北京市东城区2018届高三第二次(4月)模拟数学理试题Word版含答案
2018年北京市东城区高三第一学期期末数学(理)试题与答案

东城区 2017-2018 学年度第一学期期末教课一致检测高三数学(理科)本试卷共 6 页, 150 分。
考试时长 120 分钟。
考生务势必答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分 (选择题共40分)一、选择题(共 8 小题,每题 5 分,共 40 分,在每题给出的四个选项中,选出切合题目要求的一项。
)(1 )若会合 A { 2, 1,0,1,2,3} , B { x | x1 或 x 2},则AIB (A ) { 2,3} (B ){2, 1,2,3}( C ) {0,1}(D ) { 1,0,1,2}( 2 ) 函数 y 3sin(2 x ) 图象的两条相邻对称轴之间的距离是4( A )(B )( C )( D )24(3 )履行以下图的程序框图,输出的x 值为开始(A )1(B )2(C )3b=x 2(D )7x= 1 ( x+ 3)42 xxb12否是输出 x结束 y ≥2 x,(4 )若 x, y 知足 xy ≥3, 则 x y 的最小值为y ≤3,(A ) 5(B ) 3 (C ) 2(D ) 1(5 )已知函数f (x)4x 1x ,则 f (x) 的2( A )图象对于原点对称,且在 [ 0 , ) 上是增函数( B )图象对于 y 轴对称,且在 [ 0 , ) 上是增函数( C )图象对于原点对称,在[ 0 , ) 上是减函数( D )图象对于 y 轴对称,且在 [ 0 ,) 上是减函数(6 )设 a , b 为非零向量,则“a +b a - b ”是“ a b= 0”的( A )充足而不用要条件 (B )必需而不充足条件( C )充足必需条件(D )既不充足也不用要条件(7 )某三棱锥的三视图以下图, 则该三棱锥的体积为1(A )1116正(主)视图侧(左)视图1( B )3(C )12(D )1俯视图(8 )现有 n 个小球, 甲乙两位同学轮番且不放回抓球, 每次最少抓 1 个球,最多抓 3 个球,规定谁抓到最后一个球谁赢 . 假如甲先抓,那么以下推测正确的选项是( A )若( C )若n4 ,则甲有必赢的策略 ( B )若n 9 ,则甲有必赢的策略( D )若n 6 ,则乙有必赢的策略n 11 ,则乙有必赢的策略第二部分 (非选择题共 110 分)二、填空题共 6 小题,每题 5 分,共 30 分。
普通高等学校2018届高三招生全国统一考试模拟试题(二)数学(文)试题word含答案

普通高等学校2018届高三招生全国统一考试模拟试题(二)数学(文)试题word含答案普通高等学校招生全国统一考试模拟试题——文科数学(二)本试卷满分150分,考试时间120分钟。
注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题纸上。
2.回答选择题时,选出每小题答案后,用铅笔把答题纸上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题纸上,写在本试卷上无效。
3.考试结束后,将本试卷和答题纸一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合 $A=\{x|x-\frac{1}{2}<0\}$,$B=\{x|x-\frac{(2a+8)}{a(a+8)}<0\}$,若 $A\cap B=A$,则实数 $a$ 的取值范围是A。
$(-4,-3)$B。
$[-4,-3]$C。
$(-\infty,-3)\cup(4,+\infty)$D。
$(-3,4)$2.已知复数 $z=\frac{3+i}{2-3i}$,则 $z$ 的实部与虚部的和为A。
$-\frac{2}{5}+\frac{1}{5}i$B。
$-\frac{2}{5}-\frac{1}{5}i$C。
$\frac{2}{5}+\frac{1}{5}i$D。
$\frac{3}{5}+\frac{2}{5}i$3.某景区管理部门为征求游客对景区管理方面的意见及建议,从景区出口处随机选取 $5$ 人,其中 $3$ 人为跟团游客,$2$ 人为自驾游散客,并从中随机抽取 $2$ 人填写调查问卷,则这 $2$ 人中既有自驾游散客也有跟团游客的概率是A。
$\frac{2}{3}$B。
$\frac{1}{5}$C。
$\frac{2}{5}$D。
$\frac{3}{5}$4.已知双曲线 $E:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$ 的离心率为$\frac{\sqrt{10}}{3}$,斜率为 $-\frac{3}{2}$ 的直线 $l$ 经过双曲线的右顶点 $A$,与双曲线的渐近线分别交于 $M$,$N$ 两点,点 $M$ 在线段$AN$ 上,则 $\frac{AN}{AM}$ 等于A。
2018年北京市高考数学试卷(理科) word版 含参考答案及解析

2018年北京市高考数学试卷(理科)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.(5分)已知集合A={x||x|<2},B={﹣2,0,1,2},则A∩B=()A.{0,1}B.{﹣1,0,1}C.{﹣2,0,1,2} D.{﹣1,0,1,2} 2.(5分)在复平面内,复数的共轭复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)执行如图所示的程序框图,输出的s值为()A.B.C.D.4.(5分)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献,十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为()A. f B. f C. f D.f5.(5分)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为()A.1 B.2 C.3 D.46.(5分)设,均为单位向量,则“|﹣3|=|3+|”是“⊥”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.(5分)在平面直角坐标系中,记d为点P(cosθ,sinθ)到直线x﹣my﹣2=0的距离.当θ、m变化时,d的最大值为()A.1 B.2 C.3 D.48.(5分)设集合A={(x,y)|x﹣y≥1,ax+y>4,x﹣ay≤2},则()A.对任意实数a,(2,1)∈A B.对任意实数a,(2,1)∉AC.当且仅当a<0时,(2,1)∉A D.当且仅当a≤时,(2,1)∉A二、填空题共6小题,每小题5分,共30分。
9.(5分)设{a n}是等差数列,且a1=3,a2+a5=36,则{a n}的通项公式为.10.(5分)在极坐标系中,直线ρcosθ+ρsinθ=a(a>0)与圆ρ=2cosθ相切,则a=.11.(5分)设函数f(x)=cos(ωx﹣)(ω>0),若f(x)≤f()对任意的实数x都成立,则ω的最小值为.12.(5分)若x,y满足x+1≤y≤2x,则2y﹣x的最小值是.13.(5分)能说明“若f(x)>f(0)对任意的x∈(0,2]都成立,则f(x)在[0,2]上是增函数”为假命题的一个函数是.14.(5分)已知椭圆M:+=1(a>b>0),双曲线N:﹣=1.若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,则椭圆M的离心率为;双曲线N的离心率为.三、解答题共6小题,共80分。
(完整版)2018年高考全国1卷理科数学试题及答案详细解析(word版_精校版)

绝密★启用前2018年普通高等学校招生全国统一考试(全国卷Ⅰ)理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上。
写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设1i2i 1iz -=++,则||z = A .0 B .12C .1D .2 2.已知集合2{|20}A x x x =-->,则A =RA .{|12}x x -<<B .{|12}x x -≤≤C {|1}{|2}x x x x <->D .{|1}{|2}x x x x -≤≥3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番。
为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.记n S 为等差数列{}n a 的前n 项和. 若3243S S S =+,12a ,则5aA .12-B .10-C .10D .12 5.设函数32()(1)f x x a x ax =+-+。
若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为A .2y x =-B .y x =-C .2y x =D .y x =6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =A .3144AB AC - B .1344AB AC - C .3144AB AC + D .1344AB AC +7.某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A .217B .25C .3D .28.设抛物线24C y x :的焦点为F ,过点(2,0)且斜率为23的直线与C 交于M ,N 两点,则FM FNA .5B .6C .7D .89.已知函数e ,0,()ln ,0,x x f x x x ⎧=⎨>⎩≤ ()()g x f x x a =++. 若()g x 存在2个零点,则a 的取值范围是A .[1,0)-B .[0,)+∞C .[1,)-+∞D .[1,)+∞10.下图来自古希腊数学家希波克拉底所研究的几何图形. 此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .ABC △的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ。
2018届高三数学(理)一轮复习考点规范练:第八章立体几何39Word版含解析

2018届高三数学(理)一轮复习考点规范练:第八章立体几何39Word版含解析考点规范练39空间几何体的表面积与体积基础巩固1.圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()A.1B.2C.4D.82.一个四面体的三视图如图所示,则该四面体的表面积是()A.1+B.1+2C.2+D.23.如图,直三棱柱ABC-A1B1C1的六个顶点都在半径为1的半球面上,AB=AC,侧面BCC1B1是半球底面圆的内接正方形,则侧面ABB1A1的面积为()A. B.1 C. D.4.(2016山东,理5)一个由半球和四棱锥组成的几何体,其三视图如下图所示.则该几何体的体积为()A.πB.πC.πD.1+π5.已知底面边长为1,侧棱长为的正四棱柱的各顶点均在同一个球面上,则该球的体积为()A. B.4π C.2π D. ?导学号37270348?6.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A.14斛B.22斛C.36斛D.66斛7.棱长为4的正方体被一平面截成两个几何体,其中一个几何体的三视图如图所示,那么该几何体的体积是.8.某四棱柱的三视图如图所示,则该四棱柱的体积为.9.(2016邯郸一模)已知三棱锥P-ABC内接于球O,PA=PB=PC=2,当三棱锥P-ABC的三个侧面的面积之和最大时,球O的表面积为.?导学号37270349?10.在三棱柱ABC-A1B1C1中,∠BAC=90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边的长为1的等腰直角三角形,设点M,N,P分别是棱AB,BC,B1C1的中点,则三棱锥P-A1MN的体积是.11.已知一个上、下底面为正三角形且两底面中心连线垂直于底面的三棱台的两底面边长分别为20 cm和30 cm,且其侧面积等于两底面面积之和,求棱台的高.12.一个几何体的三视图如图所示.已知正视图是底边长为1的平行四边形,侧视图是一个长为、宽为1的矩形,俯视图为两个边长为1的正方形拼成的矩形.(1)求该几何体的体积V;(2)求该几何体的表面积S.能力提升13.如图,在多面体ABCDEF中,已知四边形ABCD是边长为1的正方形,且△ADE,△BCF均为正三角形,EF∥AB,EF=2,则该多面体的体积为()A. B. C. D. ?导学号37270350?14.某几何体的三视图如图所示,则该几何体的体积为()A.+πB.+πC.+2πD.+2π15.(2016浙江,理11)某几何体的三视图如图所示(单位:cm),则该几何体的表面积是cm2,体积是cm3.16.如图,长方体ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F 分别在A1B1,D1C1上,A1E=D1F=4,过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求平面α把该长方体分成的两部分体积的比值.高考预测17.已知球的直径SC=4,A,B是该球球面上的两点,AB=,∠ASC=∠BSC=30°,则棱锥S-ABC的体积为()A.3B.2C.D.1 ?导学号37270351?参考答案考点规范练39空间几何体的表面积与体积1.B解析由条件及几何体的三视图可知该几何体是由一个圆柱被过圆柱底面直径的平面所截剩下的半个圆柱及一个半球拼接而成的.其表面积由一个矩形的面积、两个半圆的面积、圆柱的侧面积的一半及一个球的表面积的一半组成.∴S表=2r×2r+2r2+πr×2r+4πr2=5πr2+4r2=16+20π,解得r=2.2.C解析由三视图可得该四面体的直观图如图所示,平面ABD⊥平面BCD,△ABD与△BCD 为全等的等腰直角三角形,AB=AD=BC=CD=取BD的中点O,连接AO,CO,则AO⊥CO,AO=CO=1.由勾股定理得AC=,因此△ABC与△ACD为全等的正三角形,由三角形面积公式得S△ABC=S△ACD=,S△ABD=S△BCD=1,所以四面体的表面积为2+3.C解析由题意知,球心在侧面BCC1B1的中心O上,BC为△ABC所在圆面的直径,所以∠BAC=90°,△ABC的外接圆圆心N是BC的中点,同理△A1B1C1的外心M是B1C1的中点.设正方形BCC1B1的边长为x,Rt△OMC1中,OM=,MC1=,OC1=R=1(R为球的半径),所以=1,即x=,则AB=AC=1.所以侧面ABB1A1的面积S=1=4.C解析由三视图可知,上面是半径为的半球,体积为V1=,下面是底面积为1,高为1的四棱锥,体积V2=1×1=,故选C.5.D解析因为该正四棱柱的外接球的半径是四棱柱体对角线的一半,所以半径r==1,所以V球=13=故选D.6.B解析设底面圆半径为R,米堆高为h.∵米堆底部弧长为8尺,2πR=8,∴R=∴体积V=πR2h=π5.∵π≈3,∴V(立方尺).∴堆放的米约为22(斛).7.32解析由三视图,可得棱长为4的正方体被平面AJGI截成两个几何体,且J,I分别为BF,DH的中点,如图,两个几何体的体积各占正方体的一半,则该几何体的体积是43=32.8解析由三视图可知,四棱柱高h为1,底面为等腰梯形,且底面面积S=(1+2)×1=,故四棱柱的体积V=S·h=9.12π解析由题意三棱锥P-ABC的三条侧棱PA,PB,PC两两互相垂直,三棱锥P-ABC 的三个侧面的面积之和最大,三棱锥P-ABC的外接球就是它扩展为正方体的外接球,求出正方体的体对角线的长为2,所以球的直径是2,半径为,球的表面积为4π×()2=12π.10解析由题意,可得直三棱柱ABC-A1B1C1如图所示.其中AB=AC=AA1=BB1=CC1=A1B1=A1C1=1.∵M,N,P分别是棱AB,BC,B1C1的中点,∴MN=,NP=1.∴S△MNP=1=∵点A1到平面MNP的距离为AM=,11.解如图所示,三棱台ABC-A1B1C1中,O,O1分别为两底面中心,D,D1分别为BC和B1C1的中点,则DD1为棱台的斜高.由题意知A1B1=20,AB=30,则OD=5,O1D1=,由S侧=S上+S下,得3(20+30)×DD1=(202+302),解得DD1=,在直角梯形O1ODD1中,O1O==4(cm),所以棱台的高为4 cm.12.解(1)由三视图可知,该几何体是一个平行六面体(如图),其底面是边长为1的正方形,高为,所以V=1×1(2)由三视图可知,该平行六面体中,A1D⊥平面ABCD,CD⊥平面BCC1B1,所以AA1=2,侧面ABB1A1,CDD1C1均为矩形.S=2×(1×1+1+1×2)=6+213.A解析如图,分别过点A,B作EF的垂线,垂足分别为G,H,连接DG,CH,容易求得EG=HF=,AG=GD=BH=HC=,所以S△AGD=S△BHC=1=所以V=V E-ADG+V F-BHC+V AGD-BHC=2V E-ADG+V AGD-BHC=2+1=14.A解析由三视图可知,该几何体是一个组合体,其左边是一个三棱锥,底面是等腰直角三角形(斜边长等于2),高为1,所以体积V1=2×1×1=;其右边是一个半圆柱,底面半径为1,高为2,所以体积V2=π·12·2=π,所以该几何体的体积V=V1+V2=+π.15.7232解析由三视图,可知该几何体为两个相同长方体组合而成,其中每个长方体的长、宽、高分别为4 cm,2 cm,2 cm,所以其体积为2×(2×2×4)=32(cm3).由于两个长方体重叠部分为一个边长为2的正方形,所以其表面积为2×(2×2×2+4×2×4)-2×(2×2)=72(cm2).16.解(1)交线围成的正方形EHGF如图:(2)作EM⊥AB,垂足为M,则AM=A1E=4,EB1=12,EM=AA1=8.因为EHGF为正方形,所以EH=EF=BC=10.于是MH==6,AH=10,HB=6.因为长方体被平面α分成两个高为10的直棱柱,所以其体积的比值为17.C解析如图,过A作AD垂直SC于D,连接BD.由于SC是球的直径,所以∠SAC=∠SBC=90°.又∠ASC=∠BSC=30°,又SC为公共边,所以△SAC≌△SBC.由于AD⊥SC,所以BD⊥SC.由此得SC⊥平面ABD.所以V S-ABC=V S-ABD+V C-ABD=S△ABD·SC.由于在Rt△SAC中,∠ASC=30°,SC=4,所以AC=2,SA=2由于AD= 同理在Rt△BSC中也有BD=又AB=,所以△ABD为正三角形.所以V S-ABC=S△ABD·SC=()2·sin 60°×4=,所以选C.。
2018年高考全国二卷理科试题全套(精校Word版)含答案含语文数学英语文综理综试卷

2018年普通高等学校招生全国统一考试(二卷)真题理科试题全套及答案汇总目录2018年普通高等学校招生全国统一考试语文试题................ 2018年普通高等学校招生全国统一考试语文试题答案............ 2018年普通高等学校招生全国统一考试理科数学................ 2018年普通高等学校招生全国统一考试理科数学答案............ 2018年普通高等学校招生全国统一考试英语试题................ 2018年普通高等学校招生全国统一考试英语试题答案............ 2018年普通高等学校招生全国统一考试理科综合试题............ 2018年普通高等学校招生全国统一考试理科综合试题答案........绝密★启用前2018年普通高等学校招生全国统一考试(全国二卷)语文本试卷共22题,共150分,共10页。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
第Ⅰ卷阅读题一、现代文阅读(35分)(一)论述类文本阅读(本题共3小题,9分)所谓“被遗忘权”,即数据主体有权要求数据控制者永久删除有关数据主体的个人数据,有权被互联网遗忘,除非数据的保留有合法的理由,在大数据时代,数字化,廉价的存储器,易于提取、全球覆盖作为数字化记忆发展的四大驱动力,改变了记忆的经济学,使得海量的数字化记忆不仅唾手可得,甚至比选择性删除所耗费的成本更低,记忆和遗忘的平衡反转,往事正像刺青一样刻在我们的数字肌肤上;遗忘变得困难,而记忆却成了常态,“被遗忘权”的出现,意在改变数据主体难以“被遗忘”的格局,对于数据主体对信息进行自决控制的权利,并且有着更深的调节、修复大数据时代数字化记忆伦理的意义。
2018版高考数学(理)一轮复习文档第三章导数及其应用3-3Word版含解析

1.定积分的概念在ʃb a f(x)d x中,a,b分别叫做积分下限与积分上限,区间[a,b]叫做积分区间,函数f(x)叫做被积函数,x叫做积分变量,f(x)d x叫做被积式.2.定积分的性质(1)ʃb a kf(x)d x=kʃb a f(x)d x(k为常数);(2)ʃb a[f1(x)±f2(x)]d x=ʃb a f1(x)d x±ʃb a f2(x)d x;(3)ʃb a f(x)d x=ʃc a f(x)d x+ʃb c f(x)d x(其中a<c<b).3.微积分基本定理一般地,如果f(x)是区间[a,b]上的连续函数,且F′(x)=f(x),那么ʃb a f(x)d x=F(b)-F(a),这个结论叫做微积分基本定理,又叫做牛顿—莱布尼茨公式.为了方便,常把F(b)-F(a)记作F(x)|b a,即ʃb a f(x)d x=F(x)|b a=F(b)-F(a).【知识拓展】1.定积分应用的常用结论当曲边梯形位于x轴上方时,定积分的值为正;当曲边梯形位于x轴下方时,定积分的值为负;当位于x轴上方的曲边梯形与位于x轴下方的曲边梯形面积相等时,定积分的值为零.2.函数f(x)在闭区间[-a,a]上连续,则有(1)若f(x)为偶函数,则ʃa-a f(x)d x=2ʃa0f(x)d x.(2)若f(x)为奇函数,则ʃa-a f(x)d x=0.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)设函数y=f(x)在区间[a,b]上连续,则ʃb a f(x)d x=ʃb a f(t)d t.(√)(2)若函数y=f(x)在区间[a,b]上连续且恒正,则ʃb a f(x)d x>0.(√)(3)若ʃb a f (x )d x <0,那么由y =f (x ),x =a ,x =b 以及x 轴所围成的图形一定在x 轴下方.( × ) (4)微积分基本定理中的F (x )是唯一的.( × )(5)曲线y =x 2与y =x 所围成图形的面积是ʃ10(x 2-x )d x .( × )1.(2017·福州质检)ʃ10(e x +2x )d x 等于( )A .1B .e -1C .eD .e +1 答案 C解析 ʃ10(e x +2x )d x =(e x +x 2)|10=e +1-1=e.2.直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为( ) A .2 2 B .4 2 C .2 D .4 答案 D解析 如图,y =4x 与y =x 3的交点为A (2,8),图中阴影部分即为所求图形面积.S 阴=ʃ20(4x -x 3)d x=(2x 2-14x 4)|20=8-14×24=4,故选D.3.(教材改编)汽车以v =(3t +2)m/s 作变速直线运动时,在第1 s 至第2 s 间的1 s 内经过的位移是( )A.132 m B .6 m C.152 m D .7 m 答案 A解析 s =ʃ21(3t +2)d t =(32t 2+2t )|21=32×4+4-(32+2) =10-72=132(m).4.若ʃT 0x 2d x =9,则常数T 的值为________.答案 3解析 ʃT 0x 2d x =13x 3|T 0=13T 3=9,∴T =3. 5.设f (x )=⎩⎪⎨⎪⎧x 2,x ∈[0,1],1x ,x ∈(1,e](e 为自然对数的底数),则ʃe 0f (x )d x 的值为________.答案 43解析 ʃe 0f (x )d x =ʃ10x 2d x +ʃe 11xd x =13x 3|10+ln x |e1=13+ln e =43.题型一 定积分的计算例1 (1)(2016·九江模拟)若ʃ10(2x +λ)d x =2(λ∈R ),则λ等于( ) A .0 B .1 C .2 D .-1(2)定积分ʃ2-2|x 2-2x |d x 等于( )A .5B .6C .7D .8 答案 (1)B (2)D解析 (1)ʃ10(2x +λ)d x =(x 2+λx )|10=1+λ=2,所以λ=1.(2)ʃ2-2|x 2-2x |d x=ʃ0-2(x 2-2x )d x +ʃ20(2x -x 2)d x=(x 33-x 2)|0-2+(x 2-x 33)|20 =83+4+4-83=8. 思维升华 运用微积分基本定理求定积分时要注意以下几点: (1)对被积函数要先化简,再求积分;(2)求被积函数为分段函数的定积分,依据定积分“对区间的可加性”,先分段积分再求和; (3)对于含有绝对值符号的被积函数,要先去掉绝对值号再求积分.(1)若π20(sin cos )d 2x a x x ⎰-=,则实数a 的值为( )A .-1B .1C .- 3 D. 3(2)设f (x )=⎩⎪⎨⎪⎧x 2,x ∈[0,1],2-x ,x ∈(1,2],则ʃ20f (x )d x 等于( )A.34B.45C.56D.67 答案 (1)A (2)C 解析 ππ220(1)(sin cos )d (cos sin )|x a x x x a x ⎰-=--=0-a -(-1-0)=1-a =2, ∴a =-1.(2)ʃ20f (x )d x =ʃ10x 2d x +ʃ21(2-x )d x=13x 3|10+(2x -12x 2)|21 =13+(4-12×4)-(2-12) =56. 题型二 定积分的几何意义命题点1 利用定积分的几何意义计算定积分例2 (1)计算:ʃ313+2x -x 2d x =________.(2)若ʃm -2-x 2-2x d x =π4,则m =________. 答案 (1)π (2)-1解析 (1)由定积分的几何意义知,ʃ313+2x -x 2 d x 表示圆(x -1)2+y 2=4和x =1,x =3,y =0围成的图形的面积, ∴ʃ313+2x -x 2d x =14×π×4=π.(2)根据定积分的几何意义ʃm -2-x 2-2x d x 表示圆(x +1)2+y 2=1和直线x =-2,x =m 和y=0围成的图形的面积, 又ʃm -2-x 2-2x d x =π4为四分之一圆的面积,结合图形知m=-1.命题点2求平面图形的面积例3(2017·青岛月考)由曲线xy=1,直线y=x,y=3所围成的封闭平面图形的面积为______.答案4-ln 3解析 由xy =1,y =3可得交点坐标为(13,3).由xy =1,y =x 可得交点坐标为(1,1), 由y =x ,y =3得交点坐标为(3,3),由曲线xy =1,直线y =x ,y =3所围成图形的面积为1312311113311(3)d (3)d (3ln )|(3)|2x x x x x x x x -+-=-+-⎰⎰ =(3-1-ln 3)+(9-92-3+12)=4-ln 3.思维升华 (1)根据定积分的几何意义可计算定积分; (2)利用定积分求平面图形面积的四个步骤①画出草图,在直角坐标系中画出曲线或直线的大致图象; ②借助图形确定出被积函数,求出交点坐标,确定积分的上、下限; ③把曲边梯形的面积表示成若干个定积分的和; ④计算定积分,写出答案.(1)定积分ʃ309-x 2d x 的值为( )A .9πB .3π C.94π D.92π (2)由曲线y =2x 2,直线y =-4x -2,直线x =1围成的封闭图形的面积为________. 答案 (1)C (2)163解析 (1)由定积分的几何意义知ʃ309-x 2d x 是由曲线y =9-x 2,直线x =0,x =3,y =0围成的封闭图形的面积,故ʃ309-x 2d x =π·324=94π,故选C.(2)由⎩⎪⎨⎪⎧y =2x 2,y =-4x -2,解得x =-1,依题意可得,所求的封闭图形的面积为ʃ1-1(2x 2+4x +2)d x =(23x 3+2x 2+2x )|1-1=(23×13+2×12+2×1)-[23×(-1)3+2×(-1)2+2×(-1)]=163. 题型三 定积分在物理中的应用例4 一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度v (t )=7-3t +251+t (t的单位:s ,v 的单位:m/s)行驶至停止.在此期间汽车继续行驶的距离(单位:m)是( ) A .1+25ln 5 B .8+25ln113C .4+25ln 5D .4+50ln 2答案 C解析 令v (t )=0,得t =4或t =-83(舍去),∴汽车行驶距离s =ʃ40(7-3t +251+t )d t =[7t -32t 2+25ln(1+t )]|40 =28-24+25ln 5=4+25ln 5.思维升华 定积分在物理中的两个应用(1)变速直线运动的位移:如果变速直线运动物体的速度为v =v (t ),那么从时刻t =a 到t =b 所经过的路程s =ʃb a v (t )d t .(2)变力做功:一物体在变力F (x )的作用下,沿着与F (x )相同方向从x =a 移动到x =b 时,力F (x )所做的功是W =ʃb a F (x )d x .一物体在变力F (x )=5-x 2(力单位:N ,位移单位:m)作用下,沿与F (x )成30°方向作直线运动,则由x =1运动到x =2时,F (x )做的功为( ) A. 3 J B.233 J C.433 J D .2 3 J答案 C解析 ʃ21F (x )cos 30°d x =ʃ2132(5-x 2)d x =⎪⎪⎣⎡⎦⎤⎝⎛⎭⎫5x -13x 3×3221=433, ∴F (x )做的功为433 J.4.利用定积分求面积典例 由抛物线y =x 2-1,直线x =0,x =2及x 轴围成的图形面积为________. 错解展示解析 所求面积S =ʃ20(x 2-1)d x =(13x 3-x )|20=23. 答案 23现场纠错解析 如图所示,由y =x 2-1=0,得抛物线与x 轴的交点分别为(-1,0)和(1,0).所以S =ʃ20|x 2-1|d x =ʃ10(1-x 2)d x +ʃ21(x 2-1)d x=(x -x 33)|10+(x 33-x )|21=(1-13)+[83-2-(13-1)]=2.答案 2纠错心得 利用定积分求面积时要搞清楚定积分和面积的关系;定积分可正可负,而面积总为正.1.π220sin d 2xx等于( ) A .0 B.π4-12 C.π4-14D.π2-1答案 B 解析ππ222001cos sin d d 22x x x x -=⎰⎰π2011π1(sin )|.2242x x =-=- 2.ʃ101-x 2 d x 的值为( )A.14B.π4C.12D.π2 答案 B 解析 ʃ101-x 2 d x 的几何意义为以(0,0)为圆心,以1为半径的圆位于第一象限的部分,圆的面积为π, 所以ʃ101-x 2 d x =π4.3.(2016·南昌模拟)若ʃa 1(2x +1x )d x =3+ln 2(a >1),则a 的值是( ) A .2 B .3 C .4 D .6 答案 A解析 由题意知ʃa 1(2x +1x )d x =(x 2+ln x )|a 1=a 2+ln a -1=3+ln 2,解得a =2. 4.定积分ʃ20|x -1|d x 等于( ) A .1 B .-1 C .0 D .2 答案 A解析 ʃ20|x -1|d x =ʃ10|x -1|d x +ʃ21|x -1|d x =ʃ10(1-x )d x +ʃ21(x -1)d x=(x -x 22)|10+(x 22-x )|21=(1-12)+(222-2)-(12-1)=1.5.由曲线f (x )=x 与y 轴及直线y =m (m >0)围成的图形的面积为83,则m 的值为( )A .2B .3C .1D .8 答案 A解析 22333200228(()|,333m mS m x mx x m m ==-=-=⎰解得m =2.6.若S 1=ʃ21x 2d x ,S 2=ʃ211xd x ,S 3=ʃ21e xd x ,则S 1,S 2,S 3的大小关系为( ) A .S 1<S 2<S 3 B .S 2<S 1<S 3 C .S 2<S 3<S 1 D .S 3<S 2<S 1答案 B解析 方法一 S 1=13x 3|21=83-13=73, S 2=ln x |21=ln 2<ln e =1,S 3=e x |21=e 2-e ≈2.72-2.7=4.59,所以S 2<S 1<S 3.方法二 S 1,S 2,S 3分别表示曲线y =x 2,y =1x ,y =e x 与直线x =1,x =2及x 轴围成的图形的面积,通过作图易知S 2<S 1<S 3.7.π)d 4x x +=________.答案 2解析 依题意得π)d 4x x +ππ220(sin cos )d (sin cos )|x x x x x =+=-⎰=(sin π2-cos π2)-(sin 0-cos 0)=2.8.由直线x =-π3,x =π3,y =0与曲线y =cos x 所围成的封闭图形的面积为________.答案3解析 所求面积ππ33ππ33cos d sin |S x x x --==⎰=sin π3-(-sin π3)= 3.*9.(2016·湖北省重点中学高三阶段性统一考试)若函数f (x )在R 上可导,f (x )=x 3+x 2f ′(1),则ʃ20f (x )d x =________. 答案 -4解析 因为f (x )=x 3+x 2f ′(1), 所以f ′(x )=3x 2+2xf ′(1).所以f ′(1)=3+2f ′(1),解得f ′(1)=-3.所以f (x )=x 3-3x 2.故ʃ20f (x )d x =ʃ20(x 3-3x 2)d x =(x 44-x 3)|20=-4. 10.已知f (a )=ʃ10(2ax 2-a 2x )d x ,则函数f (a )的最大值为________.答案 29解析 f (a )=ʃ10(2ax 2-a 2x )d x =(23ax 3-12a 2x 2)|10=-12a 2+23a , 由二次函数的性质可得f (a )max =-(23)24×(-12)=29. 11.求曲线y =x ,y =2-x ,y =-13x 所围成图形的面积. 解 由⎩⎪⎨⎪⎧ y =x ,y =2-x得交点A (1,1); 由⎩⎪⎨⎪⎧y =2-x ,y =-13x 得交点B (3,-1).故所求面积S =ʃ10⎝⎛⎭⎫x +13x d x +ʃ31⎝⎛⎭⎫2-x +13x d x 32123201211()|(2)|363x x x x =++- =23+16+43=136. 12.(2016·武汉模拟)如图,矩形OABC 的四个顶点依次为O (0,0),A (π2,0),B (π2,1),C (0,1),记线段OC ,CB 以及y =sin x (0≤x ≤π2)的图象围成的区域(图中阴影部分)为Ω,若向矩形OABC 内任意投一点M ,求点M 落在区域Ω内的概率.解 阴影部分的面积为π20π(1sin )d 1,2x x -=-⎰ 矩形的面积是π2×1=π2, 所以点M 落在区域Ω内的概率为π2-1π2=1-2π. *13.已知函数y =F (x )的图象是折线段ABC ,其中A (0,0),B (12,5),C (1,0),求函数y =xF (x )(0≤x ≤1)的图象与x 轴围成的图形的面积.解 由题意,F (x )=⎩⎨⎧ 10x ,0≤x ≤12,-10x +10,12<x ≤1, 则xF (x )=⎩⎨⎧ 10x 2,0≤x ≤12,-10x 2+10x ,12<x ≤1,所以函数y =xF (x )(0≤x ≤1)的图象与x 轴围成的图形的面积为11122323122101022101010d (1010)d |(5)|33x x x x x x x x +-+=+-⎰⎰ =103×18+(5-103)-(54-103×18)=54.。
【高三数学试题精选】2018届高三数学(理)4月一模试题(北京市东城区附答案)

2018届高三数学(理)4月一模试题(北京市东城区附答案)
5 c 北京市东城区2018学年度第二学期高三综合练习(一)
数学(理科)
本试卷共页,共分考试时长分钟考生务必将答案答在答题卡上,在试卷上作答无效考试结束后,将试卷和答题卡一并交回第一部分(选择题共40分)
一、选择题本大题共8小题,每小题5分,共40分在每小题给出的四个选项中,选出符合题目要求的一项
1【答案】
【解析】由题易知,故选
2【答案】
【解析】 ,所以在复平面上对应的点为,在第二象限,故选
3【答案】
【解析】由在上单调递增可知,
故选
4【答案】
【解析】由正切函数定义可知,,
故选
5【答案】
【解析】在抛物线中, 焦点准线点到轴的距离为即故选
6【答案】c
【解析】法一种
法二种故选c
7【答案】D
【解析】充分条的反例,当,时,,,充分不成立。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京市东城区2018届高三第二次(4月)模拟数学理试题本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合{1,2,3,4,5},{0,2,4},M N P MN===,则P 的子集共有(A )2个(B )4个 (C )6个(D )8个(2)若,x y 满足0,1,0.x y x y y -≥⎧⎪+≤⎨⎪≥⎩则2z x y=+的最大值为(A )0 (B )1 (C )2 (D )23(3)执行如图所示的程序框图,若输入A 的值为2,则输出的n 值为 (A )3 (B )4 (C )5 (D )6(4)在61()2x x-的展开式中,4x 的系数为(A )3- (B )12-(C )3(D )6 (5)设函数2()s in f x a x x=+,若(1)2f = ,则(1)f -=(A )2 (B )-2 (C )1(D )0(6)多面体M N A B C D -的底面A B C D 为矩形,其正(主)视图和侧(左)视图如图,其中正(主)视图为等腰梯形,侧(左)视图为等腰三角形,则A M 的长为(A(B(C(D)(7)已知等差数列{}n a 满足*n a N ∈,且前10项和10290S =,则9a 的最大值为(A )29(B )49 (C )50(D )58(8)为促进资源节约型和环境友好型社会建设,引导居民合理用电、节约用电,北京居民北京市某户居民2016年1月的平均电费为0.4983(元/千瓦时),则该用户1月份的 用电量为 (A )350千瓦时 (B )300千瓦时 (C )250千瓦时 (D )200千瓦时二、填空题共6小题,每小题5分,共30分。
(9)定积分121x d x -⎰的值为___.(10)已知P A 是圆O 的切线,切点为A ,2P A =,A C 是圆O 的直径,P C 交圆O 于点圆B ,∠30P A B =°,则圆O 的半径为___.(11)已知:,:13p x m q x <≤≤,若p是q 的必要而不充分条件,则实数m 的取值范围是___.(12)抛物线28yx =的准线l 的方程为____,若直线l 过双曲线22221(0,0)x y a b ab-=>>的一个焦点, 且双曲线的离心率为2, 则该双曲线的方程为___.(13)直线yk x=与函数tan ()22yx x ππ=-<<的图象交于,MN(不与坐标原点O 重合) 两点,点A 的坐标为(,0)2π-,则()A MA N A O +⋅=___.(14取值范围是___;②若关于x 的方程(())0f f x =有且只有一个实根,则实数a 的取值范围是___.三、解答题共6小题,共80分。
解答应写出文字说明,演算步骤或证明过程。
(15)(本小题13分)如图,在△A B C 中,点D 在BC 边上,3,co s 45C A DC π∠=∠=.(Ⅰ)求sin A D B ∠的值;(Ⅱ)若25B D D C ==,求△A B D 的面积.(16)(本小题13分)随着2022年北京冬奥会的成功申办,冰雪项目已经成为北京市民冬季休闲娱乐的重要方式.为普及冰雪运动,寒假期间学校组织高一年级学生参加冬令营.其中一班有3名男生和1名女生参加,二班有2名男生和2名女生参加.活动结束时,要从参加冬令营的学生中选出部分学生进行展示. (Ⅰ)若要从参加冬令营的这8名学生中任选4名,求选出的4名学生中有女生的概率; (Ⅱ)若要从一班和二班参加冬令营的学生中各任选2名,设随机变量X 表示选出的女生 人数,求X 的分布列和数学期望.(17)(本小题14分)如图,已知直角梯形A C E F 与等腰梯形A B C D 所在的平面互相垂直,E F A C ∥,12E F A C =,E C A C ⊥,112A D D C CBC E A B =====.(Ⅰ)证明:B C A E ⊥;(Ⅱ)求二面角D B E F --的余弦值;(Ⅲ)判断直线D F 与平面B C E 的位置关系,并说明理由.FEDC BAADBC(18)(本小题13分)已知函数2()(0)xa e f x a x=≠.(Ⅰ)当1a=时,求函数()f x 的单调区间;(Ⅱ)设2()()ln g x f x x x=--,若()g x 在区间(0,2)上有两个极值点,求实数a 的取值范围.(19)(本小题14分)已知椭圆2222:1(0)x y C a b ab+=>>过点(0,1). 过椭圆左焦点F 的直线交椭圆C 于A ,B 两点,O 为坐标原点. (Ⅰ)求椭圆C 的标准方程;(Ⅱ)若直线AB 垂直于x 轴,判断点O 与以线段AB 为直径的圆的位置关系,并说明理由; (Ⅲ)若点O 在以线段AB 为直径的圆内,求直线AB 的斜率k 的取值范围.(20)(本小题13分)已知函数2()(1)1xf x x x=≠-,数列{}n a 满足1(1)a m m =≠,1()n n a f a +=.(Ⅰ)当1m =-时,写出数列{}n a 的通项公式;(Ⅱ)是否存在实数m ,使得数列{}n a 是等比数列?若存在,求出所有符合要求的m 的值;若不存在,请说明理由; (Ⅲ)当102m <<时,求证:111()2ni i i a a m+=+<∏.(其中∏是求乘积符号,如5112345i i ==⨯⨯⨯⨯∏,121ni n i a a a a ==⨯⨯⨯∏)北京市东城区2018届高三第二次(4月)模拟数学理试题答案一、选择题:本大题共8小题,每小题5分,共40分.题号 1 2 3 4 5 6 7 8 答案BDCADCCB二、填空题:每小题5分,共30分.(第一空3分,第二空2分) 9.233m >12.222,13yx x =--= 13.22π14. [1,0),(1,0)(0,)--+∞三、解答题:本大题共6小题,共80分. 15(共13分) 解:(Ⅰ)因为3c o s 5C ∠=,C 是三角形内角所以4sin 5C ∠==.………2分又因为4C A Dπ∠=,所以4A D BC π∠=∠+.sin sin ()sin co sco s sin444A DBC C C πππ∠=∠+=∠⋅+∠⋅…………………5分43525210=⋅=…………………7分(Ⅱ)在ACD ∆中,由sin sinD C A D C A DC=行, …………………9分得54s in s in 2D C C A D C A D⋅⋅∠===∠. …………………11分所以11s in 572210A B D S A D B D A D B ∆=⋅⋅∠=⋅⋅= ……………13分16(共13分)(Ⅰ)从参加冬令营的8名学生中任选4名,有女生的概率为 454841318764144321C 1C -=-=⨯⨯⨯⨯⨯⨯…………………3分(Ⅱ)随机变量X 的可能取值为0,1,2,3, …………………4分ADBC2232224431(0)3612C C P X C C ====1122113123222244155(1)3612C C C C C C P XC C +====11122322322244155(2)3612C C C C C P X C C +====112312224431(3)3612C C C P XC C ====…………………………………8分所以 X 的分布列为X0 1 2 3P112512512112…………………………………10分15513123121212122E X 0=⨯+⨯+⨯+⨯=…………………13分17(共14分)(Ⅰ)取A B 中点G ,连结C G , 由已知可得A D C G 是平行四边形,所以12C GA D A B==, 所以 A CB C^…………………1分又 平面A C E F⊥平面A B C D ,平面A C E F 平面A B C DA C=所以 B C ⊥平面A C E F , …………………3分 又 A EÌ平面A C E F ,所以 B C A E ^ …………………4分(Ⅱ)因为 平面A C E F⊥平面A B C D ,平面A C E F 平面A B C DA C=E C A C ⊥所以 E C^平面A B C D ,由(Ⅰ)知A CB C^如图,以C 为坐标原点,以,,C A C B C E 为,,x y z 轴建立空间直角坐标系, …………………5分1(0,0,0),(0,1,0),(0,0,1),0,1),,0)222C B E F D -y333(0,0),(0,1,1),,0)222E F B E B D ==-=-设平面BC E 的法向量为(,,)nxy z =,则00n E F n B E ⎧⋅=⎪⎨⋅=⎪⎩ 即 020x y z ⎧=⎪⎨⎪-+=⎩所以(0,1,1)n= …………………7分设平面BD E 的法向量为(,,)mx y z=,则00m B D m B E ⎧⋅=⎪⎨⋅=⎪⎩ 即30220x y y z -=⎨⎪-+=⎩所以m=…………………9分c o s ,52m n m nm n×<>===…………………11分所以 二面角D B E F --5(Ⅲ)直线D F 与平面B C E 平行. …………………12分平面B C E 的法向量为(1,0,0)t=,1(0,,1)2D F =因为0t D F ⋅= 所以t D F ⊥ 所以 D F 平面B C E………………………………14分18(共13分)解:(Ⅰ)当1a=时,2()x e f x x=24432(2)(2)'()(0)x xxxx e x ee x x e xf x x xxx---===≠…………2分令'()0f x = 得2x =,(),()x f x f 'x 变化情况 x(,0)-?(0,2)2 (2,)+? ()f 'x+ - + ()f x增减增所以 函数()f x 增区间为(,0)-∞,(2,)+∞,减区间为(0,2)………………………………5分(Ⅱ)方法一:22()ln xa e g x x xx=--323221()(2)'()x xxa x e a ea e x x g x xxxx---=+-=………7分 当(0,2)x ∈时, 320,0x x -<>若()g x 在(0,2)上有两个极值点,'()g x 在(0,2)上至少有两零点, 即方程0xa e x -=在(0,2)上至少有两个不等实根,即方程x x a e=在(0,2)上至少有两个不等实根设()((0,2))xx F x x e=∈,21'()x xxxe x e x F x ee--==………8分解'()0F x =的1x =()F x 在(0,1)上单增,在(1,2)上单减所以 ()F x 在(0,2)上的最大值为1(1)F e=又22(0)0,(2)F F e==………………………………10分所以 要使方程xx a e=有两个不等实根,a 的取值范围为221(,)ee…………………………………11分设()xh x a e x =-, 解'()10xh x a e =-=得1ln x a=当221(,)a ee∈时,1ln (0,2)x a=∈且()h x 在1(0,ln )a单调递减;在1(ln2)a,单调递增.设1212,()x x x x <为方程0xa e x -=的两个不等实根,则在1(0,)x 上()0h x >,在12(,)x x 上()0h x <,在2(,2)x 上()0h x > 所以在1(0,)x 上()0g x <,在12(,)x x 上()0g x >,在2(,2)x 上()0g x < 即12,x x 为()g x 的两个极值点综上所述, ()g x 在(0,2)内存在两个极值点时,a 的取值范围为221(,)e e.………………………………………13分方法二: (Ⅱ)22()ln xa e g x xxx=--,323221()(2)'()x xxa x e a ea e x x g x xxxx---=+-=因为()g x 在(0,2)上有两个极值点,所以'()g x 在(0,2)上至少有两零点,所以方程0xa e x -=,即方程1xx e a=在(0,2)上至少有两个不等实根,所以直线1y x a=与曲线()xh x e =在(0,2)上有两个不同的交点因为2(2)h e =,所以过点2(2,)P e 和(0,0)O 的直线的斜率212ek =设过点(0,0)O 的直线l 与曲线()xh x e =相切于点00(,)x x e因为'()xh x e =,所以直线l 的斜率00x k e = 所以直线l 的方程为00()x x y eex x -=-因为直线l 过点(0,0)O ,所以01x =,所以0k e =因为直线1y x a =与曲线()xh x e =在(0,2)上有两个不同的交点所以212ee a<<,即221a ee <<设1212,()x x x x <为直线1y x a=与曲线()xh x e =在(0,2)上两个交点的横坐标,显然在1(0,)x 上10xe x a->,在12(,)x x 上10xe x a-<,在2(,2)x 上10xe x a->所以在1(0,)x 上()0g x <,在12(,)x x 上()0g x >,在2(,2)x 上()0g x < 即12,x x 为()g x 的两个极值点所以当()g x 在(0,2)内有两个极值点时,a 的取值范围为221(,)ee.方法三:22()ln xa e g x x xx=--323221()(2)'()xxxa x e a ea e x x g x xxxx---=+-=当0a <时,在区间(0,2)上,30,20,0xa e x x x -<-<>所以'()0g x >从而()g x 在区间(0,2)上是增函数,故()g x 在区间(0,2)上无极值点; 当0a >时,设()xh x a e x =-,(0,2)x ∈若()g x 在(0,2)上有两个极值点,'()g x 在(0,2)上至少有两零点,即()h x 在(0,2)上至少有两零点'()1xh x a e =-令'()0h x =得1ln x a =当1lna <即1a >时,(0,2)x ∈,'()10xh x a e =->,所以()h x 在(0,2)x ∈单调递增, ()(0)0h x h a >=> 故()g x 在(0,2)内不存在两个极值点. 当1ln2a>即210a e<<时,(0,2)x ∈,'()10xh x a e =-<,所以()h x 在(0,2)x ∈单调递减, 2(0)0,(2)2120h a h a e =>=-<-< 所以 ()h x 在(0,2)上只有一个零点0x0(0,)x x ∈,'()0g x <,0(,2)x x ∈,'()0g x >所以0(0,)x x ∈,()g x 单调增,0(,2)x x ∈,()g x 单调减所以()g x 在(0,2)上只有一个极值点(()g x 在(0,2)内不存在两个极值点)当10ln2a<<即211a e<<时,1(0,ln)x a∈时,'()0h x <,1(ln2)x a∈,,'()0h x >所以 1(0,ln)x a∈时,函数()h x 单调递减;1(ln2)x a∈,,函数()h x 单调递增.所以函数()h x 的最小值为1ln11(ln)lnah a e aa=-.函数()g x 在(0,2)内存在两个极值点当且仅当(0)01(ln )0(2)0h h a h >⎧⎪⎪<⎨⎪>⎪⎩解得221a ee<<.综上所述,函数()g x 在(0,2)内存在两个极值点时,a 的取值范围为221(,)ee.19(共14分)解:2a =,即a =又因为椭圆过点(0,1),所以1b = 由222a b c =+,得1a c ==所以椭圆的标准方程为:2212xy+= …………………4分(Ⅱ)由(Ⅰ)得(1,0)F -,当直线AB 垂直于x 轴时,直线AB 的方程是1x =-由22112x x y =-⎧⎪⎨+=⎪⎩得2y =±所以2A B y ==1O F c ==因为2A B O F <所以点O 在以线段AB 为直径的圆外 …………………8分方法二:点,A B的坐标为(1,),(1,22---11co s ((1,102222O A O B O A O B A O B ⋅=∠=-⋅--=-=>所以 cos 0A OB ∠>,即A O B ∠为锐角.所以点O 在以线段AB 为直径的圆外(Ⅲ)设直线AB 的方程为(1)y k x =+,11(,)A x y ,22(,)B x y ,由22(1)12y k x x y =+⎧⎪⎨+=⎪⎩得2222(21)4220k x k x k +++-=所以22121222422,2121k k x x x x kk-+=-=++方法一:因为点O 在以线段AB 为直径的圆内,所以A O B ∠为钝角,所以0O A O B ⋅< 121212122221212224222(1)(1)(1)()2(1)(1)402121O A O B x x y y x x k x k x k x x k x x k kk k k kk⋅=+=+++=++++-+-=++<++整理得 22k < 所以k -<<…………………………………………………14分方法二:线段A B 的中点00(,)M x y ,则212022221x x k xk+==-+,20222(1)2121k k y k kk=-+=++A B==22121kk+==+O M ==因为点O 在以线段AB 为直径的圆内,所以2A B O M>所以224A BO M >所以22228(1)(21)k k ++42224(4)(21)k k k+>+422320kk--<202k ≤<所以k -<<20(共13分)解:(Ⅰ)11a m ==-, 2111()112a f a ===+2321()12()1212a f a ===-所以 数列{}n a 的通项公式为1,11,22nn a n -=⎧⎪=⎨≥⎪⎩…………………3分(Ⅱ)由已知 1a m =,21()1nn n na a f a a +==-所以221ma m=-,22321a a a =-,假设存在实数m ,使数列{}n a 为等比数列,则必有2213a a a =,且0,1n n a a ≠≠所以2222121a a a a =-,即211a a -=,211mmm-=-解得 12m =因为当12m =时,112a =,11()2n n a f a +==,数列{}n a 为等比数列,所以存在12m =,使得数列{}n a 是等比数列 …………………6分(注:只写出当12m =时,数列{}n a 是等比数列,没有说明理由,只给1分)(Ⅲ)因为1a m=,102m <<,21()1nn n na a f a a +==-所以0n a ≠且211n n n n a a a a ++-=,即()2111n n n n n n n a a a a a a a +++=+=+所以11n n n na a a a +++=…………………8分所以311124111231()nn n n i i i na a a a a a a a a a a a a m++++=+=⋅⋅==∏ …………………9分设221921244y x x x ⎛⎫=+-=+- ⎪⎝⎭当102x <<时,0y <,所以2021x x <<-即当102x <<时,21012xx<<-…………………11分所以当102m <<时,1102n a +<<…………………12分1111()2nn i i i a a a mm++=+=<∏……………………………………13分。