2018年职高高考数学模拟试卷七
高职高考数学模拟试卷

---精品文档欢迎来主页下载 2018高职高考数学模拟试卷120分钟。
小题,满分150分。
考试时间本试题卷共24注意事项:、答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、1铅笔将试卷类型填涂在答题卡试室号、座位号填定在答题卡上。
用2B 相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴除”铅笔把答题纸上对应题目的答案标号用2B2、选择题每小题选出答案后,涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
3、非选择题用黑色字迹的签字笔或钢笔将答案写在答题纸上。
4、考生必须保持答题卡的整洁。
不能使用涂改液。
A试卷类型:75分)小题,每小题5分,共一、单项选择题(本大题共15在每小题列出的四个备选答案中,只有一个是符合题目要求的。
错涂、多涂或未涂均无分。
????5,44N?,3M?,0,1,23,)1.已知集合,,则下列结论正确的是( ????MM?NN?52,0,1?N?,3,4?MN?M D. C. A. B.log(x?1)2?x)f(的定义域是(2 、函数)x?2A B CD ),??(((??,0)1,2]2)21(,log2?log31a?0?”的(”是“)3.“aa A.必要非充分条件 B.充分非必要条件C.充分必要条件D.非充分非必要条件4. 下列等式正确的是( ) .7lg7?lg B. A. 1lg3?lg7?3lg3lg37?7lg D.C. 37lg3lg?3lg7?????????xcb??1,02,a?4,5x? ( ,).5. 设向量,,且满足与,垂直则cba?11? C. D. A.B. 2?2223x?1?2的解集是()6.不等式精品文档.欢迎来主页下载---精品文档11???? B. C.(-1,3) D.(1,3) A.?1,,1????33????.)x+y-5=0的直线方程是(7、过点A(2,3),且垂直于直线2 2x+y-7=0 x-y-1=0 D、x-2y+4=0 B、y -2 x +4=0 C、2A、). 函数的最大值是( 8. )?4sinxcosx(x?Rf(x) D. C. B.A. 8412k??),则9.已知角的值是(终边上的一点?cos,?4),P(3k41216 D.A.C.. B ?3?4?55?.)平移后的图象对应的函数为(的图象按向量10、函数,1)?a=(x2y?sin6??B、A、1)?y?sin(2y?sin(2x?)?1x?63??D、、C1y?sin(2x??x?)y)?1?sin(236n???a).已知数列a 的前项和,则( 11. ?Sn5nn1n?5141 D. C. A. B. 654230x,,xx,x,xxxxxx,则的均值为,均值为,,,12. 在样本若90805314254213xxxxx ). 均值( ,,,,54231 D. C. A. B. 90848085 22yx1??. )、双曲线则它到右焦点的距离(13上的一点到左焦点的距离是6,925??D、4或16 16 C、4 4 、A16 B、或3?a?aa?10,a?}{a)且中,,则有(.等差数列14 3125n2??3a???a???a2,?a?2d?3,d33,d2,d..B .C.DA 1111的样本数据,分组后组距与频数如下表:一个容量为15.40精品文档.的频率为()则样本在区间[60,100]A.0.6 B.0.7 C.0.8 D.0.9分,共25分)二、填空题(本大题共5小题,每小题5????*a.16. 已知等比数列且,则,满足9a?a?aa?0Nn?756nn?33|?|?2,|b|a??ba. ,且b和的夹角为,则17. 已知向量a4率概是偶数的个数,则这个数五从1,2,3,4,5个数中任取一18. 。
2018年高职高考数学模拟试题.pptx

2018 年高职高考数学模拟试题
姓名:
班级:
分数:
一、选择题:本大题共 15 小题,每小题 5 分,满分 75 分. 在每小题给出的四个 选项中,只有一项是符合题目要求的.
1、已知集合 M {1,1}, N {0,1, 2}, 则 M N (
)
A.{0 }
B.{1 }
C. {0,1,2}
2、函数 y
1
的定义域为(
4 x2
D.{-1,0,1,2 } )
A. (2, 2)
B.[2, 2]
C.(, 2)
D.(2, )
3、已知向量a (3,5), b (2, x) ,且 a b ,则 x=( )
A、 6 5
B、 6 5
C、 5 6
D、 5 6
4、sin 30 (
)
A.1
B. 1
C. 3
)
A.3x y 1 0 B.3x y 1 0 C.x y 1 0 D.x y 1 0
1
学海无 涯
11、已知 f (x) log 2 (3x 11) 3 x ,则 f (9)
A.10 B.14 C.2 D.-2
12、设{an }是等比数列,如果a2 4, a4 12 ,则 a6 A.36
B.12
C.16
D.48
13、抛物线 y2 8x 的准线方程是( )
A.x 2 B.x 2
C. y 2
D.y 2
14、椭圆 x2 y2 1 的两焦点坐标是( ) 36 25
A、 0, 11 , 0, 11
B、 6,0,6, 0
C、 0,5,0,5
D、 11,0 , 11,0
(x)
2 x
最新广东省高职高考数学模拟试卷资料

2018年广东省高职高考数学模拟试卷1、(2018)已知集合{}0,12,4,5A =,,{}0,2B =,则A B =( )A. {}1B. {}0,1,2C. {}3,4,5D. {}0,22.(2018)函数()f x = )A 、3,4⎡⎫+∞⎪⎢⎣⎭B 、4,3⎡⎫+∞⎪⎢⎣⎭C 、 3,4⎛⎤-∞ ⎥⎝⎦D 、4,3⎛⎤-∞ ⎥⎝⎦ 3.(2018)下列等式正确的是( )A 、lg5lg3lg 2-=B 、1lg =2100- C 、lg10lg 5lg 5=D 、lg5lg3lg8+= 4.(2018)指数函数()01x y a a =<<的图像大致是( )5.(2018)“3x <-”是 “29x >”的( )A 、必要非充分条件B 、充分非必要条件C 、充分必要条件D 、非充分非必要条件6.(2018)抛物线24y x =的准线方程是( )A 、1y =-B 、1x =C 、1x =-D 、1y =7.(2018)已知ABC ∆,90BC AC C ==∠=︒,则( )A 、sin 2A =B 、cos A =C 、cos()1A B +=D 、tan A =/28.(2018)y=sin2x cos2最小正周期是( )A 、2π B 、23π C 、 π D 、2π 9.(2018)若向量()()1,2,3,4AB AC ==,则BC =( )A 、()4,6B 、()2,2C 、()1,3D 、()2,2--10.(2018)现有3000棵树,其中400棵松树,现在提取150做样本,其中抽取松树做样本的有( )棵A 、 20B 、 15C 、25D 、3011.(2018)()23,01,0x x f x x x -≥⎧=⎨-<⎩,则()()2f f =( ) A 、1 B 、0 C 、1- D 、2-12.(2018)一个硬币抛两次,至少一次是正面的概率是( )A 、13B 、12C 、 34D 、2313.(2018)已知点()()1,4,5,2A B -,则AB 的垂直平分线是( )A 、 380x y +-=B 、390x y +-=C 、3100x y --=D 、330x y --=14.(2018)已知数列{}n a 为等比数列,前n 项和13n n S a +=+,则a =( )A 、0B 、3-C 、6-D 、315. 函数中,既是偶函数,又在区间(0,)+∞上单调递减的函数是( )(A )1y x -= (B ) 2y x -= (C )2y x = (D )13y x = 二、填空题(共5小题,每题5分,共25分)16、(2018)双曲线221432x y -=的离心率e = ;17、(2018)已知向量()()43,4a b x ==,,,若a b ⊥,则b = ;18、(2018)已知数据10,,11,,12,x y z 的平均数为10,则,,x y z 的平均数为 ;19、(2018)以两直线0x y +=和230x y --=的交点为圆心,且与直线220x y -+=相切的圆的标准方程是 ;20已知数列=+=n nn a n n S n a 则项和为的前,23}{2 三、解答题(50分)21、某电影院有520个座位,票价为60元时可完全售罄,后考虑提价,调查发现每涨价1元,则会少售出4张票,问当票价为几元时,电影院的盈利最大?22、(2018)已知数列{}n a 是等差数列,123566,25a a a a a ++=+=(1)求n a 的通项公式; (2)若 =n a 2 ,求数列{}n b 的前n 项和为n T .23、(2018)已知()()()sin ,0,0,0f x A x A ωϕωϕπ=+>><<,最小值为3-,最小正周期为π。
湖北省黄冈市职业高级中学2018年高三数学文模拟试卷含解析

湖北省黄冈市职业高级中学2018年高三数学文模拟试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 函数(><)的图象如图所示,为了得到的图象,可以将的图象A.向右平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向左平移个单位长度参考答案:A由图象知,所以周期,又,所以,所以,又,即,所以,即,所以当时,,所以,又,所以要得到的图象只需将的图象向右平移个单位长度,选A.2. 已知定义在R上的可导函数的导函数为,满足<,且为偶函数,,则不等式的解集为()A. ()B. ()C. ()D. ()参考答案:D3.复数(x∈R,i为虚数单位)在复平面上对应的点不可能位于()A.第一象限B.第二象限C.第三象限 D.第四象限参考答案:答案:B4. 已知函数,若对于任意,都有成立,则的最小值为( ).A.B. C.D.参考答案:C略5. 已知是实数,是纯虚数,则等于()A. B. C. D.参考答案:A是纯虚数,则;,选A.6. 执行如右图所示的程序框图,则输出的k值是()A.10B.11C.12D.13参考答案:B考查等比数列前n项和,注意输出前k先加1即7. 如图,设A,B,C,D为球O上四点,AB,AC,AD两两互相垂直,且AB=AC=,AD=2,则A、D两点间的球面距离为A、B、C、D、参考答案:D8. 已知等比数列的前项和,则的值为....参考答案:A试题分析:根据题意有,结合等比数列的性质,可知,解得,故选A.考点:等比数列的性质.9. 设是不同的直线,是不同的平面,有以下四个命题:A.若,则 B.若,则C.若,则 D.若,则参考答案:D10. 集合P={x|(x﹣1)2<4,x∈R},Q={﹣1,0,1,2,3},则P∩Q=()A.{0,1,2} B.{﹣1,0,1,2} C.{﹣1,0,2,3} D.{0,1,2,3}参考答案:A【考点】交集及其运算.【分析】求出P中不等式的解集确定出P,找出P与Q的交集即可.【解答】解:由P中不等式变形得:(x﹣1+2)(x﹣1﹣2)<0,解得:﹣1<x<4,即P=(﹣1,3),∵Q={﹣1,0,1,2,3},∴P∩Q={0,1,2},故选:A.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.二、填空题:本大题共7小题,每小题4分,共28分11. 已知a,b为正实数,直线y=x﹣a与曲线y=ln(x+b)相切,则+的最小值为.参考答案:5+2【考点】6H:利用导数研究曲线上某点切线方程;7F:基本不等式.【分析】求函数的导数,由已知切线的方程,可得切线的斜率,求得切线的坐标,可得a+b=1,再由乘1法和基本不等式,即可得到所求最小值.【解答】解:y=ln(x+b)的导数为y′=,由切线的方程y=x﹣a可得切线的斜率为1,可得切点的横坐标为1﹣b,切点为(1﹣b,0),代入y=x﹣a,得a+b=1,∵a、b为正实数,则+=(a+b)(+)=2+3++≥5+2=5+2.当且仅当a=b,即a=,b=3﹣时,取得最小值5+2.故答案为:5+2.12. 如图,点D是△ABC的边BC上一点,,,,,AC=_____。
2018年高考数学模拟试卷(7)参考答案

2018年高考模拟试卷(7)参考答案一、填空题:本大题共14小题,每小题5分,共70分. 1. 【答案】0【解析】()222i 12i z a a a =+=-+是实数,则0a =.2.【解析】根据三角函数定义,sin α==.3. 【答案】(]2,3【解析】图中阴影部分所表示的集合为()U C M N ,即为(]2,3.4. 【答案】18【解析】校A 专业对视力要求不低于0.9的学生数为45()10.750.250.218⨯++⨯=. 5. 【答案】23【解析】从4只小球中任取2只小球共有6种取法,其中2只球的编号之和是奇数的有4种,则所求概率为23.6. 【答案】2【解析】根据循环,依次得到,,n M S 的值分别为2443,,log 33;225454,,log log 434+,…,22212451211,,log log log 113411+++,因为2224512log log log 223411S =+++=≥,所以最后的输出结果为2.7.【解析】由题意,235k -=,即4k =,所以双曲线为2214x y -= 8. 【答案】128π【解析】设圆锥底面半径为r ,高为h ,由题意,π1080πr ⨯=,得8r =.所以6h =,容积为2211ππ8633128πr h =⨯⨯=.9. 【答案】6-因为23AE AD =,12AF AD DF AD AB =+=+;23BE BA AE AD AB =+=-,那么AF BE ⋅=()()1223AD AB AD AB +⋅-22212323AD AB AB AD =--⋅6846=--=-. 10. 【答案】76【解析】由a 4 + 3a 11= 0,知713q =-,所以212114147116S q S q -==-.11.【解析】由2222310x y mx m +--+-=得,()()2221x m y m -+=+,则圆心()m 到直线y kx =2km -,设截得的半弦长为p ,则()221pm =+-(2221km k -=+)2222111m k k -+++(与实数m 无关),10-=,k =.12. 【答案】1【解析】由cos 2sin sin A B C =得,()cos 2sin sin B C B C -+=, 即cos cos sin sin 2sin sin B C B C B C -+=,所以tan tan 1B C =-, 所以()tan tan 2tan tan 1tan tan 111B C A B C B C +-=-+===---.13.【答案】 83或3.【分析】当a >2时,设椭圆的另外一个焦点为F ′,联结AF ′,BF ′. 则AF ′+BF ′≥|AB |=3.故AF +BF =4a -(AF ′+BF ′)≤4 a -3.所以AF ·BF ≤(AF ·BF 2)2≤(4 a -32)2.当且仅当线段AB 过点F ′,且AF =BF =4 a -32时,上式等号成立,此时,AB ⊥x 轴,且AB 过点F ′.于是 4c 2=|FF ′|2=(4 a -32)2-(32)2=4a 2-6a ,即c 2=a 2-32a .则a 2=4+(a 2-32a ),得a =83.类似地,当0<a <2时,可得a =3.14. 【答案】1763⎡⎤⎢⎥⎣⎦, 【分析】当163k =时,()()f x g x ,的图象相切;6k =时,()()f x g x ,的图象均过点()24,, ()416,,故唯一的正整数3x =,同时174k k +≤,从而1763k ≤≤.二、解答题:本大题共6小题,共计90分.解答时应写出文字说明、证明过程或演算步骤 15.(本小题满分14分)解:(1)因为3sin 5A =,()π02A ∈,,所以4cos 5A ===. ……3分 在△ABC 中,由余弦定理222cos 2b c a A bc +-=得,()2226254522c c+-=⨯⨯,解得85c =,所以AB 的长为85. ……6分(2)由(1)知,3sin 35tan cos 445A A A ===, ……8分所以()()()31tan tan 1343tan tan 3191tan tan 143A AB B A A B A A B +--=--===⎡⎤⎣⎦+--⨯. ……11分 在△ABC 中,πA B C ++=,所以()313tan tan 7949tan tan tan tan 13133149A B C A B A B ++=-+===-⨯-. ……14分16.(本小题满分14分)证明:(1)因为BC //平面PDE , BC ⊂平面ABC ,平面PDE平面ABC =DE ,所以BC ∥DE . ……3分 因为DE ⊄平面PBC ,BC ⊂平面PBC ,所以//DE 平面PBC . ……6分 (2)由(1)知,BC ∥DE .在△ABC 中,因为点E 为AC 的中点,所以D 是AB 的中点. 因为AC BC =,所以AB CD ⊥, ……9分因为平面PCD ⊥平面ABC ,平面PCD平面ABC =CD ,AB ⊂平面ABC ,则AB ⊥平面PCD . ……12分 因为AB ⊂平面P AB ,所以平面P AB ⊥平面PCD . ……14分 17.(本小题满分14分 解:(1)如图1,过点B 作2l 的垂线,分别交1l ,3l ,于点D ,E ,设DBA θ∠=,则23EBC θπ∠=-.则1cos AB θ=,()22πcos 3BC θ=-.……2分 因为AB BC =,所以()12cos 2πcos 3θθ=-, 化简得5cos θθ=,所以tan θ=,则cos θ=,所以边长1cos AB θ==. ……6分(2)如图2,过点B 作2l 的垂线,分别交1l ,3l 于点D ,E . 设DBA θ∠=,则π2EBC θ∠=-,则1cos AB θ=,2sin BC θ=. 于是184cos sin AB BC θθ+=+. ……8分记18()cos sin f θθθ=+,()π02θ∈,.BC Al 3l 2l 1 图2DE B CAl 3l 2l 1图1D E求导,得333222221sin 8cossin 8cos tan 8()cos sin sin cos sin cos f θθθθθθθθθθθθ---'=-==.……10分 令()0f θ'=,得tan 2θ=.记0tan 2θ=, 列表:当0θθ=时,()f θ取最小值,此时sin θ=,cos θ,0()f θ=……12分 答:(1)边长AB ;(2)4AB BC +长度的最小值为.……14分18.(本小题满分16分)解:(1)设点()M x y ,PQ =,得()P x .因为P 为圆O :222x y +=上的动点, 所以)222x +=,即2212x y +=,所以当点P 运动时,点M 始终在定椭圆2212x y +=上. ……4分 (2)①设11()A x y ,,22()B x y ,,当10y ≠时,直线AT的方程为:()1111x y y x x y -=--,即221111x x y y x y +=+, 因为22112x y +=,所以112x x y y +=, 当10y =时,直线AT 的方程为:x = 综上,直线AT 的方程为:112x x y y +=. 同理,直线BT 的方程为:222x x y y +=.又点T ()2()t t -∈R ,在直线AT ,BT 上,则1122x ty -+=,① 2222x ty -+=,② 由①②知,直线AB 的方程为:22x ty -+=.所以直线AB 过定点()10-,. ……9分 ②设33()C x y ,,44()D x y ,, 则O 到AB的距离d =AB = ……11分由222212x ty x y -+=⎧⎪⎨+=⎪⎩,得22(8)440t y ty +--=, 于是34248t y y t +=+,34248y y t -=+,所以34CD y =-, ……13分于是AB CD ,AB CD ⇔⇔()222(8)2t t ++2≤()222(4)4t t ++ ⇔42(6)t t +≥0(显然)所以AB CD. ……16分19.(本小题满分16分)解:设等差数列{}n a 的公差为d .因为无穷数列{}na 的各项均为互不相同的正整数,所以*1a ∈N ,*d ∈N .(1)①由25a =,540S =得,15a d +=,1545402a d ⨯+=, ……2分解得12a =,3d =.所以21222215S ab a a =-==. ……4分 ②因为数列{}nb 为等差数列,所以2132b b b =+,即()3212132111S S Sa a a -=-+-.所以()()111122312a d a d a d a d++=+++,解得1a d =(0d =已舍). ……6分 此时,()11112112n n n n n a S n b a na +-=-=-=. ……8分 (2)因为()111111a a a a d +=++-⎡⎤⎣⎦是数列{}n a 的第()11a +项, ()1(2)111(2)11a d a a a d d ++=+++-⎡⎤⎣⎦是{}n a 的第()1(2)1a d ++项,且()()1222111a a a d +=+,[]11(2)1111(2)a d a a a a a d d ++⋅=⋅++,所以()121a a +11(2)1a d a a ++=⋅.又1111(2)1a a a d <+<++, 所以数列{}na 中存在三项1a ,11a a +,1(2)1a d a ++按原来的顺序)成等比数列. ……16分 20.(本小题满分16分)解:(1)设直线1y kx =+与()f x 的图象的切点为00(e )x x ,. 因为()e xf x '=,所以000e e 1x x kkx ⎧=⎪⎨=+⎪⎩, ……2分所以00e (1)10x x -+=.令()e (1)1x x x ϕ=-+,()e x x x ϕ'=⋅. 令()0x ϕ'=得0x =.所以min ()(0)0x ϕϕ==,所以00x =,所以1k =. ……4分(2)2()e x h x mx =- (0)x >.令()0h x =得2e x m x=. 令2e ()xt x m=- (0)x >,3e (2)()x x t x -'=.当2x =时,()t x 有最小值2e (2)4t m =-.因为()t x 在(0)+∞,上的图象是连续不断的,当2e 4m <时,()0t x >在(0)+∞,上恒成立,所以()h x 在(0)+∞,无零点;当2e 4m =时,min ()0t x = 所以()h x 在(0)+∞,有且仅有一个零点; 当2e 4m >时,此时min ()(2)0t x t =<,因为()112211e e 0m m t m m m m m ⎛⎫=-=-> ⎪⎝⎭,所以()t x 在(02),上有且仅有一个零点.又因为33322e 1(3)(e 9)99mm t m m m m m=-=-, 令31()e 3x u x x =-,(2,)x ∈+∞, 则2()e x u x x '=-,()e 2x u x x ''=-,所以()e 20x u x '''=->. 所以()u x ''在(2)+∞,上单调递增,所以2()(2)e 40u x u ''''>=->, 所以()u x '在(2)+∞,单调递增,所以2()(2)e 40u x u ''>=->, 所以()u x 在(2)+∞,单调递增,所以28()(2)e 03u x u >=->,所以31e 3x x >在(2)+∞,恒成立,所以33e 9m m >,即(3)0t m >,所以()t x 在(2)+∞,上有且仅有一个零点. 所以()h x 在(0)+∞,上有两个零点.综上所述,2e 4m <时,()h x 在(0)+∞,无零点;2e 4m =时,()h x 在(0)+∞,有且仅有一个零点;2e 4m >时,()h x 在(0)+∞,有两个零点. ……10分 (3)因为()e x f x =在()-∞+∞,上单调增,且21x x >, 所以21()()f x f x >,210x x ->,所以122121()()()()2f x f x f x f x x x +->-122121e e e e 2x x x x x x +-⇔>-212121e e 2e ex x x x x x --⇔>+ 2121211e 1()2e 1x x x x x x ---⇔->+212112()1()2e 1x x x x -⇔->-*+. 令2()12e 1x x x ϕ=+-+(0)x >,222(e 1)12e ()2(e 1)2(e 1)x x x x x ϕ-'=-=++. 因为0x >,所以()0x ϕ'>,所以()x ϕ在(0)+∞,上单调递增, 所以()(0)0x ϕϕ>=,所以()*式成立,所以122121()()()()2f x f x f x f x x x +->-. ……16分 数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题,并在相应的答题区域内作..................答..若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.A . [选修4—1:几何证明选讲](本小题满分10分) 证明:因为四边形ABCD 是圆的内接四边形,所以EAD BCD ∠=∠. …… 2分 因为BC BD =,所以BCD BDC ∠=∠. …… 4分 又BAC EAF ∠=∠, …… 6分 BAC BDC ∠=∠, …… 8分所以EAD EAF ∠=∠,即AE 平分DAF ∠. …… 10分 B . [选修4-2:矩阵与变换](本小题满分10分)解:设()P x y ,是l :23x y -=上任意一点,在矩阵13a b -⎡⎤=⎢⎥⎣⎦M 对应的变换得到点为()x y '',, 由13a x x b y y '-⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥'⎣⎦⎣⎦⎣⎦,得3x x ay y bx y '=-+⎧⎨'=+⎩,, …… 5分 代入直线l :23x y -=,得(2)(23)3b x a y --+-=, …… 7分(第21—A 题)所以22231b a --=⎧⎨-=-⎩,,解得14a b ==-,. …… 10分C .[选修4-4:坐标系与参数方程](本小题满分10分)解:将直线l 化为普通方程,得tan ()y x m α=- …… 3分将椭圆C 化为普通方程,得221259x y +=. …… 6分因为5,3,4a b c ===,则右焦点的坐标为(4,0). …… 8分 而直线l 经过点(,0)m ,所以4m =. …… 10分D .[选修4-5:不等式选讲](本小题满分10分)证明:因为123 a a a ,,均为正数,且1231111a a a ++=, 所以123a a a ++()123123111()a a a a a a =++++()()1133123123111339a a a a a a ⋅=≥,(当且仅当1233a a a ===时等号成立) …… 8分所以1239a a a ++≥. …… 10分【必做题】第22题、第23题,每题10分,共计20分. 22.(本小题满分10分)解:(1)因为[]!(1)1!(1)!!(1)!!k k k k k k k k k ⋅=+-⋅=+⋅-=+-, 又由概率分布的性质可知51()1k P k ξ===∑,即()[]()555111!111719!(1)!!6!1!1k k k k k k k k k c c c c c ===⋅=⋅=+-=-==∑∑∑,所以c = 719. …… 3分 (2)由(1)知!()719k k P k ξ⋅==,*6k k ∈<N ,,于是22!4(2)719719P ξ⨯===,1(1)719P ξ==,33!18(3)719719P ξ⨯===,44!96(4)719719P ξ⨯===,55!600(5)719719P ξ⨯===. …… 8分高三数学参考答案 第 11 页 共 11 页所以ξ的数学期望E (ξ )14189660012345719719719719719=⨯+⨯+⨯+⨯+⨯3447719=. ……10分23.(本小题满分10分)解:(1)12a =,24a =,38a =. …… 3分 (2)猜想:2n n a =. 证明:①当1n =,2,3时,由上知结论成立; …… 5分 ②假设n k =时结论成立, 则有123012323C C C C C 22222k k k k k k k k kk a ++++=+++++=. 则1n k =+时,123101112131111231C C C C C2222k+k k k+k+k+k k k+a ++++++++=+++++. 由111C C C k k k n n n +++=+得102132112233123C C C C C C C 222k k k k k k k ka ++++++++++=++++11111C C C 22k k -k+k+k k+k k+k+k k+++++0121112311231C C C C C 222222k k+k k k k k k k+k+k k+-+++++=++++++, 12110231111121C C C C 12(C )22222k k+kk k k k k+k+k k k k a -++++++-=++++++ 121102311111121C C C C C 12(C )22222k k k+kk k k k -k+k k+k k k k+-+++++++-=++++++. 又111111(21)!(22)(21)!(21)!(1)12C C !(1)!(1)!(1)!(1)!(1)!2k+k+k+k k+k k k k k k =k k k k k k k ++++++++===+++++ 12110231111111211C C C C C 12(C )222222k k k+kk k k k -k+k k+k k k k k -++++++++-+=+++++++, 于是11122k k k a a ++=+.所以112k k a ++=, 故1n k =+时结论也成立.由①②得,2n n a =*n ∈N ,. …… 10分。
广东省高职高中高考数学试卷试题有包括答案.docx

2018 年广东省普通高校高职考试数学试题一、 选择题(共15 小题,每题 5 分,共 75 分)1、(2018)已知集合 A 0,12,4,5, , B 0,2 ,则 A I B ()A. 1B. 0,2C.3,4,5D.0,1,22.(2018)函数 f x3 4 x 的定义域是()A 、 3,B 、 4,C 、,3D 、,4434 33.(2018)下列等式正确的是()A 、 lg5 lg3lg 2B 、 lg5lg3lg8C 、 lg 5lg101 lg 5D 、 lg = 21004.( 2018)指数函数 y a x 0a 1 的图像大致是( )AB C D5.(2018)“ x3 ”是 “ x 2 9 ”的()A 、必要非充分条件B 、充分非必要条件C 、充分必要条件D 、非充分非必要条件6.(2018)抛物线 y 24x 的准线方程是()A 、 x1B 、 x 1C 、 y 1D 、 y17. ( 2018)已知 ABC , BC3, AC6, C90 ,则( )A 、 sin A2 B 、coA=62D 、 cos( A B)12C 、 tan A311 1 1L1()8.(2018) 12223 24 2n 12A 、 2 ( 12 n ) B 、 2 ( 121 n )C 、 2 ( 12n 1 )D 、 2 ( 12n )uuuruuur 3,4uuur9.(2018)若向量 AB 1,2 , AC,则 BC ()A 、 4,6B 、 2, 2C 、 1,3D 、 2,210.(2018)现有 3000 棵树,其中 400 棵松树,现在提取 150 做样本,其中抽取松树 做样本的有( )棵A 、15B 、 20C 、25D 、 30 11.(2018) f xx3 , x 0,则 ff 2()x 21, x 0A 、1B 、0C 、 1D 、 212. (2018)一个硬币抛两次,至少一次是正面的概率是()A 、1B 、1C 、2D 、3323 413.(2018)已知点 A 1,4 , B 5,2 ,则 AB 的垂直平分线是()A 、 3x y 3B 、 3xy 9 0C 、 3x y 100 D 、 3x y 8 0 14.(2018)已知数列 a n 为等比数列,前 n 项和 S n3n 1a ,则 a()A 、 6B 、 3C 、0D 、315.(2018)设 f x 是定义在 R 上的奇函数,且对于任意实数 x ,有 fx 4f x ,若 f 1 3 ,则 f 4f 5( )A 、 3B 、3C 、 4D 、6二、二、填空题(共 5 小题,每题 5 分,共25 分)16、(2018)双曲线x2y21的离心率 e;432r r r r r17、(2018)已知向量 a,,,若 a b ,则 b;4 3 , b x 418、(2018)已知数据10, x,11, y,12, z的平均数为8,则 x, y, z 的平均数为;19、(2018)以两直线x y0 和 2x y 3 0 的交点为圆心,且与直线 2x y 2 0相切的圆的标准方程是;20 已知ABC对应边分别为的内角A B,C的对边分别为a, b, c ,已知 3b 4a, B 2 A,,则 cosA;三、解答题( 50 分)21、( 2018)矩形周长为10,面积为 A ,一边长为x。
2018年职高高考数学模拟试卷七

2018年河南省普通高等学校对口招收中等职业学校毕业生模拟考试数学试题卷(七)考生注意:所有答案都要写在答题卡上,写在试题卷上无效一、选择题(每小题3分,共30分,每小题中只有一个选项是正确的,请将正确选项涂在答题卡上)1.设U=Z,A={x |x=2k+1,k ∈Z},则U C A 等于( )A.{x |x=2k-1,k ∈Z}B.{x |x=2k,k ∈Z}C.{2,4,6,8…}D. {0}2.若对任意实数x ∈R,不等式|x |≥ax 恒成立,则实数a 的取值范围是( )A. a ﹤-1B.|a |≦1C.|a |﹤1D.a ≥13.已知f(x)=a log (x-1)(a>0,a ≠1)是增函数,则当1<x<2时,则f(x)的取值范围是( )A. (-∞,0)B. (0,+∞)C. (-∞,1)D. (1,+∞)4.已知a=e lg ,b=10ln ,其中e 是自然对数的底数,则下列选项正确的是( )A. b>l>aB. a>l>bC. a>b>lD.1>b>a5.若23sin ,21cos ==βα,且a 和β在同一象限,则()βα+sin 的值为( ) A. 213- B. 23 C. 23- D. 21 6.在等比数列{n a }中,=3a 12,=5a 48,则=8a ( )A.384B.-384C.±384D.7687.已知a =(2,1),b =(3,x),若(2a -b )⊥b ,则x 的值是( )A.3B.-1C.-1或3D.-3或18.直线ax+by=4与4x+ay-1=0互相垂直,则a=( )A.4B.±1C.0D.不存在9.下列命题正确的是( )①直线L 与平面a 内的两条直线垂直,则L ⊥a②直线L 与平面a 所成的角为直角,则L ⊥a③直线L 与平面a 内两条相交直线垂直,则L ⊥a④直线L ⊥平面a,直线m ∥L,则m ⊥aA.①②③B.②③④C.①③④D.①②④10.在()103-x 的展开式中6x 的系数是( ) A.-27610C B.27410C C.-9610C D.9410C二、填空题(每小题3分,共24分)11.设集合M={-1,0,1),N(-1,1),则集合M 和集合N 的笑系是 .12.设f (x )为奇函数,且f (0)存在,则f (0)= .13.计算:212943⎪⎭⎫ ⎝⎛+-= . 14.已知a 是第三象限角,则ααsin tan - 0(填﹥或﹤). 15.2218+与2218-的等比中项是 . 16.已知M(3,-2),N(-5,-1),且MP = 21MN ,则P 点的坐标是 .17.若圆锥的母线长为5,圆锥的高为3,则圆锥的体积为 .18.若事件A 与事件A 互为对立事件,且P(A)=0.2,则P(A )= .三、计算题(每小题8分,共24分)19.已知在一个等比数列{n a }中,=+31a a 10,=+42a a -20,求:(1)数列第四项的值;(2)数列前五项的值.20.如图一,在△ABC中,顶点A、B、C所对的边分别为a、b、c,已知B=C,ab=643,△ABC的面积为163,求b.21.抛掷两颗骰子,求:(1)两颗骰子都为6点的概率(2)两颗骰子点数之和小于5的概率四、证明题(每小题6分,共12分)22.已知()()31sin ,21sin =-=+βαβα,求证:(1) βαβαsin cos 5cos sin =;(2) βαtan 5tan =.23.菱形ABCD 在平面a 上,PA ⊥a,求证:PC ⊥BD.五、综合题(10分)24.已知直线:2x-y+m=0过抛物线2y =4x 的焦点.(1)求m 的值,并写出直线L 的方程;(2)判断抛物线与直线L 是否有交点,如果有,求出交点坐标.。
2018年普通高等学校招生全国统一考试高三数学仿真卷文七20180428118

2018 年普通高等学校招生全国统一考试高三数学仿真卷文(七)本试题卷共14 页,23 题(含选考题)。
全卷满分150 分。
考试用时120 分钟。
★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12 小题,每小题5 分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.[2018·孝义模拟]已知全集U 1,2,3,4 ,若A 1,3 ,B 3 ,则ðð等于()U A U BA. 1,2 B. 1,4 C. 2,3 D. 2,4- 1 -【答案】D【解析】根据题意得到U A 2,4 ð 1,2,4 ,故得到 ð ð 2,4 .故答ð,U B U A U B案为:D.2.[2018·海南二模]已知复数z满足z 3 4i 3 4i,z为z的共轭复数,则z()A.1B.2C.3D.4【答案】A【解析】由题意得:z34i34i34i724i72434i34i34i9162525i,∴724zi,252522z7241,故选:A.25 253.[2018·大同一中]如果数据x,1x,…,2x的平均数为x,方差为82,则5x2,n15x 2,…,5x 2的平均数和方差分别为()2nA.x,82B.5x 2,82C.5x 2,25 82D.x,25 82【答案】C【解析】根据平均数的概念,其平均数为5x 2,方差为25 82,故选C.4.[2018·龙岩期末]《九章算术》有这样一个问题:今有女子善织,日增等尺,七日共织二十八尺,第二日、第五日、第八日所织之和为十五尺,则第十日所织尺数为()A.9 B.10 C.11 D.12【答案】Ba尺,从第二天起每天比第一天多织d尺,由已知得:【解析】设第一天织布1a d721281a d a4d a7d 15111a ,d 1,∴第十日所织尺数为a a d,11101910,解得故选B.5.[2018·宁德质检]已知a 1.90.4,b log 1.9,c 0.41.9,则()0.4A.a b c B.b c a C.a c b D.c a b- 2 -【答案】C【解析】 a 1.90.4 1.90 1,b, 0 c 0.41.9 0.40 1,log 1.9 log 1 00.40.4a cb ,故选 C .6.[2018·佳木斯一中]如图,已知正方形的面积为10,向正方形内随机地撒 200 颗黄豆,数 得落在阴影外的黄豆数为114颗,以此试验数据为依据,可以估计出阴影部分的面积约为 ()A .5.3B . 4.3C . 4.7D .5.7【答案】B【解析】由古典概型概率公式概率公式及对立事件概率公式可得,落在阴影部分的概率为114 1 ,因为正方形的面积为10,所以由几何概型概率公式可得阴影部分的面积约为200 114 10 1 4.3,故选 B .2007.[2018·深圳中学]某几何体的三视图如图所示,则此几何体的体积为()A .2 3B .1C .4 3D .8 3【答案】CV 1 1 4【解析】该几何体为三棱锥,其直观图如图所示,体积 2 2 23 2 3.故选 C .- 3 -f x2017x log x2 1 x 2017 x 3,则关于x 8.[2018·海南二模]已知函数2017的不等式f 1 2x f x 6的解集为()A. ,1 B. 1, C. 1,2 D. 1,4 【答案】Ag x2017x2017x log x2 1 x为奇函数且在【解析】由题意易知:2017, 上单调递增,∴g 1 2x 3 g x 3 6,即g x g 2x 1 ,∴x 2x 1,∴x 1,∴不等式f 1 2x f x 6的解集为 ,1 ,故选:A.9.[2018·宿州一模]在如图所示的程序框图中,若输入的s 2,输出的s 2018,则判断框内可以填入的条件是()开始输入xi 1是否s 2s输出si i 1结束A.i 9B.i≤10C.i≥10D.i≥11【答案】D【解析】输入S 2,i 1,S 4 22;i 2,S 8 23;当i 10,S 211 2048;当i 10 1 11,当i≥11时,满足条件,退出循环,S 2048,故选D.- 4 -10.[2018·天门期末]函数 f x A sin x (A 0, 0) 的图像如图所示,则ff f f 的值等于( )1 2 318A .2 2B . 2C . 2 2D .1【答案】CT , T 8, 2【解析】由图知 A 2 , 6 2284, 2sin 2 2 ,4Z , 2k k Z , 2sin2k k f x x,2 24所以 f 1 f 2 f 3 f 18 2 f 1 2 f 2 2 f8 f 1 f 2f 1 f 2 2 2,选 C .11.[2018·孝义模拟]已知函数f x ln x 2ax,若有且仅有一个整数 k ,使得 fk 1,x则实数 a 的取值范围是( )A . 1, 3B . 1 ln2 1 , 1 ln3 142 6 21 1 C . ln2 1, ln3 1 2 31 D . 1,e 1e【答案】B【解析】函数f xln x 2ax,若有且仅有一个整数k,使得f k 1,不等式xln x 2a 1 x只有一个整数解,在同一坐标系中画出图像,可知这个整数解就是2,故得到ln2 22a 1,ln3≤3 2a 1 ,解得不等式组解集为 1ln2 1,1ln3 14262.故选B.- 5 -12.[2018·佳木斯一中]已知椭圆y 2521与抛物线 x 2 ay 有相同的焦点 F ,O 为原点,x点 P 是抛物线准线上一动点,点 A 在抛物线上,且 AF 4,则 PA PO 的最小值为 ()A . 2 13B . 4 2C .3 13D . 4 6【答案】A【解析】 椭圆 y 25 , c 2 5 1 4 ,即 c 2,则椭圆的焦点为0, 2 ,不妨取 x 2 1焦点 0, 2 , 抛物线 ax ay 424ya , 抛物线的焦点坐标为 0, 4 , 椭圆 y 25 a与抛物线 x 2 ay 有相同的焦点 F , 2 ,即 a 8,则抛物线方程为 x 2 8y ,x 2 14准线方程为 y 2, AF 4 ,由抛物线的定义得: A 到准线的距离为 4 , y 2 4, 即 A 点的纵坐标 y 2 ,又点 A 在抛物线上, x 4 ,不妨取点 A 坐标 A 4, 2 , A 关于 准线的对称点的坐标为 B 4, 6 ,则 PA PO PB PO OB ,即O , P , B 三点共 线时,有最小值,最小值为2OB2,故选 A .4 616 36 52 2 13第Ⅱ卷本卷包括必考题和选考题两部分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年河南省普通高等学校对口招收中等职业学校毕业生模拟考试
数学试题卷(七)
考生注意:所有答案都要写在答题卡上,写在试题卷上无效
一、选择题(每小题3分,共30分,每小题中只有一个选项是正确的,请将正确选项涂在答题卡上)
1. 设U=Z,A={x | x=2k+1,k € Z},则C d A 等于()
A.{x | x=2k-1,k € Z}
B.{x | x=2k,k € Z}
C.{2,4,6,8 …}
D. {0}
2. 若对任意实数x € R,不等式| x |> ax恒成立,则实数a的取值范围是()
A. a v -1
B. | a | 三1
C. | a |< 1
D.a > 1
3. 已知f(x)= log a(x-1)(a>0 , a z 1)是增函数,则当1<x<2时,则f(x)的取值范围是()
A. (- X, 0)
B. (0, +x)
C. (-汽1)
D. (1, +x)
4. 已知a=lge,b=ln10,其中e是自然对数的底数,则下列选项正确的是()
A. b>l>a
B. a>l>b
C. a>b>l
D.1>b>a
5. 若cos 1 ,sin -3,且a和B在同一象限,则sin
的值为()
A.亠
B. -3
C. Q
D.」
2 2 2 2
6. 在等比数列{a n}中,a3 12, a s 48,则a* ()
A.384
B.-384
C. 士384
D.768
8. 直线ax+by=4与4x+ay-1=0互相垂直,则a=( )
A.4
B. 士 1
C.0
D. 不存在
9. 下列命题正确的是( )
① 直线L 与平面a 内的两条直线垂直,则L 丄a
② 直线L 与平面a 所成的角为直角,则L 丄a
③ 直线L 与平面a 内两条相交直线垂直,则L 丄a
④ 直线L 丄平面a,直线m// L,则ml a
A.①②③
B. ②③④
C. ①③④
D. ①②④
—10
10. 在x <3的展开式中X 6的系数是()
A.-27 C IO
B.27 Cw
C.-9 况
D.9 g
二、 填空题(每小题3分,共24分)
11. 设集合M={-1, 0, 1),N(-1 ,1),则集合M 和集合N 的笑系是
12. 设f (x )为奇函数,且f (0)存在,则f (0)= .
1
13. 计算:32 4 2=
9
14. 已知a 是第三象限角,则tan sin _(填〉或<).
15. 』 2与』 2的等比中项是
2 2
16. 已知 M(3, -2) , N(-5 , -1),且 MP = -MN 则 P 点的坐标是 .
2
7.已知 a=(2,1), b=(3,x),
若(2a-b )丄b ,贝S x 的值是( A.3
B.-1
C.-1 或3
D.-3 或1
17. 若圆锥的母线长为5,圆锥的高为3,则圆锥的体积为
18. 若事件A与事件A互为对立事件,且P(A)=0.2,则P(A)= .
三、计算题(每小题8分,共24分)
19. 已知在一个等比数列{a.}中,印a3 10, a? a°-20,求:
(1) 数列第四项的值;
(2) 数列前五项的值.
20. 如图一,在厶ABC中,顶点A、B C所对的边分别为a、b、c,已知B=C,ab=64 3 ,
△ ABC的面积为16 ,3,求b.
I .
21. 抛掷两颗骰子,求:
(1) 两颗骰子都为6点的概率
(2) 两颗骰子点数之和小于5的概率
四、证明题(每小题6分,共12分)
22.已知sin —,sin
2 3
(1) sin cos 5cos sin ;
(2) tan 5tan
23. 菱形ABCD在平面a上,PA丄a,求证:PC丄BD.
五、综合题(10分)
24. 已知直线:2x-y+m=0过抛物线y2=4x的焦点.
(1) 求m的值,并写出直线L的方程;
(2) 判断抛物线与直线L是否有交点,如果有,求出交点坐标。