八年级数学下册平均数、中位数和众数的应用练习题

合集下载

《好题》初中八年级数学下册第二十章《数据的分析》经典练习(含答案)

《好题》初中八年级数学下册第二十章《数据的分析》经典练习(含答案)

一、选择题1.某市6月份日平均气温统计如图所示,则在日平均气温这组数据中,众数和中位数分别是( )A .21,21B .21,21.5C .21,22D .22,22C解析:C 【解析】这组数据中,21出现了10次,出现次数最多,所以众数为21, 第15个数和第16个数都是22,所以中位数是22. 故选C.2.在我县“我的中国梦”演讲比赛中,有7名同学参加了比赛,他们最终决赛的成绩各不相同.其中一名学生想要知道自己是否进入前3名,不仅要知道自己的分数,还得知道这7名学生成绩的( ) A .众数 B .方差C .平均数D .中位数D解析:D 【分析】由于其中一名学生想要知道自己能否进入前3名,共有7名选手参加,故应根据中位数的意义分析. 【详解】由于总共有7个人,且他们的成绩各不相同,第3的成绩是中位数,要判断是否进入前3名,故应知道中位数的多少. 故选:D . 【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用. 3.已知数据12,,,n x x x 的平均数是2,方差是0.1,则1242,42,,42n x x x ---的平均数和标准差分别为( ) A .2,1.6 B .210C .6,0.4D .210D 解析:D【分析】根据平均数和方差公式直接计算即可求得. 【详解】 解:()12312n x x x x x n=+++⋯+=, ∴()1231424242424226n x x x x n -+-+-+⋯+-=⨯-=, ()()()()22222123122220.1n S x x x x n ⎡⎤=-+-+-+⋯+-=⎣⎦,()()()()22222421231426426426426x n S x x x x n -⎡⎤=--+--+--+⋯+--⎣⎦ 0.116=⨯1.6=,∴42x S -=故选:D . 【点睛】本题考查了方差和平均数,灵活利用两个公式,进行准确计算是解答的关键. 4.下列说法正确的是( )A .为了解我国中学生课外阅读的情况,应采取全面调查的方式B .一组数据1、2、5、5、5、3、3的中位数和众数都是5C .若甲组数据的方差是003,乙组数据的方差是0.1,则甲组数据比乙组数据稳定D .抛掷一枚硬币100次,一定有50次“正面朝上”C 解析:C 【分析】可根据调查的选择、中位数和众数的求法、方差及随机事件的意义,逐个判断得结论. 【详解】解:因为我国中学生人数众多,其课外阅读的情况也不需要特别精确, 所以对我国中学生课外阅读情况的调查,宜采用抽样调查,故选项A 不正确; 因为B 中数据按从小到大排列为1、2、3、3、5、5、5,位于中间的数是3,故该组数据的中位数为3, 所以选项B 说法不正确;因为0.003<0.1,方差越小,波动越小,数据越稳定, 所以甲组数据比乙组数据稳定,故选项C 说法正确;因为抛掷硬币属于随机事件,抛掷一枚硬币100次,不一定有50次“正面朝上” 故选项D 说法不正确. 故选:C . 【点睛】本题的关键在于掌握调查的选择、中位数和众数的求法、方差及随机事件的意义.5.通过统计甲、乙、丙、丁四名同学某学期的四次数学测试成绩,得到甲、乙、丙、丁三明同学四次数学测试成绩的方差分别为S甲2=17,S乙2=36,S丙2=14,丁同学四次数学测试成绩(单位:分).如下表:第一次第二次第三次第四次丁同学 80 80 90 90则这四名同学四次数学测试成绩最稳定的是()A.甲B.乙C.丙D.丁C解析:C【分析】求得丁同学的方差后与前三个同学的方差比较,方差最小的成绩最稳定.【详解】丁同学的平均成绩为:14⨯(80+80+90+90)=85;方差为S丁214=[2×(80﹣85)2+2×(90﹣85)2]=25,所以四个人中丙的方差最小,成绩最稳定.故选C.【点睛】本题考查了方差的意义及方差的计算公式,解题的关键是牢记方差的公式,难度不大.6.如图是根据我市某天七个整点时的气温绘制成的统计图,则下列说法正确的是()A.这组数据的众数是14B.这组数据的中位数是31C.这组数据的标准差是4D.这组是数据的极差是9D解析:D【解析】【分析】根据中位数,众数、极差、标准差的定义即可判断.【详解】解:七个整点时数据为:22,22,23,26,28,30,31所以中位数为26,众数为22,平均数为:22+22+23+26+28+3032167+=;极差是31-22=9,标准差是:故D正确,故选:D【点睛】此题考查中位数,众数、极差、标准差的定义,解题关键在于看懂图中数据7.有甲乙两个箱子,其中甲箱内有98颗球,分别标记号码1~98,且号码不重复的整数,乙箱内没有球。

第20章 专题2:中位数和众数-通用版八年级下册数学专题练

第20章 专题2:中位数和众数-通用版八年级下册数学专题练

第20章专题2:中位数和众数1.数据0,1,1,4,3,3的中位数和平均数分别是()A.2.5和2 B.2和2 C.2.5和2.4 D.2和2.4【答案】B2.以下是某校九年级10名同学参加学校演讲比赛的统计表.则这组数据的中位数和平均数分别为()成绩/分80 85 90 95人数/人 1 2 5 2.,.,.,.,【答案】B3.在九年级体育中考中,某班参加仰卧起坐测试的一组女生(每组8人)测试成绩如下(单位:次/分):46,44,45,42,48,46,47,46.则这组数据的中位数为()A.42 B.45 C.46 D.48【答案】C4.某班有6个学习小组,每个小组的人数分别为5,6,5,4,7,5,这组数据的中位数是()A.5 B.6 C.5.5 D.4.5【答案】A5.个相异自然数的平均数为12,中位数为17,这5个自然数中最大一个的可能值的最大值是()A.21 B.22 C.23 D.24【答案】D6.某中学随机调查了15名学生,了解他们一周在校参加体育锻炼的时间,列表如下:则这15名学生一周在校参加体育锻炼时间的中位数6h.锻炼时间/h 5 6 7 8人数 2 6 5 27.已知一组数据5,4,x,3,9的平均数为5,则这组数据的中位数是()A.3 B.4 C.5 D.6【答案】B8.如果一组数据6,7,x,9,5的平均数是2x,那么这组数据的中位数为()A.5 B.6 C.7 D.9【答案】B9.某校开展了主题为“青春•梦想”的艺术作品征集活动.从九年级五个班收集到的作品数量(单位:件)分别为:42,50,45,46,50,则这组数据的中位数是()A.42件B.45件C.46件D.50件【答案】C10.下面是扬帆中学九年八班43名同学家庭人口的统计表:这43个家庭人口的众数和中位数分别是()家庭人口数(人) 2 3 4 5 6学生人数(人) 3 15 10 8 7A.5,6 B.3,4 C.3,5 D.4,6【答案】B11.为调査某班学生每天使用零花钱的情况,童老师随机调查了30名同学,结果如下表:则这30名同学每天使用的零花钱的众数和中位数分别是()每天使用零花钱(单位:元) 5 10 15 20 25人数 2 5 8 x 6 A.15,15 B.20,17.5 C.20,20 D.20,15【答案】B12.某中学篮球队12名队员的年龄情况如下表,则这个队队员年龄的众数和中位数分别()年龄(岁)14 15 16 17 18人数(人) 1 4 3 2 2A.15,16 B.15,15 C.15,15.5 D.16,15【答案】A13.数据3,1,x,4,5,2的众数与平均数相等,则x的值是()A.2 B.3 C.4 D.5【答案】B14.某鞋厂为了了解初中生穿鞋的尺码情况,对某中学八年级(2)班的20名男生进行了调查,统计结果如下表:则这20个数据的中位数和众数分别为()尺码37 38 39 40 41 42人数 3 4 4 7 1 1.和.和.和.和【答案】C15.有一组数据:-1,a,-2,3,4,2它们的中位数是1,则这组数据的平均数是__________。

初二关于众数的练习题

初二关于众数的练习题

初二关于众数的练习题1. 小明的班级有30名学生,其中25人喜欢篮球,20人喜欢足球,15人喜欢排球。

请问众数是什么?解答:众数是一组数据中出现次数最多的数值。

通过统计,我们可以得知篮球喜好的学生人数最多,因此篮球是该班级学生最喜欢的运动,众数是篮球。

2. 小红调查了她班级同学收集了他们每天晚上睡眠的小时数,结果如下:6, 7, 7, 8, 8, 9, 9, 9, 9, 10。

请问众数是多少?解答:通过观察数据,我们可以发现9出现了最多次,共出现了4次,其他数字都只出现了1到2次,因此该数据集的众数是9。

3. 甲乙丙丁四人参加一次考试,分数如下:60, 70, 80, 80。

请问众数是多少?解答:分数中出现最多次的是80分,共有两个人得到了这个分数,因此该数据集的众数是80。

4. 小华的班级有40名学生,他们的考试成绩按照从低到高排序如下:72, 75, 76, 78, 78, 78, 79, 81, 82, 82, 83, 84, 85, 85, 86, 88, 88, 89, 89, 90, 90, 90, 91, 92, 92, 93, 94, 95, 96, 96, 97, 98, 98, 99, 99, 100, 100, 100, 100。

请问众数是多少?解答:通过观察数据,我们可以看出75、76和78分都只出现了1次,是最少的。

而90和100分出现了最多次,分别为3次。

但由于90分的人更多,因此该数据集的众数是90。

5. 一组数据的众数可以有多个吗?请解释。

解答:是的,一组数据的众数可以有多个。

当多个数值出现的次数相等时,它们都可以被称为众数。

举个例子,比如一组数据有5个2和5个3,那么众数就同时是2和3。

这种情况下,就存在多个众数。

综上所述,众数是一组数据中出现次数最多的数值。

它可以帮助我们找到数据中的主要趋势,用于统计和分析。

在解决实际问题时,了解众数的概念和计算方法是很有用的。

(完整版)平均数、众数、中位数练习题

(完整版)平均数、众数、中位数练习题

平均数、众数、中位数练习题、选择题经理决定本周进女装时多进一些红色的,可用来解释这一现象的统计知识是()A.平均数B.中位数C.众数D.方差2. 一家鞋店在一段时间内销售了某种女鞋30 双,各种尺码的销售量如下表:如果鞋店要购进100双这种女鞋,那么购进24厘米、24.5 厘米和25 厘米三种女鞋数量之和最合.适..的是().A.20 双B.30 双C.50 双D.80 双3. 某公司员工的月工资如下表:A .2200 元1800 元1600 元B.2000 元1600 元1800 元C .2200 元1600 元1800 元D.1600 元1800 元1900 元4. 某商场试销一种新款衬衫,一周内销售情况如下表所示:商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是()A .平均数B.众数C.中位数D.方差5. 跳远比赛中,所有15 位参赛者的成绩互不相同,在已知自己成绩的情况下,要想知道自己是否进入前8 名,只需要知道所有参赛者成绩的()A .平均数B.众数C.中位数D.方差6. 在一次数学单元考试中,某小组7 名同学的成绩(单位:分)分别是:65,80,70,90,95,100,70. 则这组数据的中位数是A.90B.85C.80D.707. 某鞋店销售一款新式女鞋,试销期间对该款不同尺码女鞋的销售量统计如下表:该店经理如果想要了解哪种尺码的女鞋销售量最大,那么他应关注的统计量是()A. 平均数B.众数C. 中位数D. 方差8. 某一公司共有51 名员工(包括经理),经理的工资高于其他员工的工资. 今年经理的工资从去年的200 000 元增加到225 000 元,而其他员工的工资同去年一样,这样,这家公司所有员工今年工资的平均数和中位数与去年相比将会()A.平均数和中位数不变B. 平均数增加,中位数不变C.平均数不变,中位数增大D. 平均数和中位数都增大9. 有9名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前 4 名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这9 名同学成绩的()A .众数B .中位数C .平均数D .极差、填空题10. 东海县素有“水晶之乡”的美誉.某水晶商店一段时间内销售了各种不同价格的水晶项链 75 条, 其价格和销售数量如价格(元) 20 25 30 35 40 50 70 80 100 150 销售数量(条)1396731664211. 某市广播电视局欲招聘播音员一名,对 A 、B 两名候选人进行了两项素质测试.两人的两项测试成绩如右表所示:根据实际需要,广播电视局将面试、综合知识测试的得分按 3∶ 2 的比例计算两人的总成绩,那么(填 A 或 B )将被录用 .12. 四次测试小丽每分钟做仰卧起坐的次数分别为: 50、 45、48、 47,这组 数据的中位数为 ___________ .13. 甲、乙、丙、丁四支足球队在世界杯预选赛中的进球数分别为: 9、 9、11、7, 则这组数据的 :①众数为 ____________________ ; ②中位数为 ______________ ; ③平均数为 ____________ 14. 李红同学为了在中考体育加试中取得好成绩,每天自己在家里练习做一分钟仰卧起坐,妈妈统计了 她一个星期做的次数: 30、28、24、30、25、30、22. 则李红同学一个星期做仰卧起坐的次数的中位数 和众数分别是 . 三、应用题15. 某校八年级( 1)班 50 名学生参加 2007 年贵阳市数学质量监控考试,全班学生的成绩统计如下表:成绩(分) 7174 78 80 82 83 85 86 88 90 91 92 94 人数 1235453784332(1)该班学生考试成绩的众数是 .(3 分) (2)该班学生考试成绩的中位数是 .(4 分)(3)该班张华同学在这次考试中的成绩是 83 分,能不能说张华同学的成绩处于全班中游偏上水平?试说明理由.(3 分)16. 某校高中一年级组建篮球队,对甲、乙两名备选同学 进行定位投篮测试,每次投 10 个球,共投 10 次. 甲、乙两名同学测试情况如图所示: (1)根据图中所提供的信息填写下表: (2)如果你是高一学生会文体委员, 会选择哪名同学进入篮球队?请说明理由.平均数众数 方差甲1.2 乙2.2测试项目 测试成绩AB面试 90 95 综合知识 测试8580投中个数17. 星期天上午,茱萸湾动物园熊猫馆来了甲、乙两队游客,两队游客的年龄如下表所示:1)根据上述数据完成下表:平均数中位数 众数方差甲队游客年龄1515乙队游客年龄15471.4(2)根据前面的统计分析,回答下列问题:①能代表甲队游客一般年龄的统计量是 _______________________________________ ②平均数能较好地反映乙队游客的年龄特征吗?为什么?18. 某中学初三( 1)班、(2)班各选 5 名同学参加“爱我中华”演讲比赛,其预赛成绩(满分 100 分) 如图所示:1)根据上图信息填写下表:2)根据两班成绩的平均数和中位数,分析19. 如图是某中学男田径队队员年龄结构条形统计图,根据图中信息解答下列问题: 1)田径队共有多少人?2)该队队员年龄的众数和中位数分别是多少? 3)该队队员的平均年龄是多少?乙队: 年龄 13 14 15 16 17 13 人数 2 1 4 1 22年龄 345 6 54 57人数1 2 2311( 3)如果每班各选 2 名同学参加决赛,你认为哪个班 实力更强些?请说明理由 .平均数中位数众数初三( 1)班8585初三( 2)班8580甲队:20. 在烟台市举办的“读好书、讲礼仪”活动中,东华学校积极行动,各班图书角的新书、好书不断增多. 除学校购买外,还有师生捐献的图书. 下面是七年级(1)班全体同学捐献图书的情况统计图:请你根据以上统计图中的信息,解答下列问题:(1)该班有学生多少人?(2)补全条形统计图;(3)七(1)班全体同学所捐图书的中位数和众数分别是多少?四、猜想、探究题21. 某校欲招聘一名数学教师,学校对甲、乙、丙三位候选人进行了三项能力测试,各项测试成绩满分均为100 分,根据结果择优录用.三位候选人的各项测试成绩如下表所示:测试项目测试成绩甲乙丙教学能力857373科研能力707165组织能力647284(1)如果根据三项测试的平均成绩,谁将被录用,说明理由;(2)根据实际需要,学校将教学、科研和组织三项能力测试得分按5∶3∶2 的比例确定每人的成绩,谁将被录用,说明理由.1、有一棵奇妙的树,原来只有1 个树枝,第一年长出1 个树枝,第二年每个树枝分别长出1 个新枝,第三年每个树枝又都分别长出1 个新枝,照这样计算,第五年这棵树一共有几个树枝?2、阿米巴原虫(一种寄生虫)是用简单分裂的方式(一分为二)繁殖的,每分裂一次要用 3 分钟。

《平均数、中位数、众数及方差的有关计算》测试题及答案

《平均数、中位数、众数及方差的有关计算》测试题及答案

《平均数、中位数、众数及方差的有关计算》测试题2015.12.28一、选择题1.某一段时间,小芳测得连续五天的日最低气温后,整理得出下表(有一个数据被遮盖).被遮盖的数据是( )A.1 ℃B.2 ℃C.3 ℃D.4 ℃2.在一次体育测试中,小芳所在小组8人的成绩分别是46,47,48,48,49,49,49,50.则这8人体育成绩的中位数是( )A.47B.48C.48.5D.493.为了解七年级学生参与家务劳动的时间,李老师随机调查了七年级8名学生一周内参与家务劳动的时间(单位:小时)分别是1,2,3,3,3,4,5,6.则这组数据的众数是( )A.2.5B.3C.3.375D.54.若要对一射击运动员最近5次训练成绩进行统计分析,判断他的训练成绩是否稳定,则需要知道他这5次训练成绩的( )A.中位数B.平均数C.众数D.方差5.为了比较甲乙两种水稻秧苗谁出苗更整齐,每种秧苗各随机抽取50株,分别量出每株长度,发现两组秧苗的平均长度一样,甲、乙的方差分别是3.5,10.9,则下列说法正确的是( ) A.甲秧苗出苗更整齐 B.乙秧苗出苗更整齐C.甲、乙出苗一样整齐D.无法确定甲、乙出苗谁更整齐6.某校篮球队在一次定点投篮训练中进球情况如图,那么这个队的队员平均进球个数是__________.7.有一组数据:2,3,5,5,x,它的平均数是10,则这组数据的众数是__________.8.数据-2,-1,0,3,5的方差是__________.9.某校举办“成语听写大赛”,15名学生进入决赛,他们所得分数互不相同,比赛共设8个获奖名额,某学生知道自己的分数后,要判断自己能否获奖,他应该关注的统计量是__________(填“平均数”或“中位数”).10.为测试两种电子表的走时误差,做了如下统计:则这两种电子表走时稳定的是__________.11.一次数学测验中,以60分为标准,超过的部分用正数表示,不够的部分用负数表示,其中5名学生的成绩(单位:分)如下:+36,0,+12,-18,+20.(1)这5名学生中,最高分是多少?最低分是多少?(2)这5名学生的平均分是多少?12.今有两人进行射击比赛,成绩(命中环数)(单位:环)如下:甲:10,8,7,7,8;乙:9,8,7,7,9.哪个人的成绩稳定?13.某校举办八年级学生数学素养大赛.比赛共设四个项目:七巧板拼图、趣题巧解、数学应用、魔方复原,每个项目得分都按一定百分比折算后记入总分.下表为甲、乙、丙三位同学的得分(单位:分)情况.(1)比赛后,甲猜测七巧板拼图、趣题巧解、数学应用、魔方复原这四项得分分别按10%,40%,20%,30%折算记入总分.根据猜测,求出甲的总分;(2)本次大赛组委会最后决定,总分为80分以上(包括80分)的学生获一等奖.现获悉乙、丙的总分分别是70分,80分,甲的七巧板拼图、魔方复原两项得分折算后的分数和是20分.问甲能否获得这次比赛一等奖?14.甲、乙两名同学进入初四后某科6次考试成绩如图所示:(1)请根据上图填写下表:平均数方差中位数众数甲75 75乙33.3(2)请你从以下两个不同的方面对甲、乙两名同学6次考试成绩进行分析:①从平均数和方差结合看;②从折线图上两名同学分数的走势上看,你认为反映出什么问题?15.某次数学竞赛,初一(6)班10名参赛同学的成绩(单位:分)分别为85,88,95,124,x,y,85,72,88,109.若这10名同学成绩的唯一众数为85分,平均成绩为90分,试求这10名同学成绩的方差.16.为了声援扬州“世纪申遗”,某校举办了一次运河知识竞赛,满分10分,学生得分均为整数,成绩达到6分以上(包括6分)为合格,达到9分以上(包括9分)为优秀,这次竞赛中,甲、乙两组学生成绩分布的条形统计图如图所示.(1)补充完成下面的成绩统计分析表:组别平均分中位数方差合格率优秀率(2)小明对同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上表可知,小明是_________(填“甲”或“乙”)组的学生;(3)甲组同学说他们的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩更好于甲组.请你给出两条支持乙组同学观点的理由.参考答案9.中位数10.甲1.C2.C3.B4.D5.A6.67.58.34511.(1)因为在记录结果中,+36最大,-18最小,所以这5名学生中,最高分为96分,最低分为42分;(2)因为(36+0+12-18+20)÷5=10,所以他们的平均成绩为60+10=70(分).12.x 甲=15×(10+8+7+7+8)=8,x 乙=15×(9+8+7+7+9)=8.s 2甲=15×[(10-8)2+2×(8-8)2+2×(8-7)2]=1.2,s 2乙=15×[2×(9-8)2+(8-8)2+2×(8-7)2]=0.8.因为x 甲=x 乙且s 2甲>s 2乙, 所以乙的成绩稳定.13.(1)甲的总分:66×10%+89×40%+86×20%+68×30%=79.8(分). (2)设趣题巧解所占的百分比为x ,数学应用所占的百分比为y.由题意,得20608070,20809080.x y x y ++=++=⎧⎨⎩解得0.3,0.4.x y ==⎧⎨⎩ 所以甲的总分为:20+89×0.3+86×0.4=81.1>80. 即甲能获一等奖. 14.(1)125;75;75;72.5;70.(2)①甲、乙两名同学成绩的平均数均为75分,但是甲的方差为125,乙的方差仅仅33.3,所以乙的成绩相对比甲稳定得多;②从折线图中甲、乙两名同学的走势上看,乙同学的6次成绩有时进步,有时退步,而甲的成绩一直是进步的.15.因为这10名同学成绩的唯一众数为85分, 所以x 、y 中至少有一个数为85.假设x为85,又因为平均成绩为90分,×(85+88+95+124+85+y+85+72+88+109)=90.所以110可得另一个数为69.所以这10名同学的成绩的方差为:×s2=110[(85-90)2+(88-90)2+(95-90)2+(124-90)2+(85-90)2+(69-90)2+(85-90)2+(72-90)2+(88 -90)2+(109-90)2]=239.16.(1)6;7.1.(2)甲.(3)乙组的平均分、中位数都高于甲组,方差小于甲组,且成绩集中在中上游.。

八年级数学中考训练题-中位数和众数

八年级数学中考训练题-中位数和众数

成绩较好的是 甲 班;
(2)甲班的中位数是 80 分,乙班的中位数是 80 分;
(3)若成绩在80分以上为优秀,则成绩较好的是哪个班?
(4)哪个班的平均分比较高?
数学
八年级 下册
人教版
第2课时 中位数和众数
(3)解:甲班优秀的有15+5=20(人); 乙班优秀的有13+11=24(人). ∵20<24. ∴乙班成绩较好.
现抽取10听样品进行检测,它们的质量与标准质量的差值
(单位:克)如下:-10,+5,0,+5,0,0,-5,0,+5,
+10.这10听罐头质量的平均数及众数为( B )
A.454,454
B.455,454
C.454,459
D.455,0
数学
八年级 下册
人教版
第2课时 中位数和众数
3.学校为了解“阳光体育”活动开展情况,随机调查了50名学 生一周参加体育锻炼的时间,数据如表所示:
数学 人教版 八年级 下册
数学
八年级 下册
人教版
第2课时 中位数和众数
20.1 数据的集中趋势 第2课时 中位数和众数
数学
八年级 下册
人教版
第2课时 中位数和众数
1.为了解全校八年级女生的身高情况,了解部分女生的身高
数据x(单位:cm)并绘制如下统计表格,则该样本的中位数
落在( B )
组别
第一组 x≤160
数学
八年级 下册
人教版
第2课时 中位数和众数
(4)xത甲=
50+60×6+70×12+80×11+90×15+100×5 50
=79.6(分),
xത乙=
50×3+60×5+70×15+80×3+90×13+100×11 50

八年级数学下《数字数据的分析》练习题

八年级数学下《数字数据的分析》练习题

八年级数学下《数字数据的分析》练习题本文档旨在为八年级学生提供一些练题,帮助他们巩固和应用数字数据的分析知识。

以下是一些练题及其解答,供学生们参考。

问题一某班级有30名学生,他们的语文成绩如下所示:85, 92, 78, 90, 88, 75, 95, 80, 82, 86, 92, 88, 90, 78, 85, 83, 91, 88, 86, 89, 77, 92, 85, 79, 84, 87, 90, 88, 93, 81。

请计算该班级学生的语文成绩的平均值、中位数和众数。

解答一平均值的计算公式为所有成绩之和除以学生人数:平均值 = (85 + 92 + 78 + 90 + 88 + 75 + 95 + 80 + 82 + 86 + 92 + 88 + 90 + 78 + 85 + 83 + 91 + 88 + 86 + 89 + 77 + 92 + 85 + 79 + 84 + 87 + 90 + 88 + 93 + 81) / 30中位数是将所有成绩按升序排列后,取中间位置的成绩:中位数 = (82 + 84) / 2众数是出现频率最高的成绩,这里有多个众数:众数 = 88, 92问题二一家服装店在某天内记录下了顾客购买服装的金额(单位:元),记录如下:398, 450, 330, 498, 380, 550, 398, 498, 650, 398, 550, 498, 450, 330。

请问这些购买金额中,出现频率最高的金额是多少?解答二我们可以通过统计每种金额的出现次数来找出频率最高的金额。

398的出现次数为3次,450和330的出现次数为2次,498、380、550和650的出现次数为2次。

因此,出现频率最高的金额是398元。

以上是八年级数学下《数字数据的分析》的练习题和解答,希望能对同学们的学习有所帮助!。

20.2.2平均数、中位数和众数的选用同步练习含答案

20.2.2平均数、中位数和众数的选用同步练习含答案

20.2.2 平均数、中位数和众数的选用基础训练1.关于一组数据的平均数、中位数、众数,下列说法中正确的是( )A.平均数一定是这组数中的某个数B.中位数一定是这组数中的某个数C.众数一定是这组数中的数D.以上说法都不对2.在端午节到来之前,儿童福利院对全体小朋友爱吃哪几种粽子作调查,以决定最终买哪种粽子.下面的调查数据中最值得关注的是( ) A.平均数 B.中位数C.众数D.以上都不对3.学校商店在一段时间内销售了四种饮料共100瓶,各种饮料的销售量如下表:建议学校商店进货数量最多的品牌是( )A.甲品牌B.乙品牌C.丙品牌D.丁品牌4.种菜能手李大叔种植了一批新品种黄瓜.为了考察这种黄瓜的生长情况,李大叔抽查了部分黄瓜株上长出的黄瓜根数,得到如图所示的条形图,则抽查的这部分黄瓜株上所结黄瓜根数的中位数和众数分别是( )A.13.5,20B.15,5C.13.5,14D.13,145.某同学进行社会调查,随机抽查了某个地区的20户家庭的年收入情况,并绘制了如图所示的统计图.(1)先完成下表,再回答问题:年收入(万元) 0.6 0.9 1.0 1.1 1.2 1.3 1.4 9.7户数这20户家庭的年平均收入为______万元;(2)这20户家庭的年收入的中位数、众数分别是多少?(3)在平均数、众数两数中,哪个更能反映这个地区家庭的年收入水平?为什么?培优提升1.八年级(1)班有学生46人,已知该班学生的平均身高为1.58米.明明的身高为1.59米,但明明说他的身高在全班是中等偏下的,班上有25个同学比他高,20个同学比他矮,下列说法不正确的是( )A.不可能,因为他的身高已经超过平均身高了B.可能,因为他的身高可能低于中位数C.可能,因为平均数会受极端值的影响D.可能,因为某个同学可能特别矮2.下列说法错误的是( )A.如果一组数据的众数是5,那么这组数据出现次数最多的数是5B.一组数据的平均数一定大于其中每一个数据C.一组数据的平均数、众数、中位数有可能相同D.一组数据的中位数有且只有一个3.期末考试后,办公室里有两位数学老师正在讨论他们班的数学考试成绩,林老师说:“我班的学生考得还不错,有一半的学生的成绩在79分以上,一半的学生的成绩不到79分.”王老师说:“我班大部分学生的成绩都在80分到85分之间.”通过上面两位老师的对话,你认为林、王两位老师所说的话分别针对( )A.平均数、众数B.众数、中位数C.中位数、平均数D.中位数、众数4.某校有21名同学参加某比赛,预赛成绩各不相同,要取前11名同学参加决赛,小颖已经知道了自己的成绩,她想知道自己能否进入决赛,只需要再知道这21名同学成绩的( )A.最高分B.中位数C.平均数D.最低分5.某商场一天内出售某品牌运动鞋13双,其中各种尺码的鞋的销售量如下表:请你给该商场提出一条合理的进货建议: .6.我们知道平均数、中位数和众数都是数据的代表,它们从不同侧面反映了数据的“平均水平”.有一次,小王、小李和小张三位同学进行射击比赛,每人打10发子弹,命中环数如下:小王:9 7 6 9 9 10 8 8 7 10小李:7 10 9 8 9 10 6 8 9 10小张:8 8 9 10 7 8 10 10 10 10统计结果表明,三人的“平均水平”都是9环.每人运用了平均数、中位数和众数中的一种表示“平均水平”,则小王运用了_______;小李运用了;小张运用了.7.为了全面了解学生的学习、生活及家庭的基本情况,加强学校、家庭的联系,梅灿中学积极组织全体教师开展“课外访万家活动”,王老师对所在班级的全体学生进行实地家访,了解到每名学生家庭的相关信息,从中随机抽取了15名学生家庭的年收入情况,数据如下表:(1)求这15名学生家庭年收入的平均数、中位数、众数;(2)你认为用(1)中的哪个数据来代表这15名学生家庭年收入的一般水平较为合适?请简要说明理由.8.甲、乙、丙三个家电厂家在广告中都声称自己的某种电子产品在正常情况下的使用寿命是8年,质量检测部门对这三个厂家销售的产品的使用寿命进行跟踪调查,统计结果如下:(单位:年)甲厂:4,5,5,5,5,7,9,12,13,15乙厂:6,6,8,8,8,9,10,12,14,15丙厂:4,4,4,6,7,9,13,15,16,16请回答下列问题:(1)分别求出以上三组数据的平均数、众数、中位数;(2)这三个厂家的销售广告分别利用了哪一种表示集中趋势的特征数?(3)如果你是顾客,你会选购哪个厂家的产品?为什么?参考答案【基础训练】1.【答案】C解:A.如数据0,1,1,4,这四个数的平均数是1.5,不是这组数中的数,错误;B.如数据1,2,3,4的中位数是2.5,不是这组数中的数,错误;C.众数是一组数据中出现次数最多的数,它一定是数据中的数,正确.故选C.2.【答案】C3.【答案】D4.【答案】C5.解:(1)填表如下:1.6(2)中位数是1.2万元,众数是1.3万元.(3)众数更能反映这个地区家庭的年收入水平.因为在平均数,众数两数中,平均数受到极端值的影响较大,所以众数更能反映这个地区家庭的年收入水平.【培优提升】1.【答案】A解:A.班上有25个同学比明明高,即身高在平均身高以下的同学占少数,若比明明高的同学的身高比平均身高高的幅度不大,比明明低的同学的身高比平均身高低的幅度大,则明明的说法是可能的.故本选项错误;B.本选项正确;C.本选项正确;D.本选项正确.故选A.2.【答案】B解:根据众数的概念知A正确;一组数据的平均数、众数、中位数有可能相同,如数据2,3,5,5,10,C正确;一组数据的中位数有且只有一个,故D正确;平均数是所有数据的和与数据个数的比值,不会大于其中每一个数据,故B错误.故选B.3.【答案】D解:“有一半的学生的成绩在79分以上,一半的学生的成绩不到79分”针对的是中位数,“大部分学生的成绩都在80分到85分之间”针对的是众数.故选D.4.【答案】B5.【答案】多进尺码为25 cm的运动鞋解:由表得:众数为25 cm,即25 cm的鞋卖得最好,故多进25 cm的运动鞋.6.【答案】众数;中位数;平均数解:小王命中环数的平均数为(9+7+6+9+9+10+8+8+7+10)÷10=8.3(环),中位数为8.5环,众数为9环;小李命中环数的平均数为(7+10+9+8+9+10+6+8+9+10)÷10=8.6(环),中位数为9环,众数为9环和10环;小张命中环数的平均数为(8+8+9+10+7+8+10+10+10+10)÷10=9(环),中位数为9.5环,众数为10环.∵三人的“平均水平”都是9环,∴小王运用了众数;小李运用了中位数;小张运用了平均数.7.解:(1)平均数为=4.3(万元).这15名学生家庭年收入的中位数为3万元,众数为3万元.(2)用中位数或众数来代表这15名学生家庭年收入的一般水平较为合适.平均数为4.3万元,但年收入达到4.3万元的家庭只有4个,大部分家庭的年收入未达到这一水平,而中位数和众数3万元是大部分家庭可以达到的水平,因此用中位数或众数来代表这15名学生家庭年收入的一般水平较为合适.8.解:(1)第一组数据:平均数为×(4+5+5+5+5+7+9+12+13+15)=8,众数为5,中位数为6;第二组数据:平均数为×(6+6+8+8+8+9+10+12+14+15)=9.6,众数为8,中位数为8.5;第三组数据:平均数为×(4+4+4+6+7+9+13+15+16+16)=9.4,众数为4,中位数为8.(2)甲厂用的是平均数,乙厂用的是众数,丙厂用的是中位数.(3)选购乙厂的产品,理由:在选购产品时,一般以平均数为依据,选平均数大的厂家的产品,因此选购乙厂的产品.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

20.1.2 中位数和众数
第2课时平均数、中位数和众数的应用
一、选择——基础知识运用
1.某班一次英语测验的成绩如下,得98分的7人,90分的4人,80分的17人,70分的8人,60分的3人,50分的1人,这里80分是()
A.是平均数B.只是众数C.只是中位数D.既是众数又是中位数
2.10个商店某天销售同一品牌的电脑,销售的件数是16、14、15、12、17、14、17、10、15、17,设其平均数为a,中位数为b,众数为c,则有()
A.a>b>c B.b>c>d C.c>a>b D.c>b>a
3.下列说法正确的是()
A.样本7,7,6,5,4的众数是2
B.若数据x1,x2,…xn的平均数是x,则(x1-x)+(x2-x)+…+(x n-x)=0
C.样本1,2,3,4,5,6的中位数是4
D.样本50,50,39,41,41不存在众数
4.如果a,b,c三个数的中位数和众数都是5,平均数为4,且a≤b≤c,那么a是()A.2 B.3 C.4 D.5
5.在一次数学测验中,甲、乙、丙、丁四位同学的分数分别是80,x,80,70,若这四个同学得分的众数和平均数恰好相等,则他们得分的中位数是()
A.70 B.80 C.90 D.100
二、解答——知识提高运用
6.某节数学课上,老师布置了10道选择题作为达标练习,小明将全班同学的解题情况绘成如图所示的统计图,根据统计图,试问平均数、众数和中位数各是多少?分别表示怎样的含义?
7.小明最近6次测验的成绩依次为90分、85分、70分、65分、85分、75分。

(1)这6次测验成绩的平均数、中位数和众数分别是多少?
(2)如果他希望告诉别人他的成绩不错,那么他会选用哪个值表示他的成绩.
8.甲、乙两班各选10名选手参加电脑汉字输入速度比赛.各班选手每分钟输入汉字的个数如下表:
(1)请根据题中信息完成上表;
(2)请你分别从众数、中位数、平均数三个方面,对甲、乙两班选手的比赛成绩进行评价;
(3)如果分别从两个班中各选出3名选手参加电脑汉字输入速度比赛,根据上面的比赛成绩,你认为哪班的成绩会更好些?说明你的理由。

9.课外活动,甲、乙、丙、丁四位同学进行乒乓球单循环赛,比赛分六场进行,每场采用“7局4胜制”.右表是他们比赛后的成绩统计表,表中①与②表示同一场比赛的比分(①是指甲以0:4负于丁,②是指丁以4:0胜于甲),其余场次记法相同。

(1)问这次比赛谁是冠军,说明理由;
)求这六场比赛每场进行的总局数的中位数和众数.
(2
某校初三年级课外兴趣小组据此提出了“今年究竟能有多少天空气质量达到优良”的问题,他们根据国家环保总局所公布的空气质量级别表(见表1)以及市环保监测站提供的资料,从中随机抽查了今年1~4月份中30天空气综合污染指数,统计数据如下:
空气综合污染指数
30,32,40,42,45,45,77,83,85,87,90,113,127,153,167
38,45,48,53,57,64,66,77,92,98,130,184,201,235,243
请根据空气质量级别表和抽查的空气综合污染指数,解答以下问题:
(1)填写频率分布表中未完成的空格:
(2)写出统计数据中的中位数、众数;
(3)请根据抽样数据,估计我市今年(按360天计算)空气质量是优良.(包括Ⅰ、Ⅱ
级的天数)
11.为了普及环保知识,增强环保意识,某中学组织了环保知识竞赛活动,初中三年级
根据预选成绩选出了3名同学甲、乙、丙参加决赛,决赛要进行十次测试,三名选手的决赛
成绩(满分为100分)如下表所示:
决赛成绩(单位:分)
甲80 86 74 80 80 88 88 89 91 99 乙85 85 87 97 85 76 88 77 87 88 丙82 80 78 78 81 96 97 88 89 86 (1)请你填写下表:
平均数众数中位数
甲85.5 87
(2)请从以下两个不同的角度对三个同学的决赛成绩进行分析:
①从平均数和众数相结合看,分析哪个同学成绩好些;
②从平均数和中位数相结合看,分析哪个同学成绩好些。

(3)如果在参加决赛的三名选手中选出1人参加市各中学总决赛,你认为哪个同学比较合适?并说明理由。

参考答案
一、选择——基础知识运用
1.【答案】D
【解析】∵80分出现了17次,出现的次数最多,
∴80分是众数,
∵共有40个数,
中位数是第20、21个数的平均数,
∴这组数据的中位数是80,
故选D。

2.【答案】D
【解析】∵16、14、15、12、17、14、17、10、15、17,
设其平均数为a=(16+14+15+12+17+14+17+10+15+17)÷10=14.7,
10个数据从小大大排列:10,12,14,14,15,15,16,17,17,17,中位数为b是最中间两数的平均数,即;b=(15+15)÷2=15;
众数为c,即c=17。

∴a<b<c。

故选D。

3.【答案】B
【解析】A、样本7,7,6,5,4的众数是7,故选项错误;
B、正确;
C、样本1,2,3,4,5,6的中位数是3.5,故选项错误;
D、样本50,50,39,41,41的众数是50和41,故选项错误。

故选B。

4.【答案】A
【解析】设另一个数为x,
则5+5+x=4×3,
解得x=2,
即a可能是2。

故选A。

5.【答案】B
【解析】①x=80时,众数是80,平均数=(80+80+80+70)÷4≠80,则此情况不成立,
②x=70时,众数是80和70,而平均数是一个数,则此情况不成立,
③x≠70且x≠80时,众数是80,根据题意得:
(80+x+80+70)÷4=80,
解得x=90,
则中位数是(80+80)÷2=80。

故选B。

二、解答——知识提高运用
6.【答案】总共的人数有6+18+23+4=51人,
平均数为错误!未找到引用源。

≈8.37,
表示该班同学平均每人作对8道题多一点;
中位数应该是排序后第25和26个数据的平均数,
从图上可看出排序后第25和26个数据应该落在了做对9道题中,9×2÷2=9,所以中位数为9.
作对9道题的有23人,最多,
故众数为9,表示作对9道题的人数最多。

7.【答案】(1)
x=(90+85+70+65+85+75)÷6≈78.3,
排序为:90,85,85,75,70,60,
∴中位数为:(85+75)÷2=80,
∵85出现了2次最多,
∴众数为85分;
(2)小明会选择众数来表示自己的成绩不错。

8.【答案】(1)甲班:135,135,乙班:134,134.5,135;
(2)从众数上看:甲班每分钟输入135字的人最多,有5人,乙班每分钟输入134字的人最多,有4人,甲班好于乙班;
从中位数上看;甲班的中位数是135;乙班的中位数是134.5,甲班好于乙班;
从平均数上看:甲、乙两班平均数一样都是135;
(3)甲班每分钟输入136字的有2人,每分钟输入137字的有1人,乙班每分钟输入136字的有2人,每分钟输入137字的有2人,如果分别从两班中各选3名选手参加比赛,乙班好于甲班。

9.【答案】(1)甲胜1场,乙胜0场,丙胜3场,丁胜2场,所以丙是冠军;
(2)每场进行的总局数是4、6、6、4、7、4;
对局数进行从小到大的排列即4、4、4、6、6、7
由此可知:中位数是5。

众数是4。

10.【答案】(1)如图:
(2)30个数的中位数是第15个和第16个数的平均数,(77+83)÷2=80,45出现次数最多,为3次.所以45为众数。

(3)∵360×(0.30+0.40)=360×0.70=252(天)。

∴估计我市今年空气质量是优良的天数有252天。

11.【答案】(1)平均数:85.5;众数80,78;中位数86
(2)①∵平均数都相同,乙的众数最高,∴乙的成绩好一些;
②∵平均数都相同,甲的中位数最高,∴甲的成绩好一些.
(3)应选甲,理由是:
①中位数高说明有一半次数的分数在8以上,乙和丙达不到;
②从各次考试成绩可以看出,甲对环保知识很了解,成绩从第三次后一直在进步,说明甲平时重视环保知识,并且目前正在收集学习环保知识,他的知识面也越来越广.乙和丙后阶段成绩进步不够特出。

相关文档
最新文档