 时,点P 横坐标的取值范围是________。

(22)(本小题满分14分)如图,已知梯形ABCD 中,点E 分有向线段所成的比为,CD AB 2=AC λ双曲线过C 、D 、E 三点,且以A 、B 为焦点。

当时,求双曲线离心率4332≤≤λ的取值范围。

e 2004年3.过点(-1,3)且垂直于直线的直线方程为( )032=+-y x A .B .C .D .12=-+y x 052=-+y x 052=-+y x 072=+-y x 8.已知圆C 的半径为2,圆心在轴的正半轴上,直线与圆C 相切,则圆x 0443=++y x C 的方程为( )A .B .03222=--+x y x 0422=++x y x C .D .3222=-++x y x 0422=-+x y x 8.(理工类)已知椭圆的中心在原点,离心率,且它的一个焦点与抛物线21=e 的焦点重合,x y 42-= 则此椭圆方程为( )A .B .13422=+y x 16822=+y x C .D .1222=+y x 1422=+y x 22.(本小题满分14分)双曲线的焦距为2c ,直线过点(a ,0)和(0,b ),且点)0,1(12222>>=-b a by a x l (1,0)到直线的距离与点(-1,0)到直线的距离之和求双曲线的离心率e l l .54c s ≥的取值范围.2005年:9.已知双曲线的焦点为,点在双曲线上且则点1222=-y x 12,F F M 120,MF MF ⋅= 到M 轴的距离为(x )A .B .CD435310.设椭圆的两个焦点分别为过作椭圆长轴的垂线交椭圆于点P ,若△为12,,F F 2F 12F PF等腰直角三角形,则椭圆的离心率是()A B C .D 2121、(理工类)(本小题满分12分)设,两点在抛物线上,是的垂直平分线。

2024年高考数学题源追溯专题15 圆锥曲线综合(解析版)

2024年高考数学题源追溯专题15  圆锥曲线综合(解析版)

专题15 圆锥曲线综合目录一览2023真题展现考向一直线与双曲线综合考向二直线与抛物线综合真题考查解读近年真题对比考向一直线与双曲线综合考向二直线与圆锥曲线综合命题规律解密名校模拟探源易错易混速记/二级结论速记考向一直线与双曲线综合1.(2023•新高考Ⅱ•第21题)已知双曲线C中心为坐标原点,左焦点为(﹣25,0),离心率为5.(1)求C的方程;(2)记C的左、右顶点分别为A1,A2,过点(﹣4,0)的直线与C的左支交于M,N两点,M在第二象限,直线MA1与NA2交于P,证明P在定直线上.解:(1)双曲线C中心为原点,左焦点为(﹣25,0),离心率为5,则c2=a2+b2c=25e=ca=5,解得a=2b=4,故双曲线C的方程为x24−y216=1;(2)证明:过点(﹣4,0)的直线与C的左支交于M,N两点,则可设直线MN的方程为x=my﹣4,M(x1,y1),N(x2,y2),记C的左,右顶点分别为A1,A2,则A1(﹣2,0),A2(2,0),联立x=my−44x2−y2=16,化简整理可得,(4m2﹣1)y2﹣32my+48=0,故Δ=(﹣32m )2﹣4×48×(4m 2﹣1)=264m 2+192>0且4m 2﹣1≠0,y 1+y 2=32m4m 2−1,y 1y 2=484m 2−1,直线MA 1的方程为y =y 1x 1+2(x +2),直线NA 2方程y =y 2x 2−2(x−2),故x +2x−2=y 2(x 1+2)y 1(x 2−2)=y 2(my 1−2)y1(my 2−6)=my 1y 2−2(y 1+y 2)+2y 1my 1y 2−6y 1 =m ⋅484m 2−1−2⋅32m4m 2−1+2y 1m ⋅484m 2−1−6y 1=−16m4m 2−1+2y 148m4m 2−1−6y 1=−13,故x +2x−2=−13,解得x =﹣1,所以x P =﹣1,故点P 在定直线x =﹣1上运动.考向二 直线与抛物线综合2.(2023•新高考Ⅰ•第22题)在直角坐标系xOy 中,点P 到x 轴的距离等于点P 到点(0,)的距离,记动点P 的轨迹为W .(1)求W 的方程;(2)已知矩形ABCD 有三个顶点在W 上,证明:矩形ABCD 的周长大于3.解:(1)设点P 点坐标为(x ,y ),由题意得|y |=,两边平方可得:y 2=x 2+y 2﹣y +,化简得:y =x 2+,符合题意.故W 的方程为y =x 2+.(2)解法一:不妨设A ,B ,C 三点在W 上,且AB ⊥BC .设A (a ,a 2),B (b ,),C (c ,),则,.由题意,=0,即(b ﹣a )(c ﹣b )+(b 2﹣a 2)(c 2﹣b 2)=0,显然(b ﹣a )(c ﹣b )≠0,于是1+(b +a )(c +b )=0.此时,|b +a |.|c +b |=1.于是min {|b +a |,|c +b |}≤1.不妨设|c +b |≤1,则a =﹣b ﹣,则|AB|+|BC|=|b﹣a|+|c﹣b|=|b﹣a|+|c﹣b|≥|b﹣a|+|c﹣b|≥|c﹣a|=|b+c+|.设x=|b+c|,则f(x)=(x+),即f(x)=,又f′(x)==.显然,x=为最小值点.故f(x)≥f()=,故矩形ABCD的周长为2(|AB|+|BC|)≥2f(x)≥3.注意这里有两个取等条件,一个是|b+c|=1,另一个是|b+c|=,这显然是无法同时取到的,所以等号不成立,命题得证.解法二:不妨设A,B,D在抛物线W上,C不在抛物线W上,欲证命题为|AB|+|AD|>.由图象的平移可知,将抛物线W y=x2不影响问题的证明.设A(a,a2)(a≥0),平移坐标系使A为坐标原点,则新抛物线方程为y′=x′2+2ax′,写为极坐标方程,即ρsinθ=ρ2cos2θ+2aρcosθ,即ρ=.欲证明的结论为||+||>,也即|﹣|+|+|>.不妨设||≥||,将不等式左边看成关于a的函数,根据绝对值函数的性质,其最小值当即a=时取得,因此欲证不等式为||>,即||>,根据均值不等式,有|cos θsin 2θ|=.≤.=,由题意,等号不成立,故原命题得证.【命题意图】考查圆锥曲线的定义、标准方程、几何性质,直线与圆锥曲线相交等.【考查要点】圆锥曲线综合是高考必考的解答题,难度较大.考查圆锥曲线标准方程的求解,考查直线与圆锥曲线的位置关系,考查定值、定直线、面积最值、存在性与恒成立等问题.考查运算求解能力、逻辑推导能力、分析问题与解决问题的能力、数形结合思想、化归与转化思想.【得分要点】1.圆锥曲线的定义(1)椭圆定义:12||||2PF PF a +=.(2)双曲线定义:12|||-|||2PF PF a =.(3)抛物线定义:|PF|=d .2.圆锥曲线的标准方程及几何性质(1)椭圆的标准方程与几何性质标准方程x2a 2+y 2b 2=1(a >b >0)y 2a 2+x 2b 2=1(a >b >0)图形范围−a ≤x ≤a ,−b ≤y ≤b −b ≤x ≤b ,−a ≤y ≤a对称性对称轴: x 轴、y 轴 .对称中心:原点 .焦点F 1(−c,0) ,F 2(c,0) .F 1(0,−c) ,F 2(0,c) .顶点A 1(−a,0) ,A 2(a,0) ,B 1(0,−b) ,B 2(0,b) .A 1(0,−a) ,A 2(0,a) ,B 1(−b,0) ,B 2(b,0) .轴线段A 1A 2,B 1B 2分别是椭圆的长轴和短轴,长轴长为2a ,短轴长为2b .几何性质焦距|F 1F 2|=2c .离心率e =ca =1−b 2a 2∈(0,1).a ,b ,c 的关系c 2=a 2−b 2.(2)双曲线的标准方程与几何性质F (﹣c ,0),F(c,0)F (0,﹣c ),F (0,c )(3标准方程y 2=2px(p >0)y 2=−2px (p >0)x 2=2py (p >0)x 2=−2py (p >0)图形对称轴x 轴y 轴顶点O(0,0)焦点F(p 2,0)F(−p 2,0)F(0,p 2)F(0,−p 2)准线方程x =−p 2x =p 2y =−p 2y =p 2范围x ≥0 ,y ∈Rx ≤0 ,y ∈Ry ≥0 ,x ∈R y ≤0 ,x ∈R 离心率e =1几何性质焦半径(P(x 0,y 0)为抛物线上一点)p2+x 0p 2−x 0p2+y 0p 2−y 03.圆锥曲线中最值与范围的求解方法几何法若题目的条件和结论明显能体现几何特征及意义,则考虑利用图形性质来解决.代数法若题目的条件和结论能体现一种明确的函数,则可首先建立目标函数,再求这个函数的最值,求函数最值的常用方法有配方法、判别式法、基本不等式法及函数的单调性法等.4.求解直线或曲线过定点问题的基本思路(1)把直线或曲线方程中的变量x,y当作常数看待,把方程一端化为零,既然是过定点,那么这个方程就要对任意参数都成立,这时参数的系数就要全部等于零,这样就得到一个关于x,y的方程组,这个方程组的解所确定的点就是直线或曲线所过的定点.(2)由直线方程确定其过定点时,若得到了直线方程的点斜式y−y0=k(x−x0),则直线必过定点(x0 ,y0);若得到了直线方程的斜截式y=kx+m,则直线必过定点(0,m).(3)从特殊情况入手,先探究定点,再证明该定点与变量无关.5.求解定值问题的常用方法(1)从特殊入手,求出定值,再证明这个值与变量无关;(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.6.求解定线问题的常用方法定线问题是指因图形的变化或点的移动而产生的动点在定线上的问题.这类问题的本质是求点的轨迹方程,一般先求出点的坐标,看横、纵坐标是否为定值,或者找出横、纵坐标之间的关系.7.有关证明问题的解题策略圆锥曲线中的证明问题多涉及几何量的证明,比如涉及线段或角相等以及位置关系的证明,证明时,常把几何量用坐标表示,建立某个变量的函数,用代数方法证明.8.探索性问题的解题策略此类问题一般分为探究条件、探究结论两种.若探究条件,则可先假设条件成立,再验证结论是否成立,成立则存在,否则不存在;若探究结论,则应先求出结论的表达式,再针对其表达式进行讨论,往往涉及对参数的讨论.考向一直线与双曲线综合3.(2022•新高考Ⅱ)已知双曲线C:﹣=1(a>0,b>0)的右焦点为F(2,0),渐近线方程为y=±x.(1)求C的方程;(2)过F的直线与C的两条渐近线分别交于A,B两点,点P(x1,y1),Q(x2,y2)在C上,且x1>x2>0,y1>0.过P且斜率为﹣的直线与过Q且斜率为的直线交于点M.从下面①②③中选取两个作为条件,证明另外一个成立.①M在AB上;②PQ∥AB;③|MA|=|MB|.注:若选择不同的组合分别解答,则按第一个解答计分.【解答】解:(1)由题意可得=,=2,解得a=1,b=,因此C的方程为x2﹣=1,(2)解法一:设直线PQ的方程为y=kx+m,(k≠0),将直线PQ的方程代入x2﹣=1可得(3﹣k2)x2﹣2kmx﹣m2﹣3=0,Δ=12(m2+3﹣k2)>0,∵x1>x2>0∴x1+x2=>0,x1x2=﹣>0,∴3﹣k2<0,∴x1﹣x2==,设点M的坐标为(x M,y M),则,两式相减可得y1﹣y2=2x M﹣(x1+x2),∵y1﹣y2=k(x1﹣x2),∴2x M=(x1+x2)+k(x1﹣x2),解得X M=,两式相加可得2y M﹣(y1+y2)=(x1﹣x2),∵y1+y2=k(x1+x2)+2m,∴2y M=(x1﹣x2)+k(x1+x2)+2m,解得y M=,∴y M=x M,其中k为直线PQ的斜率;若选择①②:设直线AB的方程为y=k(x﹣2),并设A的坐标为(x3,y3),B的坐标为(x4,y4),则,解得x3=,y3=,同理可得x4=,y4=﹣,∴x3+x4=,y3+y4=,此时点M的坐标满足,解得X M==(x3+x4),y M==(y3+y4),∴M为AB的中点,即|MA|=|MB|;若选择①③:当直线AB的斜率不存在时,点M即为点F(2,0),此时不在直线y=x上,矛盾,当直线AB的斜率存在时,设直线AB的方程为y=m(x﹣2)(m≠0),并设A的坐标为(x3,y3),B 的坐标为(x4,y4),则,解得x3=,y3=,同理可得x4=,y4=﹣,此时x M=(x3+x4)=,∴y M=(y3+y4)=,由于点M同时在直线y=x上,故6m=•2m2,解得k=m,因此PQ∥AB.若选择②③,设直线AB的方程为y=k(x﹣2),并设A的坐标为(x3,y3),B的坐标为(x4,y4),则,解得x3=,y3=,同理可得x4=,y4=﹣,设AB的中点C(x C,y C),则x C=(x3+x4)=,y C=(y3+y4)=,由于|MA|=|MB|,故M在AB的垂直平分线上,即点M在直线y﹣y C=﹣(x﹣x C)上,将该直线y=x联立,解得x M==x C,y M==y C,即点M恰为AB中点,故点M在直线AB上.(2)解法二:由已知得直线PQ的斜率存在且不为零,直线AB的斜率不为零,若选由①②⇒③,或选由②③⇒①:由②成立可知直线AB的斜率存在且不为0.若选①③⇒②,则M为线段AB的中点,假设AB的斜率不存在,则由双曲线的对称性可知M在x轴上,即为焦点F,此时由对称性可知P、Q关于x轴对称,从而x1=x2,已知不符.综上,直线AB的斜率存在且不为0,直线AB的斜率为k,直线AB的方程为y=k(x﹣2).则条件①M在直线AB上,等价于y0=k(x0﹣2)⇔ky0=k2(x0﹣2),两渐近线的方程合并为3x2﹣y2=0,联立方程组,消去y并化简得:(k2﹣3)x2﹣4k2x+4k2=0,设A(x3,y3),B(x4,y4),线段中点为N(x N,y N),则x N==.y N=k(x N﹣2)=,设M(x0,y0),则条件③|AM|=|BM|等价于(x0﹣x3)2+(y0﹣y3)2=(x0﹣x4)2+(y0﹣y4)2,移项并利用平方差公式整理得:(x3﹣x4)[2x0﹣(x3+x4)]+(y3﹣y4)[(2y0﹣(y3+y4)]=0,[2x0﹣(x3+x4)]+[2y0﹣(y3+y4)]=0,∴x0﹣x N+k(y0﹣y N)=0,[2x0﹣(x3+x4)]+[2y0﹣(y3+y4)]=0,∴x0﹣x N+k(y0﹣y N)=0,∴,由题意知直线PM的斜率为﹣,直线QM的斜率为,∴由(x1﹣x0),y2﹣y0=(x2﹣x0),∴y1﹣y2=﹣(x1+x2﹣2x0),∴直线PQ的斜率m==﹣,直线PM:y=﹣(x﹣x 0)+y0,即y=,代入双曲线的方程为3x2﹣y2﹣3=0,即()()=3中,得()[2﹣()]=3,解得P的横坐标为(+)]=3,同理,x2=﹣(),x1+x2﹣2x0=﹣﹣x0,∴m=,∴条件②PQ∥AB等价于m=k⇔ky0=3x0,综上所述:条件①M在AB上等价于m=k⇔ky0=k2(x0﹣2),条件②PQ∥AB等价于ky0=3x0,条件③|AM|=|BM|等价于.选①②⇒③:由①②解得∴,∴③成立;选①③⇒②:由①③解得:,ky0=,∴ky0=3x0,∴②成立;选②③⇒①:由②③解得:,ky0=,∴,∴①成立.4.(2022•新高考Ⅰ)已知点A(2,1)在双曲线C:﹣=1(a>1)上,直线l交C于P,Q两点,直线AP,AQ的斜率之和为0.(1)求l的斜率;(2)若tan∠PAQ=2,求△PAQ的面积.【解答】解:(1)将点A代入双曲线方程得,化简得a4﹣4a2+4=0,∴a2=2,故双曲线方程为,由题显然直线l的斜率存在,设l:y=kx+m,设P(x1,y1)Q(x2,y2),则联立双曲线得:(2k2﹣1)x2+4kmx+2m2+2=0,故,,,化简得:2kx1x2+(m﹣1﹣2k)(x1+x2)﹣4(m﹣1)=0,故,即(k+1)(m+2k﹣1)=0,而直线l不过A点,故k=﹣1;(2)设直线AP的倾斜角为α,由,∴,得由2α+∠PAQ=π,∴,得,即,联立,及得,同理,故,而,由,得,故S△PAQ=|AP||AQ|sin∠PAQ=|x1x2﹣2(x1+x2)+4|=.5.(2021•新高考Ⅰ)在平面直角坐标系xOy中,已知点F1(﹣,0),F2(,0),点M满足|MF1|﹣|MF2|=2.记M的轨迹为C.(1)求C的方程;(2)设点T在直线x=上,过T的两条直线分别交C于A,B两点和P,Q两点,且|TA|•|TB|=|TP|•|TQ|,求直线AB的斜率与直线PQ的斜率之和.【解答】解:(1)由双曲线的定义可知,M的轨迹C是双曲线的右支,设C的方程为,根据题意,解得,∴C的方程为;(2)(法一)设,直线AB的参数方程为,将其代入C的方程并整理可得,(16cos2θ﹣sin2θ)t2+(16cosθ﹣2m sinθ)t﹣(m2+12)=0,由参数的几何意义可知,|TA|=t1,|TB|=t2,则,设直线PQ的参数方程为,|TP|=λ1,|TQ|=λ2,同理可得,,依题意,,则cos2θ=cos2β,又θ≠β,故cosθ=﹣cosβ,则cosθ+cosβ=0,即直线AB的斜率与直线PQ的斜率之和为0.(法二)设,直线AB的方程为,A(x1,y1),B(x2,y2),设,将直线AB方程代入C的方程化简并整理可得,,由韦达定理有,,又由可得,同理可得,∴=,设直线PQ的方程为,设,同理可得,又|AT||BT|=|PT||QT|,则,化简可得,又k1≠k2,则k1=﹣k2,即k1+k2=0,即直线AB的斜率与直线PQ的斜率之和为0.考向二直线与圆锥曲线综合6.(2021•新高考Ⅱ)已知椭圆C的方程为+=1(a>b>0),右焦点为F(,0),且离心率为.(Ⅰ)求椭圆C的方程;(Ⅱ)设M,N是椭圆C上的两点,直线MN与曲线x2+y2=b2(x>0)相切.证明:M,N,F三点共线的充要条件是|MN|=.【解答】(Ⅰ)解:由题意可得,椭圆的离心率=,又,所以a=,则b2=a2﹣c2=1,故椭圆的标准方程为;(Ⅱ)证明:先证明充分性,当|MN|=时,设直线MN的方程为x=ty+s,此时圆心O(0,0)到直线MN的距离,则s2﹣t2=1,联立方程组,可得(t2+3)y2+2tsy+s2﹣3=0,则Δ=4t2s2﹣4(t2+3)(s2﹣3)=12(t2﹣s2+3)=24,因为,所以t2=1,s2=2,因为直线MN与曲线x2+y2=b2(x>0)相切,所以s>0,则,则直线MN的方程为恒过焦点F(),故M,N,F三点共线,所以充分性得证.若M,N,F三点共线时,设直线MN的方程为x=my+,则圆心O(0,0)到直线MN的距离为,解得m2=1,联立方程组,可得,即,所以;所以必要性成立;综上所述,M,N,F三点共线的充要条件是|MN|=.根据近几年真题推测主要考查直线与圆锥曲线的位置关系,涉及弦长、弦中点、定点、定值和取值范围等问题,常与函数、不等式等知识综合考查。

2024年高考数学专项复习圆锥曲线九大题型归纳(解析版)

2024年高考数学专项复习圆锥曲线九大题型归纳(解析版)

题型一:弦的垂直平分线问题题型二:动弦过定点的问题题型三:过已知曲线上定点的弦的问题题型四:向量问题题型五:面积问题题型六:弦或弦长为定值、最值问题题型七:直线问题圆锥曲线九大题型归纳题型八:对称问题题型九:存在性问题:(存在点,存在直线y =kx +m ,存在实数,存在图形:三角形(等比、等腰、直角),四边形(矩形、菱形、正方形),圆)题型一:弦的垂直平分线问题1过点T (-1,0)作直线l 与曲线N :y 2=x 交于A 、B 两点,在x 轴上是否存在一点E (x 0,0),使得ΔABE 是等边三角形,若存在,求出x 0;若不存在,请说明理由。

2024年高考数学专项复习圆锥曲线九大题型归纳(解析版)【涉及到弦的垂直平分线问题】这种问题主要是需要用到弦AB 的垂直平分线L 的方程,往往是利用点差或者韦达定理产生弦AB 的中点坐标M ,结合弦AB 与它的垂直平分线L 的斜率互为负倒数,写出弦的垂直平分线L 的方程,然后解决相关问题,比如:求L 在x 轴y 轴上的截距的取值范围,求L 过某定点等等。

有时候题目的条件比较隐蔽,要分析后才能判定是有关弦AB 的中点问题,比如:弦与某定点D 构成以D 为顶点的等腰三角形(即D 在AB 的垂直平分线上)、曲线上存在两点AB 关于直线m 对称等等。

2例题分析1:已知抛物线y =-x 2+3上存在关于直线x +y =0对称的相异两点A 、B ,则|AB |等于题型二:动弦过定点的问题1已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为32,且在x 轴上的顶点分别为A 1(-2,0),A 2(2,0)。

(I )求椭圆的方程;(II )若直线l :x =t (t >2)与x 轴交于点T ,点P 为直线l 上异于点T 的任一点,直线PA 1,PA 2分别与椭圆交于M 、N 点,试问直线MN 是否通过椭圆的焦点?并证明你的结论题型三:过已知曲线上定点的弦的问题1已知点A 、B 、C 是椭圆E :x 2a 2+y 2b 2=1(a >b >0)上的三点,其中点A (23,0)是椭圆的右顶点,直线BC 过椭圆的中心O ,且AC ∙BC =0,BC =2AC ,如图。

圆锥曲线问题在高考的常见题型及解题技巧

圆锥曲线问题在高考的常见题型及解题技巧

圆锥曲线问题在高考的常见题型及解题技巧圆锥曲线作为高等数学中的重要内容,在高考中常常出现,并且是考察学生数学运算能力和理解能力的重要方面。

圆锥曲线问题在高考中的常见题型有:直线与圆锥曲线的交点问题、圆锥曲线的参数方程问题、圆锥曲线的性质和应用问题等。

下面我们来一一介绍这些常见题型的解题技巧。

一、直线与圆锥曲线的交点问题这是圆锥曲线问题中最常见的一个题型,题目通常要求求出直线与圆锥曲线的交点坐标。

解题技巧如下:1. 分析题目给出的直线和圆锥曲线,确定直线方程和圆锥曲线方程;2. 将直线方程代入圆锥曲线方程中,解方程得出交点坐标;3. 特别要注意,当圆锥曲线为椭圆或双曲线时,有两个交点,需要分别求解;4. 当圆锥曲线为抛物线时,还需要注意直线的位置与抛物线的开口方向。

二、圆锥曲线的参数方程问题圆锥曲线的参数方程问题通常考查学生对参数方程的理解和应用能力,解答这类问题的关键在于用参数代换替换变量。

解题技巧如下:1. 给出的圆锥曲线通常可以用参数方程表示,将已知的参数方程代入题目求解;2. 注意参数方程的参数范围,有时需要根据范围重新调整参数;3. 对于给出的参数方程,需要将参数代换替换变量,进而得出答案。

三、圆锥曲线的性质和应用问题圆锥曲线的性质和应用问题通常要求学生掌握圆锥曲线的基本性质,以及如何应用这些性质解决实际问题。

解题技巧如下:1. 需要牢记圆锥曲线的基本性质,例如椭圆的焦点、双曲线的渐近线等;2. 掌握各种类型圆锥曲线的标准方程和参数方程;3. 对于应用问题,需要在掌握了基本性质的前提下,将问题转化为数学模型,进而解决。

以上就是圆锥曲线问题在高考中的常见题型及解题技巧,希望对大家备战高考有所帮助。

在复习期间,建议大家多做练习题,加深对圆锥曲线知识的理解,提高解题能力。

多思考,灵活运用各种解题技巧,相信大家一定能在高考中取得好成绩!。

高考数学《圆锥曲线》解答题专题复习题

高考数学《圆锥曲线》解答题专题复习题

高考数学《圆锥曲线》解答题专题复习题1.已知双曲线22221(00)y x a b a b-=>>,与双曲线22142x y -=有相同的渐近线,且经过点M.(1)求双曲线C 的标准方程.(2)已知直线0x y m -+=与曲线C 交于不同的两点A ,B ,且线段AB 的中点在圆2220x y +=上,求实数m 的值.2.已知椭圆2222:1(0)x y C a b a b+=>>的离心率为12,1A 、2A 分别为椭圆C 的左、右顶点,1F 、2F 分别为椭圆C 的左、右焦点,112A F =.(1)求椭圆C 的方程;(2)设与x 轴不垂直的直线l 交椭圆C 于P 、Q 两点(P 、Q 在x 轴的两侧),记直线1A P ,2A P ,2A Q ,1A Q 的斜率分别为1k ,2k ,3k ,4k .(i )求12k k 的值;(ii )若()142353k k k k +=+,求2F PQ △面积的取值范围.3.已知双曲线()2222Γ:10,0x y a b a b-=>>的左右顶点分别为点,A B ,其中2AB =,且双曲线过点()2,3C .(1)求双曲线Γ的方程;(2)设过点()1,1P 的直线分别交Γ的左、右支于,D E 两点,过点E 作垂直于x 轴的直线l ,交线段BC 于点F ,点G 满足EF FG =.证明:直线DG 过定点,并求出该定点.4.已知双曲线C 的渐近线方程是y =,点()2,3M在双曲线C 上.(1)求双曲线C 的离心率e 的值;(2)若动直线l :1y kx =+与双曲线C 交于A ,B 两点,问直线MA ,MB 的斜率之和是否为定值?若是,求出该定值;若不是,请说明理由.5.已知椭圆C 的中心在原点,一个焦点为()10F ,(1)求椭圆C 的标准方程;(2)设过焦点F 的直线l 与椭圆C 交于A 、B 两点,1F 是椭圆的另一个焦点,若1ABF 内切圆的半径r =l 的方程.6.已知椭圆2222:1(0)x y C a b a b +=>>的离心率e =C经过点2⎛ ⎝⎭.(1)求椭圆C 的标准方程;(2)过点()2,0P 且斜率不为零的直线与椭圆C 交于,B D 两点,B 关于x 轴的对称点为A ,求证:直线AD 与x 轴交于定点Q .7.已知椭圆221:4T x y +=,1F 、2F 为椭圆的左右焦点,C 、D 为椭圆的左、右顶点,直线1:2l y x m =+与椭圆T 交于A 、B 两点.(1)若12m =-,求AB ;(2)设直线AD 和直线BC 的斜率分别为1k 、2k ,且直线l 与线段12F F 交于点M ,求12k k 的取值范围.8.已知椭圆()2222:10x y C a b a b +=>>12D ⎫⎪⎭,点,A B 分别是椭圆C 的左、右顶点.(1)求椭圆C 的方程;(2)过点()4,0E 的直线l 与椭圆C 交于,P Q 两点(P 在,E Q 之间),直线,AP BQ 交于点M ,记,ABM PQM 的面积分别为12,S S ,求12S S的取值范围.第8题图第9题图9.如图,已知椭圆C 的焦点为()11,0F -,()21,0F,椭圆C 的上、下顶点分别为,A B ,右顶点为D ,直线l 过点D 且垂直于x 轴,点Q 在椭圆C 上(且在第一象限),直线AQ 与l 交于点N ,直线BQ 与x 轴交于点M .(1)求椭圆C 的标准方程;(2)判定AOM (O 为坐标原点)与ADN △的面积之和是否为定值?若是,请求出该定值;若不是,请说明理由.10.已知双曲线过点(A ,它的渐近线方程是20x y ±=.(1)求双曲线的标准方程;(2)若直线l 交C 于,P Q 两点,直线,AP AQ 的倾斜角互补,求直线l 的斜率.11.已知点(2,0)A -,(2,0)B ,平面内一动点M 满足直线AM 与BM 的斜率乘积为14-.(1)求动点M 的轨迹C 的方程;(2)直线l 交轨迹C 于,P Q 两点,若直线AP 的斜率是直线BQ 的斜率的4倍,求坐标原点O 到直线l 的距离的取值范围.12.若双曲线E :2221(0)x y a a-=>y =kx -1与双曲线E 的右支交于A ,B 两点.(1)求k 的取值范围;(2)若AB =,点C 是双曲线上一点,且()OC m OA OB =+,求k ,m 的值.13.已知1F ,2F 分别是椭圆G22+22=1>>0的左、右焦点,且焦距为MN 平行于x 轴,且114F M F N +=.(1)求椭圆E 的方程;(2)设A ,B 为椭圆E 的左右顶点,P 为直线:4l x =上的一动点(点P 不在x 轴上),连AP 交椭圆于C 点,连PB 并延长交椭圆于D 点,试问是否存在λ,使得ACD BCD S S λ= 成立,若存在,求出λ的值;若不存在,说明理由.14.平面上的动点(,)P x y 到定点(0,1)F 的距离等于点P 到直线1y =-的距离,记动点P 的轨迹为曲线C .(1)求曲线C 的方程;(2)直线:l y x m =+与曲线C 相交于A ,B 两点,线段AB 的中点为M .是否存在这样的直线l ,使得MF AB ⊥,若存在,求实数m 的值,若不存在,请说明理由.15.已知双曲线()22:1,,24x C y M m -=,斜率为k 的直线l 过点M .(1)若0m =,且直线l 与双曲线C 只有一个交点,求k 的值;(2)已知点(2,0)T ,直线l 与双曲线C 有两个不同的交点A ,B ,直线,TA TB 的斜率分别为12,k k ,若12k k +为定值,求实数m 的值.16.已知椭圆(2222:10)x y C a b a b+=>>的离心率为12,左焦点F 与原点O 的距离为1,正方形PQMN 的边PQ ,MN 与x 轴平行,边PN ,QM 与y 轴平行,2112,,,7777P M ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,过F 的直线与椭圆C 交于A ,B 两点,线段AB 的中垂线为l .已知直线AB 的斜率为k ,且0k >.(1)若直线l 过点P ,求k 的值;(2)若直线l 与正方形PQMN 的交点在边PN ,QM 上,l 在正方形PQMN 内的线段长度为s ,求sAB的取值范围.17.已知F 是椭圆C :2222+1(0)x y a b a b=>>的一个焦点,点13,2M 在椭圆C 上.(1)求椭圆C 的方程;(2)若直线l 与椭圆C 分别相交于A ,B 两点,且12OA OB k k +=-(O 为坐标原点),求直线l 的斜率的取值范围.参考答案1.(1)2212x y -=(2)2m =±2.(1)2211612x y +=(2)(i )34-;(ii )950,2⎛ ⎝⎭3.(1)2213y x -=(2)证明略,(1,0)B 4.(1)2(2)是,35.(1)2212x y +=(2)1x y =±+6.(1)2212x y +=(2)证明略7.(1(2)7⎡-+⎣8.(1)2214x y +=(2)()0,19.(1)2212x y +=(2210.(1)2214x y -=(2)11.(1)2214x y +=(0)y ≠(2)6(0,)512.(1)((2)51,24k m ==±13.(1)2214x y +=(2)存在,314.(1)24x y =;(2)不存在15.(1)12k =±或k =(2)2m =.16.(1)1k =(2)12,78⎛ ⎝⎦17.(1)2214x y +=(2)1[,0)(1,)4-+∞。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆锥曲线综合训练1.(17课标1)已知F 为抛物线C :24y x =的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A ,B 两点,直线l 2与C 交于D 、E 两点,则+||||AB DE 的最小值为( )2.(17课标3)已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为( )A B C .3D .133.(17课标2)若双曲线()2222:10,0x y C a b a b-=>>的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的离心率为 ( )A.2 4.(16四川)设O 为坐标原点,P 是以F 为焦点的抛物线22(p 0)y px => 上任意一点,M 是线段PF 上的点,且PM =2MF ,则直线OM 的斜率的最大值为( )B 23C 2D 1 5.(16天津)已知双曲线2224=1x y b -(b >0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A 、B 、C 、D 四点,四边形的ABCD 的面积为2b ,则双曲线的方程为( )A 22443=1y x -B 22344=1y x -C 2224=1x y b -D 2224=11x y - 6.(16全国I )已知方程x 22–y 22=1表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( )A (–1,3)B (–1,3)C (0,3)D (0,3)7.(16全国I )以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E两点.已知|AB |=|DE|=C 的焦点到准线的距离为( )A 2B 4C 6D 88.(16全国II )圆已知是双曲线的左,右焦点,点在上,与轴垂直,, 则E 的离心率为( ) A BC D 29.(16全国III )已知O 为坐标原点,F 是椭圆C :的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且轴.过点A 的直线l 与线段交于点M ,与y 轴交于点E.若直线BM 经过OE 的中点,则C 的离心率为( )ABCD10.( 16 浙江 ) 已知椭圆C 1:22x m +y 2=1(m >1)与双曲线C 2:22x n–y 2=1(n >0)的焦点重合,e 1,e 2分别为C 1,C 2的离心率,则( )A .m >n 且e 1e 2>1B .m >n 且e 1e 2<1C .m <n 且e 1e 2>1D .m <n 且e 1e 2<111.(17课标1).已知双曲线22221x y C a b-=:(a >0,b >0)的顶点为A ,以A 为圆心,b 为半径做圆A ,圆A 与双曲线C 的一条渐近线交于M 、N 两点.若∠MAN =60°,则C的离心率为_________.12.(17课标2)已知F 是抛物线C :28y x =的焦点,M 是C 上一点,FM 的延长线交y 轴于点N ,若M 为FN 的中点,则FN =_________.13.(16山东)已知双曲线E : (a >0,b >0),若矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2|AB |=3|BC |,则E 的离心率是_______.14.(16江苏)如图,在平面直角坐标系xOy 中,F 是椭圆22221(0)x y a b a b+=>>的右焦点,直线2by =与椭圆交于B ,C 两点,且90BFC ∠=o ,则该 椭圆的离心率是 .22x垂足为N ,点P 满足NP =uu u r .(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=u u u r u u u r,证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .16.(17课标1)已知椭圆()2222:10x y C a b a b+=>>,四点P 1(1,1),P 2(0,1),P 3(,P 4(1,2)中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,17.(16天津)设椭圆13222=+y a x (3>a )的右焦点为F ,右顶点为A ,已知 ||3||1||1FA eOA OF =+,其中O 为原点,e 为椭圆的离心率. (Ⅰ)求椭圆的方程;(Ⅱ)设过点A 的直线l 与椭圆交于点B (B 不在x 轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H ,若HF BF ⊥,且MOA MAO ∠≤∠,求直线的l 斜率的取值范围.18.(16全国I )设圆222150x y x ++-=的圆心为A ,直线l 过点B (1,0)且与x 轴 不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E . (I )证明EA EB +为定值,并写出点E 的轨迹方程;(II )设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.19. (16全国III)已知抛物线:的焦点为,平行于轴的两条直线分别交于两点,交的准线于两点.(I)若在线段上,是的中点,证明;(II)若的面积是的面积的两倍,求中点的轨迹方程.20.(16全国II)已知椭圆的焦点在轴上,是的左顶点,斜率为的直线交于两点,点在上,.(Ⅰ)当时,求的面积;(Ⅱ)当时,求的取值范围.圆锥曲线综合练习1.(17课标1)已知F 为抛物线C :24y x =的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A ,B 两点,直线l 2与C 交于D 、E 两点,则+||||AB DE 的最小值为( )2.(17课标3)已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为( )A B C D .1答案A3.(17课标2)若双曲线()2222:10,0x y C a b a b-=>>的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的离心率为 ( )A.2 D.34.(16四川)设O 为坐标原点,P 是以F 为焦点的抛物线22(p 0)y px => 上任意一点,M 是线段PF 上的点,且PM =2MF ,则直线OM 的斜率的最大值为( )B 23D 1 【答案】C5.(16天津)已知双曲线2224=1x y b -(b >0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A 、B 、C 、D 四点,四边形的ABCD 的面积为2b ,则双曲线的方程为( )A 22443=1y x -B 22344=1y x -C 2224=1x y b -D 2224=11x y - 【答案】D6.(16全国I )已知方程x 2m 2+n –y 23m 2–n =1表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( )A (–1,3)B (–1,3)C (0,3)D (0,3)【答案】A7.(16全国I )以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知|AB |=|DE|=C 的焦点到准线的距离为( )A 2B 4C 6D 8 【答案】B8.(16全国II )圆已知是双曲线的左,右焦点,点在上,与轴垂直,, 则E 的离心率为( )【答案】A9.(16全国III )已知O 为坐标原点,F 是椭圆C :的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且轴.过点A 的直线l 与线段交于点M ,与y 轴交于点E.若直线BM 经过OE 的中点,则C 的离心率为( )A BCD【答案】A10.( 16 浙江 ) 已知椭圆C 1:22x m +y 2=1(m >1)与双曲线C 2:22x n–y 2=1(n >0)的焦点重合,e 1,e 2分别为C 1,C 2的离心率,则( )A .m >n 且e 1e 2>1B .m >n 且e 1e 2<1C .m <n 且e 1e 2>1D .m <n 且e 1e 2<1【答案】A11.(17课标1).已知双曲线22221x y C a b-=:(a >0,b >0)的顶点为A ,以A 为圆心,b为半径做圆A ,圆A 与双曲线C 的一条渐近线交于M 、N 两点.若∠MAN =60°,则C 的离心率为_____________.12.(17课标2)已知F 是抛物线C :28y x =的焦点,M 是C 上一点,FM 的延长线交y 轴于点N ,若M 为FN 的中点,则FN =_____________.13.(16山东)已知双曲线E : (a >0,b >0),若矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2|AB |=3|BC |,则E 的离心率是_______. 【答案】2【解析】由题意c 2=BC ,所以3c =AB ,于是点),23(c c 在双曲线E 上,代入方程,得1492222=b c -a c , 在由2c b a =+22得E 的离心率为2==ace ,应填2.14.(16江苏)如图,在平面直角坐标系xOy 中,F 是椭圆22221(0)x y a b a b+=>>的右焦点,直线2by =与椭圆交于B ,C 两点,且90BFC ∠=o ,则该椭圆的离心率是 .15.(17课标2)设O 为坐标原点,动点M 在椭圆22:12x C y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足NP =uu u r .(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=u u u r u u u r,证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .16.(17课标1)已知椭圆()2222:10x y C a b a b+=>>,四点P 1(1,1),P 2(0,1),P 3(,P 4()中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,证明:l 过定点.17.(16天津)设椭圆13222=+y a x (3>a )的右焦点为F ,右顶点为A ,已知||3||1||1FA eOA OF =+,其中O 为原点,e 为椭圆的离心率. (Ⅰ)求椭圆的方程;(Ⅱ)设过点A 的直线l 与椭圆交于点B (B 不在x 轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H ,若HF BF ⊥,且MOA MAO ∠≤∠,求直线的l 斜率的取值范围. 【解析】(2)(Ⅱ)解:设直线l 的斜率为k (0≠k ),则直线l 的方程为)2(-=x k y .设),(B B y x B ,由方程组⎪⎩⎪⎨⎧-==+)2(13422x k y y x ,消去y ,整理得0121616)34(2222=-+-+k x k x k . 解得2=x ,或346822+-=k k x ,由题意得346822+-=k k x B ,从而34122+-=k ky B. 由(Ⅰ)知,)0,1(F ,设),0(H y H ,有),1(H y FH -=,)3412,3449(222++-=k kk k BF .由HF BF ⊥,得0=⋅HF BF ,所以034123449222=+++-k ky k k H ,解得k k y H 12492-=.因此直线MH 的方程为kk x k y 124912-+-=. 设),(M M y x M ,由方程组⎪⎩⎪⎨⎧-=-+-=)2(124912x k y k k x k y 消去y ,解得)1(1292022++=k k x M .在MAO ∆中,||||MO MA MAO MOA ≤⇔∠≤∠,即2222)2(M M M M y x y x +≤+-,化简得1≥M x ,即1)1(1292022≥++k k ,解得46-≤k 或46≥k . 所以,直线l 的斜率的取值范围为),46[]46,(+∞--∞Y .18.(16全国I )设圆222150x y x ++-=的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E . (I )证明EA EB +为定值,并写出点E 的轨迹方程;(II )设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.【解析】(Ⅰ)因为||||AC AD =,AC EB //,故ADC ACD EBD ∠=∠=∠,所以||||ED EB =,故||||||||||AD ED EA EB EA =+=+.又圆A 的标准方程为16)1(22=++y x ,从而4||=AD ,所以4||||=+EB EA .由题设得)0,1(-A ,)0,1(B ,2||=AB ,由椭圆定义可得点E 的轨迹方程为:13422=+y x (0≠y ).19. (16全国III )已知抛物线:的焦点为,平行于轴的两条直线分别交于两点,交的准线于两点.(I )若在线段上,是的中点,证明;(II )若的面积是的面积的两倍,求中点的轨迹方程.20.(16全国II )已知椭圆的焦点在轴上,是的左顶点,斜率为的直线交于两点,点在上,. (Ⅰ)当时,求的面积; (Ⅱ)当时,求的取值范围.【解析】 ⑴当4t =时,椭圆E 的方程为22143x y +=,A 点坐标为()20-,, 则直线AM 的方程为()2y k x =+.联立()221432x y y k x ⎧+=⎪⎨⎪=+⎩并整理得,()2222341616120k x k x k +++-= 解得2x =-或228634k x k -=-+,则212234AM k =+=+ 因为AM AN ⊥,所以21212413341AN k kk ==⎛⎫++⋅- ⎪⎝⎭因为AM AN =,0k >,212124343k k k=++,整理得()()21440k k k --+=, 2440k k -+=无实根,所以1k =. 所以AMN △的面积为221112144223449AM⎫==⎪+⎭. ⑵直线AM的方程为(y k x =,联立(2213x y t y k x ⎧+=⎪⎨⎪=⎩并整理得,()222223230tk x x t k t +++-=解得x =x =所以AM =所以AN k= 因为2AM AN =所以2k=,整理得,23632k k t k -=-. 因为椭圆E 的焦点在x 轴,所以3t >,即236332k k k ->-,整理得()()231202k k k +-<-2k <<.。

相关文档
最新文档