高二下学期数学期末考试
浙江宁波市2024年高二下学期期末考试数学试题+答案 (1)

宁波市2023学年第二学期期末考试高二数学试题卷本试卷共4页,19小题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名、学校、准考证号填涂在答题卡上。
将条形码横贴在答题卡的“贴条形码区”。
2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
所有答案必须写在答题卡上,写在试卷上无效。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.考生必须保持答题卡的整洁,不要折叠、不要弄破。
选择题部分(共58分)一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合U ={1,2,3,4,5},A ={1,2,4},B ={1,5},则∁U A ∩B =()A.⌀B.{1}C.{5}D.{1,5}2.已知复数z =1+2i ,则1z 的虚部为()A.25B.25iC.-25i D.-253.已知角α的终边过点-4,3 ,则sin α+cos αsin α=()A.-12B.-13C.14D.734.已知a ,b 为单位向量,则“a ⊥b ”是“a -2b =2a +b”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件5.对于直线m ,n 和平面α,β,下列说法错误的是()A.若m ⎳α,n ⎳α,m ,n 共面,则m ⎳nB.若m ⊂α,n ⎳α,m ,n 共面,则m ⎳nC.若m ⊥β,且α⎳β,则m ⊥αD.若m ⊥α,且m ⎳β,则α⊥β6.若ln x -ln y >y 2-x 2,则()A.ex -y>1 B.e x -y<1 C.ln x -y >0 D.ln x -y <07.袋子中有n 个大小质地完全相同的球,其中4个为红球,其余均为黄球,从中不放回地依次随机摸出2个球,已知摸出的2个球都是红球的概率为16,则两次摸到的球颜色不相同的概率为()\A.518B.49C.59D.13188.颐和园的十七孔桥,初建于清乾隆年间;永定河上的卢沟桥,始建于宋代;四川达州的大风高拱桥,修建于清同治7年.这些桥梁屹立百年而不倒,观察它们的桥梁结构,有一个共同的特点,那就是拱形结构,这是悬链线在建筑领域的应用.悬链线出现在建筑领域,最早是由十七世纪英国杰出的科学家罗伯特.胡克提出的,他认为当悬链线自然下垂时,处于最稳定的状态,反之如果把悬链线反方向放置,它也是一种稳定的状态,后来由此演变出了悬链线拱门,其中双曲余弦函数就是一种特殊的悬链线函数,其函数表达式为cosh x =e x +e -x 2,相应的双曲正弦函数的表达式为sinh x =e x -e -x2.若关于x 的不等式4m cosh 2x -4sinh 2x -1>0对任意的x >0恒成立,则实数m 的取值范围为()A.2,+∞B.[2,+∞)C.14,+∞ D.14,+∞ 二、选择题:本题共3小题,每小题6分,共18分。
浙江省杭州市2023-2024学年高二下学期数学期末检测试卷(含解析)

浙江省杭州市2023-2024学年高二下学期数学期末检测试卷考生注意:1.答题前,考生务必将自己的姓名、考生号填写在试卷和答题卡上,并将考生号条形码粘贴在答题卡上的指定位置.2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,则( ){}{}31,1e M x x N x x =-<=<≤M N ⋂=A .B .C .D .{}23x x <≤{}24x x <<{}2e x x <≤{}1e x x <≤2.已知复数,则在复平面内对应的点位于( )i 31i z -=-z A .第一象限B .第二象限C .第三象限D .第四象限3.样本数据的中位数和平均数分别为( )27,30,28,34,35,35,43,40A .34,35B .34,34C .34.5,35D .34.5,344.已知直线与圆有公共点,则的可能取值为( )30kx y k --=22:1O x y +=k A .1B .C .D .131-2-5.在中,角的对边分别是,且,则ABC ,,A B C ,,a b c ()()2sin 2sin 2sin a A b c B c b C=+++( )cos A =A .B .C .D .12-1312236.已知正方体的棱长为为棱的中点,则四面体的体积为1111ABCD A B C D -2,P 1BB 1ACPD ( )A .2B C .D .837.已知,则( )4sin25α=-tan2πtan 4αα=⎛⎫+ ⎪⎝⎭A .4B .2C .D .2-4-8.已知双曲线的上焦点为,圆的圆心位于,且与的22:1C y x -=F A x C 上支交于两点,则的最小值为( ),BD BF DF+A.B CD21-二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知分别是定义域为的偶函数和奇函数,且,设函数()(),f x g x R ()()e xf xg x +=,则( )()()()g x G x f x =()G x A .是奇函数B .是偶函数C .在上单调递减D .在上单调递增R R 10.将函数的图象向左平移个单位长度后,所得的图象关于轴()πsin (0)3f x x ωω⎛⎫=+> ⎪⎝⎭π3y 对称,则( )A .的图象关于直线对称B .的最小值为()f x π3x =ω12C .的最小正周期可以为D .的图象关于原点对称()f x 4π52π3f x ⎛⎫- ⎪⎝⎭11.如图,有一个棱台形的容器(上底面无盖),其四条侧棱均相1111ABCD A B C D -1111D C B A 等,底面为矩形,,容器的深度为,容器壁的厚度忽略11111111m 224AB BC A B B C====1m不计,则下列说法正确的是( )A .1AA =B .该四棱台的侧面积为(2mC .若将一个半径为的球放入该容器中,则球可以接触到容器的底面0.9m D .若一只蚂蚁从点出发沿着容器外壁爬到点A 1C 三、填空题:本题共3小题,每小题5分,共15分.12.的展开式中的系数为 .(用数字作答)712x x ⎛⎫+ ⎪⎝⎭3x 13.已知椭圆的左、右焦点分别为为上一动点,则的取22224:1(0)3x y C a a a +=>12,,F F A C 12AF AF 值范围是.14.已知两个不同的正数满足,则的取值范围是.,a b 33(1)(1)a b a b ++=ab 四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知函数()1e 4xf x =(1)求曲线在点处的切线在轴上的截距;()y f x=()()1,1f l y (2)探究的零点个数.()f x 16.如图,在直三棱柱中,为棱上一点,111ABC A BC -12,1,AB BC AC AA M ====1CC 且.1AM BA ⊥(1)证明:平面平面;AMB ⊥1A BC (2)求二面角的大小.B AM C --17.设数列满足,且.{}n a ()122n n na n a +=+14a=(1)求的通项公式;{}n a(2)求的前项和.{}n a n n S 18.在机器学习中,精确率、召回率、卡帕系数是衡量算法性能的重要指标.科研机Q R k 构为了测试某型号扫雷机器人的检测效果,将模拟战场分为100个位点,并在部分位点部署地雷.扫雷机器人依次对每个位点进行检测,表示事件“选到的位点实际有雷”,表示事A B 件“选到的位点检测到有雷”,定义:精确率,召回率,卡帕系数()Q P A B =()R P B A =,其中.1o ee p p k p -=-()()()()()(),o e p P AB P AB p P A P B P A P B =+=+(1)若某次测试的结果如下表所示,求该扫雷机器人的精确率和召回率.Q R 实际有雷实际无雷总计检测到有雷402464检测到无雷102636总计5050100(2)对任意一次测试,证明:.()212Q R QR k Q R P AB +-=-+-(3)若,则认为机器人的检测效果良好;若,则认为检测效果一般;若0.61k <≤0.20.6k <≤,则认为检测效果差.根据卡帕系数评价(1)中机器人的检测效果.00.2k ≤≤k 19.已知抛物线的焦点为,以点为圆心作圆,该圆与轴的正、负半轴分别2:4C y x =F F x 交于点,与在第一象限的交点为.,H G C P (1)证明:直线与相切.PG C (2)若直线与的另一交点分别为,直线与直线交于点.,PH PF C ,M N MN PG T (ⅰ)证明:;4TM TN=(ⅱ)求的面积的最小值.PNT【分析】求得集合,可求{}24M x x =<<M N⋂【详解】因为,{}{}{}3124,1e M x x x x N x x =-<=<<=<≤所以.{}2e M N x x ⋂=<≤故选:C .2.B【分析】根据复数的四则运算和共轭复数的概念,以及复数的几何意义即可求解.【详解】因为,()()()()3i 1i i 342i 2i 1i 1i 1i 2z -++---====----+所以,2i z =-+故在复平面内对应的点为位于第二象限.z (2,1)-故选:B.3.D【分析】先将样本数据按从小到大进行排列,再根据样本数据的中位数、平均数概念公式进行计算即可.【详解】将样本数据按照从小到大的顺序排列可得,27,28,30,34,35,35,40,43故中位数为,343534.52+=平均数为.()12728303435354043348⨯+++++++=故选:D.4.B,求解即可.1≤【详解】由直线与圆有公共点,30kx y k --=22:1O x y +=可得圆心到直线的距离为,()0,0O 30kx y k--=1d =≤解得,所以的取值范围为.k ≤≤k ⎡⎢⎣故选:B.【分析】根据题意,利用正弦定理化简得,结合余弦定理,即可求解.222b c a bc +-=-【详解】因为,()()2sin 2sin 2sin a A b c B c b C =+++由正弦定理得,即,()()2222a b c b c b c=+++222b c a bc +-=-又由余弦定理得.2221cos 22b c a A bc +-==-故选:C.6.A【分析】设与交于点,证得平面,得到,且AC BD O AC ⊥11BDD B 113OPD V S AC =⨯中,结合,即可求解.AC =11BDD B 111111BDD B BOP B OP D P D ODD S S S S S =--- 【详解】设与交于点,在正方形中,,AC BD O ABCD AC BD ⊥又由正方体中,平面,1111ABCD A B C D -1DD ⊥ABCD 因为平面,可得,AC ⊂ABCD 1AC DD ⊥又因为且平面,所以平面,1BD DD D = 1,BD DD ⊂11BDD B AC ⊥11BDD B所以四面体的体积为,且,1ACPD 113OPD V S AC =⨯ AC =在对角面中,可得,11BDD B 111111BDD B BOP B D P OPD ODD S S S S S =-=--所以四面体的体积为.1ACPD 123V =⨯=故选:A.7.D【分析】由已知可得,利用,可求值.251tan tan 2αα+=-tan2tan 4απα⎛⎫+ ⎪⎝⎭22tan 1tan 2tan ααα=++【详解】因为,所以,2222sin cos 2tan 4sin2sin cos tan 15ααααααα===-++251tan tan 2αα+=-所以.2tan22tan 1tan tan 4ααπαα=⨯-⎛⎫+ ⎪⎝⎭221tan 2tan 2tan 41tan (1tan )1tan 2tan ααααααα-===-++++故选:D.8.B【分析】设出圆的方程与双曲线方程联立,可得,进而可得,利用两点1212,x x xx +22121x x +=间距离公式求出,并利用不等式方法求出其最小值.BF DF+【详解】由题可知.设圆,,.(F 22:()2A x a y -+=()11,B x y ()22,D x y 联立,得,则,22221()2y x x a y ⎧-=⎨-+=⎩222210x ax a -+-=212121,2a x x a x x -+==因此,故.()22212121221x x x x x x +=+-=222222121212112213y y x x x x +=+++=++=+=因为,所以,同理可得22111y x -=11BF===-.21DF =-故.)122BF DF yy +=+-又,且,故,从而22123y y +=12,1yy≥1y =≤=2y=≤=.())22121y y -≤所以)122BF DF y y +=+-2=2=2=2≥2==当时,有,,此时1a =()0,1B (D 11BF DF +=-+=所以的最小值是BF DF+故选:B.关键点睛:本题解题关键是由圆的方程与双曲线方程联立得到,再用不等式方法求22121x x +=其最小值.9.AD【分析】根据奇、偶性得到方程组求出、的解析式,从而得到的解析式,再()f x ()g x ()G x 由奇偶性的定义判断的奇偶性,利用导数判断函数的单调性.()G x 【详解】因为①,所以,()()e xf xg x +=()()e xf xg x --+-=即②,联立①②,解得,()()e xf xg x --=()()e e e e ,22x x x xf xg x --+-==所以,定义域为,又,()e e e e x x x x G x ---=+R ()()e e e e x xx xG x G x ----==-+所以是奇函数,又,()G x ()()()()()2222ee e e 40eeeexx x x xx xx G x ----+--=+'=>+所以在上单调递增,故A ,D 正确,B 、C 错误.()G x R 故选:AD10.ABD【分析】根据图象平移判断A ,根据关于直线对称可得判断B ,由周π3x =()132k k ω=+∈Z 期计算可判断C ,可先证明函数关于点对称,再由图象平移判断D.ω()f x 2π,03⎛⎫- ⎪⎝⎭【详解】对于A ,将的图象向左平移个单位长度后,关于轴对称,所以的图()f x π3y ()f x 象关于直线对称,故A 正确;π3x =对于B ,由题可知,解得,又,所以的最小()ππππ332k k ω+=+∈Z ()132k k ω=+∈Z 0ω>ω值为,故B 正确;12对于C ,若最小正周期,则,由B 项可知,不存在满足条件的,故C 错4π5T =2π52T ω==ω误;对于D ,因为,代入,得2π2ππsin 333f ω⎛⎫⎛⎫-=-+ ⎪ ⎪⎝⎭⎝⎭()132k k ω=+∈Z ,()2πsin 2π03f k ⎛⎫-=-= ⎪⎝⎭所以的图象关于点对称,将的图象向右平移个单位长度可以得到()f x 2π,03⎛⎫- ⎪⎝⎭()f x 2π3的图象,2π3f x ⎛⎫- ⎪⎝⎭则对称中心对应平移到坐标原点,故的图象关于原点对称,故D 正确.2π,03⎛⎫-⎪⎝⎭2π3f x ⎛⎫- ⎪⎝⎭故选:ABD 11.BD【分析】由勾股定理即可判断A ,由梯形的面积公式代入计算,即可判断B ,做出轴截面图形代入计算,即可判断C ,将四棱台展开,然后代入计算,即可判断D 【详解】对于A ,由题意可得,故A错误;132AA ==对于B ,梯形11ADD A =所以梯形的面积为11ADD A 242+=梯形,11ABB A=所以梯形的面积为,11ABB A 122+=故该四棱台的侧面积为,故B正确;2⨯=对于C ,若放入容器内的球可以接触到容器的底面,则当球的半径最大时,球恰好与面、面、面均相切,11ADD A 11BCC B ABCD 过三个切点的截面如图(1)所示,由题意可知棱台的截面为等腰梯形,较长的底边上的底角的正切值为,则,12212=-tan 2MPN ∠=-由于互补,故,,MPN MON ∠∠tan 2MON ∠=则,所以,从而球的半径为22tan 21tan MOPMOP ∠=-∠tanMOP ∠=,0.9=<所以将半径为的球放入该容器中不能接触到容器的底面,故C 错误;0.9cm对于D ,将平面与平面展开至同一平面,ABCD 11DCC D 如图(2),则,1AC ==将平面与平面展开至同一平面,如图(3),ABCD 11BCC B 则,145333044AC ⎛=+=< ⎝D 正确.故选:BD难点点睛:解答本题的难点在于选项D 的判断,解答时要将空间问题转化为平面问题,将几何体侧面展开,将折线长转化为线段长,即可求解.12.672【分析】利用二项式定理,求得二项展开式中的通项,把含x 的进行幂运算合并,然后令指数等于3,即可求解.【详解】因为通项为,令,得,712x x ⎛⎫+ ⎪⎝⎭77721771C (2)2C rr r r r rr T x x x ---+⎛⎫== ⎪⎝⎭72r 3-=2r =所以的系数为.3x 72272C 672-=故672.13.1,33⎡⎤⎢⎥⎣⎦【分析】先根据椭圆、、之间的关系,求出,再根据椭圆的定义,把换成a b c 12c a=1AF ,最后根据,代入即可.22a AF -[]2,AF a c a c ∈-+【详解】设椭圆的半焦距为,则,C (0)c c >12c a==,12222221AF a AF aAF AF AF -==-因为,即,[]2,AF a c a c ∈-+213,22AF a a ⎡⎤∈⎢⎥⎣⎦所以,即.2211,33a AF ⎡⎤-∈⎢⎥⎣⎦121,33AF AF ⎡⎤∈⎢⎥⎣⎦故答案为.1,33⎡⎤⎢⎥⎣⎦14.10,4⎛⎫⎪⎝⎭【分析】本题将条件式化简后结合基本不等式得出关于ab 的不等式,再构造函数并利用函数的单调性求解即可.【详解】将两边展开,33(1)(1)a b a b ++=得到,22113333a a b b a b +++=+++从而,()()221130ab a b a b ⎛⎫-+-+-= ⎪⎝⎭故,而,()130a b a b ab ⎛⎫-++-= ⎪⎝⎭a b¹故,又,130a b ab ++-=00a b >,>故,133a b ab =++>从而.321+<设函数,则,()3223g x x x=+112gg ⎛⎫<= ⎪⎝⎭观察易得在,()g x ()0,∞+12<又,所以.0,0a b >>104ab <<故答案为.10,4⎛⎫ ⎪⎝⎭关键点点睛:本题考查函数与不等式的综合,其关键是利用均值不等式构造关于ab 的不等式,再构造函数并利用函数的单调性解决问题.321+<()3223g x x x =+15.(1)12-(2)有两个零点()f x【分析】(1)求得,,利用导数的几何意()1e 4x f x '=()e 1142f ='-()e 114f =-义,求得切线方程,进而求得其在轴上的截距;y(2)得到在上递增,结合,得到,()1e 4x f x '=()0,∞+()10,104f f ⎛⎫ ⎪⎝⎭''01,14x ⎛⎫∃∈ ⎪⎝⎭使得,进而求得单调性,结合零点的存在性定理,即可求解.()00f x '=()f x【详解】(1)解析:由函数,可得,()1e 4x f x =()1e 4x f x '=()e 1142f ='-又,所以的方程为,即,()e 114f =-l ()e 1e 11424y x ⎛⎫=--+- ⎪⎝⎭e 11422y x ⎛⎫=-- ⎪⎝⎭令,可得,所以直线在轴上的截距为.0x =12y =-l y 12-(2)解:因为和上均单调递增,1e 4x y =y =()0,∞+所以在上单调递增,()1e 4x f x '=()0,∞+又因为,所以,使得,()141111e 10,1e 04442f f ⎛⎫=-=''- ⎪⎝⎭01,14x ⎛⎫∃∈ ⎪⎝⎭()00f x '=所以,当时,,在单调递减;()00,x x ∈()0f x '<()f x ()00,x 当时,,在单调递增,()0,x x ∞∈+()0f x '>()f x ()0,x ∞+又因为,()()14100111e 1e 0,110,4e 2010041044f f f ⎛⎫=->=-=- ⎪⎝⎭所以有两个零点.()f x 方法点睛:已知函数零点(方程根)的个数,求参数的取值范围问题的三种常用方法:1、直接法,直接根据题设条件构建关于参数的不等式(组),再通过解不等式(组)确定参数的取值范围2、分离参数法,先分离参数,将问题转化成求函数值域问题加以解决;3、数形结合法,先对解析式变形,在同一平面直角坐标系中作出函数的图象,然后数形结合求解.结论拓展:与和相关的常见同构模型e xln x①,构造函数或;e ln e ln e ln a a a a b b b b ≤⇔≤()lnf x x x =()e xg x x =②,构造函数或;e e ln ln e ln a a a b b a b b <⇔<()ln x f x x =()e x g x x =③,构造函数或.e ln e ln e ln a a a a b b b b ±>±⇔±>±()lnf x x x =±()e xg x x =±16.(1)证明见解析(2)4π【分析】(1)由线面垂直得到,结合勾股定理逆定理得到,证明出1AA BC ⊥BC AC ⊥平面,得到,结合题目条件证明出平面,得到面面垂直;BC⊥11AA C C AMBC ⊥AM ⊥1A BC (2)建立空间直角坐标系,设点,根据向量垂直得到方程,求出()0,0,M a ,进而求出平面的法向量,得到二面角的余弦值,得到答案.a M ⎛=⎝【详解】(1)在直三棱柱中,平面,111ABC A B C -1AA ⊥ABC ∵平面,BC ⊂ABC ∴,1AA BC ⊥∵2,1,AB BC AC ===∴,222AB AC BC =+∴,BC AC ⊥,平面,1AC AA A⋂=1,AC AA ⊂11AA C C ∴平面.BC ⊥11AA C C 平面,AM ⊂ 11AA C C ∴,AM BC ⊥,平面,11,AM A B A B BC B ⊥= 1,A B BC ⊂1A BC ∴平面.AM ⊥1A BC 又平面,AM ⊂AMB平面平面.∴AMB ⊥1A BC (2)由(1)可知两两垂直,1,,CA CB CC 如图,以点为坐标原点,所在直线分别为轴、轴、轴建立空间直角坐标C 1,,CA CB CC x y z 系,Cxyz 则.())()10,0,0,,,0,1,0C AAB设点,()0,0,M a 则.()()()1,,0,1,0,AM a BA CB AB ==-==,解得.11,30AM BA AM BA ⊥∴⋅=-+=a M ⎛=∴ ⎝设平面的法向量为,AMB (),,m x y z =则可取.0,0,m AM z m AB y ⎧⋅==⎪⎨⎪⋅=+=⎩(m = 易知为平面的一个法向量.()0,1,0n CB ==AMCcos ,m n m n m n ⋅〈〉===⋅故由图可知二面角的大小为.B AM C --4π17.(1)()12nn a n n =+⋅(2)()21224+=-+⋅-n n S n n【分析】(1)由已知可得,累乘法可求的通项公式;()122n n n a a n ++={}n a (2)由(1)可得,利用错位相减法可求的前()1212223212nn S n n =⨯⨯+⨯⨯+++⋅ {}n a 项和.n n S 【详解】(1)由题易知,且,0n a ≠()122n n n a a n ++=所以,()2341231212324251231n n n a a a a a a a a n -+⨯⨯⨯⨯⨯⨯⨯=⨯⨯⨯⨯- 所以,()()121121212n n n n n a n n a --+⋅==+⋅⨯所以也满足该式,()112,n n a n n a =+⋅所以.()12nn a n n =+⋅(2),①()1212223212nn S n n =⨯⨯+⨯⨯+++⋅ ,②()()2121221212n n n S n n n n +=⨯⨯++-⋅++⋅ ②-①,得.()()11212212222n n n S n n n +=+⋅-⨯⨯+⨯++⋅ 设,③1212222nn T n =⨯+⨯++⋅ 则,④()23121222122n n n T n n +=⨯+⨯++-⋅+⋅ ④-③,得,()()()1121112222222122n n n n n n T n n n ++++=⋅-+++=⋅--=-+ 所以.()()()1121122124224n n n n S n n n n n +++=+⋅--⋅-=-+⋅-18.(1);.0.625=Q 0.8R =(2)证明见解析(3)0.32【分析】(1)利用条件概率的计算公式计算即可;(2)由条件概率与互斥事件的概率公式证明即可;(3)由(2)计算出的值,判断机器人的检测效果即可.k 【详解】(1),()()()400.62564P AB Q P A B P B ====.()()()400.850P AB R P B A P A ====(2),()()()()()()1111111o e oe e P AB P AB p p p k p p P A P B P A P B ----==-=-----要证明,()212Q R QR k Q R P AB +-=-+-需证明.()()()()()()()1221P AB P AB Q R QR Q R P AB P A P B P A P B --+-=+---等式右边:()()()()()()()()||2||22||2P A B P B A P A B P B A Q R QR Q R P AB P A B P B A P AB +-+-=+-+-.()()()()()()()()()()()()()22P AB P AB P AB P AB P B P A P B P A P AB P AB P AB P B P A +-⨯⨯=+-()()()()()()()22P A P B P AB P A P B P A P B +-=+-等式左边:因为,()()()()()1P A B P AB P A P B P AB ⋃=-=+-所以()()()()()()()()()()()()()121111P AB P AB P A P B P AB P A P B P A P B P A P B P A P B --+-=⎡⎤⎡⎤------⎣⎦⎣⎦.()()()()()()()22P A P B P AB P A P B P A P B +-=+-等式左右两边相等,因此成立.()212Q R QRk Q R P AB +-=-+-(3)由(2)得,因为,0.6250.820.6250.810.320.6250.820.4k +-⨯⨯=-=+-⨯0.20.320.6<<所以(1)中机器人的检测效果一般.19.(1)证明见解析(2)(ⅰ)证明见解析;(ⅱ)163【分析】(1)根据题意,表示出直线的方程,然后与抛物线方程联立,由即可证明;PG Δ0=(2)(ⅰ)根据题意,设直线的方程为,与抛物线方程联立,即可得到点的PF 1x ty =+,N H 坐标,从而得到直线的方程,再与抛物线方程联立,即可得到点的坐标,再结合相似PH M 三角形即可证明;(ⅱ)由条件可得,再由代入计算,即可43PNTPNES S =△△12PNES EP EN = 证明.【详解】(1)由题意知,()1,0F 设,则,()2,2(0)P n n n >21PF n =+所以,所以,21GF FH n ==+()2,0G n -所以直线的斜率为,方程为.PG 1n ()21y x n n =+联立方程得,()221,4,y x n n y x ⎧=+⎪⎨⎪=⎩22440y ny n-+=因为,所以直线与相切.Δ0=PG C (2)(ⅰ)设直线的方程为,PF 1x ty =+由可得,则,又因为,所以.24,1,y x x ty ⎧=⎨=+⎩2440y ty --=4P N y y =-()2,2P n n 212,N n n ⎛⎫- ⎪⎝⎭由(1)知,点,直线的斜率为,方程为,()22,0H n +PH n -()22y n x n=---由得,由,()224,2,y x y n x n ⎧=⎪⎨=---⎪⎩224480y y n n +--=248P M y y n =--得.22444,2M n n n n ⎛⎫++-- ⎪⎝⎭作,垂足为,则,直线的方程为,NE PG ⊥E EN PM ∥EN 212y n x n n ⎛⎫=---⎪⎝⎭将直线与的方程联立,得解得.EN PG ()2212,1,y n x n n y x n n ⎧⎛⎫=--- ⎪⎪⎪⎝⎭⎨⎪=+⎪⎩11,E n n ⎛⎫-- ⎪⎝⎭所以,所以,2211441,,4,4EN n PM n n n n n ⎛⎫⎛⎫=+--=+-- ⎪ ⎪⎝⎭⎝⎭ 4PM EN =由相似三角形的性质可得.4TM TN=(ⅱ)由(ⅰ)知,所以,故,4TM TN=4TP TE=43PNT PNES S =△△因为,221111,,1,EP n n EN n n n n ⎛⎫⎛⎫=++=+-- ⎪ ⎪⎝⎭⎝⎭ 所以(当且仅当时等号成立),()323311114222PNEn S EP EN n n n +⎛⎫===+≥ ⎪⎝⎭ 1n =故,即的面积的最小值为.41633PNT PNES S =≥△△PNT 163方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为;()()1122,,,x y x y (2)联立直线与圆锥曲线的方程,得到关于(或)的一元二次方程,必要时计算;x y ∆(3)列出韦达定理;(4)将所求问题或题中的关系转化为、(或、)的形式;12x x +12x x 12y y +12y y (5)代入韦达定理求解.。
2023-2024学年北京市通州区高二下学期期末质量检测数学试卷(含解析)

2023-2024学年北京市通州区高二下学期期末质量检测数学试卷一、单选题:本题共10小题,每小题5分,共50分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知全集U ={−3,−2,−1,0,1,2,3},集合A ={x ∈Z|x 2<4},则∁U A =( )A. {−3,3}B. {2,3}C. {−1,0,1}D. {−3,−2,2,3}2.下列函数中,在区间(0,+∞)上单调递增的是( )A. f(x)=1 xB. f(x)=(x−1) 2C. f(x)=lg xD. f(x)=(12)x 3.已知a =lg 12,b =30.1,c = 3,则( )A. a <b <cB. b <a <cC. a <c <bD. c <b <a 4.设A ,B 为两个随机事件,若P(B|A)=12,P (A )=25,P (B )=23,则P(A|B)=( )A. 15B. 310C. 12D. 355.已知a >0,b >0,则“ab =1”是“a +b ≥2”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件6.在(x−2)10的展开式中,x 6的系数为( )A. −64C 610B. 64C 610C. −16C 410D. 16C 4107.有两台车床加工同一型号零件,第1台加工的次品率为4%,第2台加工的次品率为5%,将两台车床加工出来的零件混放在一起,已知第1台,第2台车床加工的零件占比分别为40%,60%,现任取一件零件,则它是次品的概率为( )A. 0.044B. 0.046C. 0.050D. 0.0908.某工厂生产一种产品需经过一,二,三,四共4道工序,现要从A ,B ,C ,D ,E ,F 这6名员工中选出4人,安排在4道工序上工作(每道工序安排一人),如果员工A 不能安排在第四道工序,则不同的安排方法共有( )A. 360种B. 300种C. 180种D. 120种9.设函数f (x )为定义在R 上的奇函数,若曲线y =f (x )在点(2,4)处的切线的斜率为10,则f′(−2)+f (−2)=( )A. −16B. −6C. 6D. 1610.已知函数f(x)={ln x x ,x >0x 2+2x,x ≤0;若方程f(x)=a 恰有三个根,则实数a 的取值范围是( )A. (0,1e ) B. [0,1e ] C. (−1,1e ) D. (0,1e )∪{−1}二、填空题:本题共5小题,每小题5分,共25分。
北京市海淀区2023-2024学年高二下学期期末数学试卷(含答案)

北京市海淀区2023-2024学年高二下学期期末考试数学试卷本试卷共6页,共两部分。
19道题,共100分。
考试时长90分钟。
试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
考试结束后,请将答题卡交回。
第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.5(1)x -的展开式中,所有二项式的系数和为A.0B.52C.1D.622.已知函数sin (),cos xf x x=则(0)f '的值为A.0B.1C.1- D.π3.若等比数列{}n a 的前n 项和21n n S =-,则公比q =A.12B.12-C.2D.2-4.下列函数中,在区间[]1,0-上的平均变化率最大的时A.2y x = B.3y x = C.12xy ⎛⎫= ⎪⎝⎭D.2xy =5.将分别写有2,0,2,4的四章卡片,按一定次序排成一行组成一个四位数(首位不为0),则组成的不同四位数的个数为A.9B.12C.18D.246.小明投篮3次,每次投中的概率为0.8,且每次投篮互不影响,若投中一次的2分,没投中得0分,总得分为X ,则A.() 2.4E X = B.() 4.8E X = C.()0.48D X = D.()0.96D X =7.已知一批产品中,A 项指标合格的比例为80%,B 项指标合格的比例为90%,A 、B 两项指标都合格的比例为60%,从这批产品中随机抽取一个产品,若A 项指标合格,则该产品的B 项指标也合格的概率是A.37B.23C.34D.568.已知等差数列n a 的前n 项和为n S ,若10a <、则“n S 有最大值”是“公差0d <”的A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件9.设函数()()ln 1sin f x x a x =-+.若()()0f x f ≤在()1,1-上恒成立,则A.0a =B.1a ≥C.01a <≤ D.1a =10.在经济学中,将产品销量为x 件时的总收益称为收益函数,记为()R x ,相应地把()R x '称为边际收益函数,它可以帮助企业决定最优的生产或销售水平.假设一个企业的边际收益函数()1000R x x '=-(注:经济学中涉及的函数有时是离散型函数,但仍将其看成连续函数来分析).给出下列三个结论:①当销量为1000件时,总收益最大;②若销量为800件时,总收益为T ,则当销量增加400件时,总收益仍为T ;③当销量从500件增加到501件时,总收益改变量的近似值为500.其中正确结论的个数为A.0B.1C.2D.3第二部分(非选择题共60分)二、填空题共5小题,每小题4分,共20分。
湖南省株洲市炎陵县2023-2024学年高二下学期6月期末考试数学试题

湖南省株洲市炎陵县2023-2024学年高二下学期6月期末考试数学试题一、单选题1.已知随机变量X 服从二项分布23,3B ⎛⎫⎪⎝⎭,则()D X =( )A .29 B .13 C .49D .232.已知变量x 与y 的回归直线方程为31y x =-,变量y 与z 负相关,则( ) A .x 与y 负相关,x 与z 负相关 B .x 与y 正相关,x 与z 正相关 C .x 与y 负相关,x 与z 正相关 D .x 与y 正相关,x 与z 负相关3.设函数1()1xf x x-=+,则下列函数中为奇函数的是( ) A .()11f x --B .()11f x -+C .()11f x +-D .()11f x ++4.已知函数2()sin (0)e x f x x f '=+,则(0)f =( ) A .1B .12-C .2D .1-5.某校5名同学到A 、B 、C 三家公司实习,每名同学只能去1家公司,每家公司至多接收2名同学.若同学甲去A 公司,则不同的安排方法共有( ) A .18种B .30种C .42种D .60种6.有4个外包装相同的盒子,其中2个盒子分别装有1个白球,另外2个盒子分别装有1个黑球,现准备将每个盒子逐个拆开,则恰好拆开2个盒子就能确定2个白球在哪个盒子中的概率为( ) A .12B .13C .14D .167.函数()sin()(0,0)f x A x A ωϕω=+>>的图象如图所示,则(9)f =( )A .1- B .1 C .D8.已知()21ln (0)2f x a x x a =+>,若对任意两个不等的正实数12,x x ,都有()()12121f x f x x x ->-恒成立,则a 的取值范围是( )A .1,4⎡⎫+∞⎪⎢⎣⎭B .1,4⎛⎫+∞ ⎪⎝⎭C .10,4⎛⎤⎥⎝⎦D .10,4⎛⎫ ⎪⎝⎭二、多选题9.设A 、B 是一个随机试验中的两个事件,若3()4P B =,1(|)3P A B =,2()3P A B +=,则下列选项一定正确的是( ) A .1()4P AB = B .1()8P AB =C .1()6P A =D .1()4P A =10.设()()221122~,,~,X N Y N μσμσ,这两个正态曲线如图所示.则( )A .12μμ>B .12σσ<C .()()21P X P X μμ≥>≥D .()()12P Y P Y σσ≤<≤11.已知函数()31f x x x =-+,则( )A .()f x 有两个极值点B .()f x 有一个零点C .点()0,1是曲线()y f x =的对称中心D .直线2y x =是曲线()y f x =的切线三、填空题12.()()7222x y x y +-的展开式中46x y 的系数为(用数字作答)13.已知函数32(),()f x x x g x x a =-=+,曲线()y f x =在点(1,(1))f --处的切线也是曲线()y g x =的切线.则a 的值是14.某食品的保鲜时间y (单位:小时)与储存温度x (单位:℃)满足函数关系e kx by +=(e 2.718=L 为自然对数的底数,k b 、为常数).若该食品在0℃的保鲜时间设计192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是小时.四、解答题15.已知函数()ln m f x x x=+. (1)若2m =,求曲线()y f x =在1x =处的切线方程; (2)求函数()f x 在[]1,e 上的单调区间和最小值.16.在ABC V 中,内角,,A B C 的对边分别为,,a b c .已知2cos 3A =,sinBC . (1)求tan C 的值;(2)若a =ABC V 的面积.17.某学校举办数学建模知识竞赛,每位参赛者要答3道题,第一题分值为40分,第二、三题分值均为30分,若答对,则获得题目对应分值,若答错,则得0分,参赛者累计得分不低于70分即可获奖.已知甲答对第一、二、三题的概率均为12,乙答对第一、二、三题的概率分别为35,25,25,且甲、乙每次答对与否互不影响.(1)求甲的累计得分X 的分布列和期望;(2)在甲、乙两人均获奖的条件下,求甲的累计得分比乙高的概率.18.如图,在四棱锥P ABCD -,2PA PD AD AB ====,BD BC CD ===E 为PC 的中点.(1)证明:直线//BE平面P AD;(2)若平面PBD⊥平面ABCD,求直线AB与平面PCD所成角的正弦值.19.为考察药物M对预防疾病A以及药物N对治疗疾病A的效果,科研团队进行了大量动物对照试验.根据100个简单随机样本的数据,得到如下列联表:(单位:只)(1)依据0.1α=的独立性检验,分析药物M对预防疾病A的有效性;(2)用频率估计概率,现从患病的动物中用随机抽样的方法每次选取1只,用药物N进行治疗.已知药物N的治愈率如下:对未服用过药物M的动物治愈率为12,对服用过药物M的动物治愈率为34.若共选取3次,每次选取的结果是相互独立的.记选取的3只动物中被治愈的动物个数为X,求X的分布列和数学期望.附:()()()()()22n ad bca b c d a c b dχ-=++++,n a b c d=+++.。
湖南省郴州市2023-2024学年高二下学期期末教学质量监测数学试题

湖南省郴州市2023-2024学年高二下学期期末教学质量监测数学试题一、单选题1.设x ∈R ,则“3x >”是“2x >”的( ) A .必要而不充分条件 B .充分而不必要条件 C .充要条件D .既不充分也不必要条件2.已知i 为虚数单位,若复数12,z z 在复平面内对应的点分别为()()2,1,1,2-,则复数12z z ⋅=( ) A .5i B .5i -C .45i +D .45i -+31sin170=o( ) A .4- B .4 C .2- D .24.已知P 为椭圆2222:1(0)x y C a b a b+=>>上一动点,12F F 、分别为其左右焦点,直线1PF 与C的另一交点为2,A APF V 的周长为16.若1PF 的最大值为6,则该椭圆的离心率为( )A .14B .13C .12D .235.若n 为一组数8,2,4,9,3,10的第六十百分位数,则二项式1nx ⎫⎪⎭的展开式的常数项是( ) A .28B .56C .36D .406.三位老师和4名同学站一排毕业留影,要求老师们站在一起,则不同的站法有:( ) A .360种B .540种C .720种D .900种7.已知函数()2(0,0)f x x bx c b c =-+>>的两个零点分别为12,x x ,若12,,2x x -三个数适当调整顺序后可为等差数列,也可为等比数列,则不等式0x bx c--≤的解集为( ) A .(](),45,∞∞-⋃+ B .[]4,5C .()[),45,∞∞-⋃+D .(]4,58.设函数()f x 在R 上存在导数(),f x x '∀∈R ,有()()2f x f x x -+=,在()0,∞+上()f x x '<,若()()932262f m f m m --≥-,则实数m 的取值范围是( ) A .1,4⎡⎫+∞⎪⎢⎣⎭B .1,2⎡⎫+∞⎪⎢⎣⎭C .[)1,+∞D .3,4⎡⎫+∞⎪⎢⎣⎭二、多选题9.如图,正方体1111ABCD A B C D -的边长为2,M 为11A D 的中点,动点P 在正方形ABCD 内(包含边界)运动,且MP =下列结论正确的是( )A .动点P 的轨迹长度为π;B .异面直线MP 与1BB 所成角的正切值为2;C .MP AB ⋅u u u r u u u r的最大值为2;D .三棱锥P MAD -的外接球表面积为25π4. 10.已知定义域在R 上的函数()f x 满足:()1f x +是奇函数,且()()11f x f x -+=--,当[]1,1x ∈-,()21f x x =-,则下列结论正确的是( )A .()f x 的周期4T =B .5324f ⎛⎫= ⎪⎝⎭C .()f x 在[]5,4--上单调递增D .()2f x +是偶函数11.锐角ABC V 中,角,,A B C 的对边为,,a b c .且满足4,2a b c ==+.下列结论正确的是( )A .点A 的轨迹的离心率e =B 3c <C .ABC V 的外接圆周长()4π,5πl ∈D .ABC V 的面积()3,6ABC S ∈V三、填空题12.若直线l :220kx y k -+-=与曲线C:y 则实数k 的取值范围是.13.已知数列{}n a 满足:()()111,11n n a na n a n n +=-+=+.若()1n n nb n a =+,则数列{}n b的前n 项和n S =.14.暑假将临,大学生小明同学准备利用假期探访名胜古迹.已知某座山高䇯入人云,整体呈圆锥形,其半山腰(母线的中点)有一座古寺,与上山入口在同一条母线上,入口和古寺通过一条盘山步道相连,且当时为了节省资金,该条盘山步道是按“到达古寺的路程最短”修建的.如图,已知该座山的底面半径()2km R =,高)m h =,则盘山步道的长度为,其中上山(到山顶的直线距离减小)和下山(到山顶的直线距离增大)路段的长度之比为.四、解答题15.在锐角ABC V 中,内角,,A B C 所对的边分别为a b ,,c ,且满足()sin cos sin 1cos c A B b C A =+.(1)证明:2A B =; (2)求ca的取值范围.16.如图,在四棱锥P ABCD -中,底面ABCD 为正方形,PA ⊥平面,2,ABCD PA AD E ==为线段PD 的中点,F 为线段PC (不含端点)上的动点.(1)证明:平面AEF ⊥平面PCD ;(2)是否存在点F ,使二面角P AF E --的大小为45o ?若存在,求出PFPC的值,若不存在,请说明理由.17.已知函数()2cos e ,xf x ax x a =+-∈R .(1)若()f x 在()0,∞+上单调递减,求实数a 的取值范围;(2)当0a =时,求证()1f x <在ππ,22x ⎛⎫∈- ⎪⎝⎭上恒成立.18.已知()2,A a 是抛物线2:2C y px =上一点,F 是抛物线的焦点,已知4AF =, (1)求抛物线的方程及a 的值;(2)当A 在第一象限时,O 为坐标原点,B 是抛物线上一点,且AOB V 的面积为1,求点B 的坐标;(3)满足第(2)问的条件下的点中,设平行于OA 的两个点分别记为12,B B ,问抛物线的准线上是否存在一点P 使得,12PB PB ⊥.19.材料一:在伯努利试验中,记每次试验中事件A 发生的概率为p ,试验进行到事件A 第一次发生时停止,此时所进行的试验次数为ξ,其分布列为()()1(1)1,2,3,k P k p p k ξ-==-⋅=⋯,我们称ξ服从几何分布,记为()GE p ξ~.材料二:求无穷数列的所有项的和,如求2311111112222k k S ∞-==++++=∑L ,没有办法把所有项真的加完,可以先求数列前n 项和11112122nn k n k S -=⎛⎫==- ⎪⎝⎭∑,再求n →∞时n S 的极限:1lim lim 2122n n n n S S →∞→∞⎛⎫==-= ⎪⎝⎭根据以上材料,我们重复抛掷一颗均匀的骰子,直到第一次出现“6点”时停止.设停止时抛掷骰子的次数为随机变量X . (1)证明:1()1k P X k ∞===∑;E X;(2)求随机变量X的数学期望()D X.(3)求随机变量X的方差()。
河北石家庄2024年高二下学期期末质量检测数学试卷(原卷版)

石家庄市2023—2024学年度第一学期期末教学质量检测高二数学(本试卷满分150分,考试时间120分钟)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 某汽车启动阶段的位移函数为32()25s t t t =−,则汽车在2t =时的瞬时速度为( )A 10B. 14C. 4D. 62. 将序号分别为1,2,3,4,5的五张参观券全部分给甲,乙,丙,丁四人,每人至少1张,如果分给甲的两张参观券是连号,那么不同分法的种数是( ) A. 6B. 24C. 60D. 1203. 设离散型随机变量X q =( )A.12B. 1C. 1D. 1±4. 已知一组观测值()11,x y ,()22,x y,…,(),n n x y 满足(1,2,)i i i y a bx e i n =++= ,若i e 恒为0,则2R =( ) A. 0B. 0.5C. 0.9D. 15. (4的展开式中33x y 的系数为( )A. 4−B. 4C. 6−D. 66. 李老师教高二甲班和乙班两个班的数学,这两个班的人数相等.某次联考中,这两个班的数学成绩均近.似服从正态分布,其正态密度函数22()2()x f x µσ−=的图像如图所示,其中µ是正态分布的期望,σ是正态分布的标准差,且(||)0.6827P X µσ−≤=,(||2)0.9545P X µσ−≤=,(||3)0.9973P X µσ−≤=.关于这次数学考试成绩,下列结论正确的是( )A. 甲班的平均分比乙班的平均分高B. 相对于乙班,甲班学生的数学成绩更分散C. 甲班108分以上的人数约占该班总人数的4.55%D. 乙班112分以上的人数与甲班108分以上的人数大致相等7. 某校三位同学报名参加数理化生四科学科竞赛,每人限报且必须报两门,由于数学是该校优势科目,必须至少有两人参赛,若要求每门学科都有人报名,则不同参赛方案有( ) A 51种B. 45种C. 48种D. 42种8. 已知函数()()31e 1xf x x kx =−−+,若对任意的()12,0,x x ∈+∞,且12x x ≠,都有()()()()11222112x f x x f x x f x x f x +>+,则实数k 的取值范围是( )A. e ,3∞−B. e ,3−∞C. 1,3 −∞D. 1,3−∞二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 下列说法中正确的是( )A. 对于独立性检验,2X 的值越大,说明两事件的相关程度越大B. 以模型e kx y c =去拟合一组数据时,为了求出回归方程,设ln z y =,将其变换后得到线性方程0.34z x =+,则,c k 的值分别是4e 和0.3C. 在具有线性相关关系的两个变量的统计数据所得的回归直线方程ˆˆˆy a bx =+中,ˆ2,1,3b x y ===,则ˆ1a= D. 通过回归直线ˆˆˆybx a =+及回归系数ˆb ,可以精确反映变量的取值和变化趋势 10. “杨辉三角”是中国古代数学文化的瑰宝之一,最早出现在南宋数学家杨辉于1261年所著的《详解九章的.算法》一书中.“杨辉三角”揭示了二项式系数在三角形数表中的一种几何排列规律,如图所示.下列关于“杨辉三角”的结论正确的是( )A. 222234511C C C C 220++++= B. 记第n 行的第i 个数为i a ,则11134n i n i i a +−==∑C. 第2023行中从左往右第1011个数与第1012个数相等D. 第30行中第12个数与第13个数之比为12∶1911. 某大学文学院有A B 、两个自习室,小王同学每天晩上都会去自习室学习.假设他第一天去自习室A 的概率为13;他第二天去自习室B 的概率为14;如果他第一天去自习室A ,则第二天去自习室B 的概率为12.下列说法正确的是( )A. 小王两天都去自习室A 的概率为14B. 小王两天都去自习室B 的概率为112C. 小王两天去不同自习室的概率为34D. 如果他第二天去自习室B ,则第一天去自习室A 的概率为12三、填空题:本题共3小题,每小题5分,共15分.12. 编号为1,2,3的三位学生随意入坐编号为1,2,3的三个座位,每位学生坐一个座位,设与座位编号相同的学生的个数是ξ,则()E ξ=__________.13. 在概率论中常用散度描述两个概率分布的差异.若离散型随机变量,X Y 的取值集合均为{}()*0,1,2,3,,n n ∈N,则,X Y 的散度()()()(||)ln ni P X i D X Y P X i P Y i =====∑.若X ,Y 的概率分布如下表所示,其中01p <<,则(||)D X Y 的取值范围是__________.14. 若二次函数()223f x x =+的图象与曲线C :()e 3(0)xg x a a =+>存在公切线,则实数a 的取值范围是________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 设函数()32398f x x x x =−−+.(1)求f (x )在1x =处的切线方程;(2)求f (x )在[-2,4]上的最大值和最小值. 16. 已知()()23nf x x =−展开式的二项式系数和为512,且()()()()20122311nnn x a a x a x a x −=+−+++− .(1)求2a 的值;(2)求123n a a a a ++++ 的值; (3)求12323n a a a na ++++ 的值.17. 在十余年的学习生活中,部分学生养成了上课转笔的习惯.某研究小组为研究转笔与学习成绩好差的关系,从全市若干所学校中随机抽取100名学生进行调查,其中有上课转笔习惯的有55人.经调查,得到这100名学生近期考试的分数的频率分布直方图.记分数在600分以上的为优秀,其余为合格.(1)请完成下列22×列联表.并依据小概率值0.01α=的独立性检验,分析成绩优秀与上课转笔之间是否有关联;(结果均保留到小数点后三位)上课转笔上课不转笔合计优秀合格20合计55100(2)现采取分层抽样的方法,从这100人中抽取10人,再从这10人中随机抽取5人进行进一步调查,记抽到5人中合格的人数为X ,求X 的分布列和数学期望;(3)若将频率视作概率,从全市所有在校学生中随机抽取20人进行调查,记20人中上课转笔的人数为k 的概率为()P k ,当()P k 取最大值时,求k 的值.附:22()()()()()n ad bc a b c d a c b d χ−=++++,其中n a b c d =+++.()2P k χ≥0.050 0.010 0.001 k3.8416.63510.82818. 一个调查学生记忆力的研究团队从某中学随机挑选100名学生进行记忆测试,通过讲解100个陌生单词后,相隔十分钟进行听写测试,间隔时间t (分钟)和答对人数y 的统计表格如下: 时间t (分钟) 102030405060708090100答对人数y987052363020151155lg y 1.99 1.85 1.72 1.56 1.48 1.30 1.18 1.04 0.7 07时间t 与答对人数y 和lg y 的散点图如下:附:102138500ii t==∑,101342i i y ==∑,101lg 13.52i i y ==∑,10110960i i i t y ==∑,101lg 621.7i i i t y ==∑,对于一组数据()11,u v ,()22,u v ,…,(),n n u v ,其回归直线方程ˆˆˆv u αβ=+的斜率和截距的最小二乘估计分别为:1221ˆni i i nii u v nu vunu β==−=−∑∑,ˆˆv u αβ=−.请根据表格数据回答下列问题: (1)根据散点图判断,yat b =+与lg y ct d =+哪个更适宜作为线性回归模型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果,建立与t 的回归方程;(a ,b 或c ,d 的计算结果均保留到小数点后三位) (3)根据(2)请估算要想答对人数不少于75人,至多间隔多少分钟需要重新记忆一遍.(结果四舍五入保留整数)(参考数据:lg 20.3≈,lg 30.48≈). 19. 对于正实数a ,()b a b >,我们熟知基本不等式:(,)(,)G a b A a b <,其中(,)G a b =为a ,b 几何平均数,(,)2a b A a b +=为a ,b 的算术平均数.现定义a ,b 的对数平均数:(,)ln ln abL a b a b −=−.(1)设1x >,求证:12ln x x x<−;(2)证明(,)(,)G a b L a b <;(3)若不等式(,)(,)(,)G a b A a b m L a b +>⋅对任意正实数,()a b a b >恒成立,求正实数m 的取值范围..的。
2022-2023学年北京市延庆区高二下学期期末数学试卷

2022-2023学年北京市延庆区高二下学期期末数学试卷1.已知集合,集合,则()A.B.C.D.2.若复数满足,则的虚部为()A.B.C.D.3.命题“”的否定是()A.B.C.D.4.已知实数,满足,则下列不等式中正确的是()A.B.C.D.5.函数的最小值及取得最小值时的值为()A.当时最小值为B.当时最小值为C.当时最小值为D.当时最小值为6.如果函数在区间上连续,在区间内可导,则“”是“在上单调递增”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.在的展开式中,下面关于各项的描述不正确...的是()A.常数项为240B.含的项的二项式系数为15C.各项的二项式系数和为64D.第四项为608.某小区物业对本小区三月份参与网购生鲜蔬菜的家庭的网购次数进行调查,从一单元和二单元参与网购生鲜蔬菜的家庭中各随机抽取户,分别记为组和组,这户家庭三月份网购生鲜蔬菜的次数如下图:组组980587531124962147803359假设用频率估计概率,且各户网购生鲜蔬菜的情况互不影响.从组和组中分别随机抽取户家庭,记为组中抽取的户家庭三月份网购生鲜蔬菜次数大于的户数,为组抽取的户家庭三月份网购生鲜蔬菜次数大于的户数,比较方差与的大小.()A.B.C.D.不能确定9.现有一块边长为米的正方形铁板,如果从铁板的四个角各截去一个边长相等的小正方形,然后做成一个长方体形的无盖容器,为了使容器的容积最大,则截去的小正方形边长应为()A.米B.米C.米D.米10.已知函数,若存在唯一的零点,且,则的取值范围是()A.B.C.或D.11.函数的定义域为______.12.在等差数列中,已知,与的等差中项为,等比中项为,则通项公式________;前项和________.13.函数的值域为________.14.已知方程的两根分别为,,则________;________.15.已知函数,则下面四个结论中:①函数在上单调递减;②当或时,有一个零点;③函数存在最小值;④当时,恒成立.其中所有正确的结论序号为________.16.已知锐角..中,,,.(1)求及的值;(2)求及面积.17.求下列函数的导数.(1)①;②;③;(2)①;②;(3)①;②;③.18.求满足下列条件的直线的方程.(1)为曲线在处的切线;(2)的斜率为且与曲线相切;(3)过原点且与曲线相切.19.求下列函数的单调区间.(1);(2).20.已知函数,.(1)求的极值点以及极值、最值点以及最值;(2)设,其中,若存在唯一的整数,使得,求实数的取值范围.21.已知数列具有性质:,都,使得.(1)分别判断以下两个数列是否满足性质,并说明理由;(ⅰ)有穷数列:;(ⅱ)无穷数列:;(2)若有穷数列满足性质,且各项互不相等,求项数的最大值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二下学期数学期末考试
————————————————————————————————作者:————————————————————————————————日期:
高二期末考试零班数学试卷(理)
命题:方京泉审核:黄祖修时间:120分钟
一选择题:(本大题共10小题,每小题
5分,共50分)
1.设集合M={-1,0,1},N={x|x2≤x},则M∩N=( )
A.{0}
B.{0,1}
C.{-1,1}
D.{-1,0,0}
2.命题“若α=
4
π
,则tanα=1”的逆否命题是( )
A.若α≠
4
π
,则tanα≠1 B. 若α=
4
π
,则tanα≠1
C. 若tanα≠1,则α≠
4
π
D. 若tanα≠1,则α=
4
π
3.某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是( )
4.设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组
样本数据(x i,y i)(i=1,2,…,n),用最小二乘法建立的回归方程为
$y=0.85x-85.71,
则下列结论中不正确的是( )
A.y与x具有正的线性相关关系
B.回归直线过样本点的中心(x,y)
C.若该大学某女生身高增加1cm,则其体重约增加0.85kg
D.若该大学某女生身高为170cm,则可断定其体重必为58.79kg
5. 已知双曲线C :
2
2
x
a
-
2
2
y
b
=1的焦距为10,点P(2,1)在C 的渐近线上,则C的方程为
( )
A
2
20
x
-
2
5
y
=1 B
2
5
x
-
2
20
y
=1 C
2
80
x
-
2
20
y
=1 D
2
20
x
-
2
80
y
=1
6. 函数f(x)=sinx-cos(x+
6
π
)的值域为 ( )
A [ -2 ,2]
B [-3,3]
C [-1,1 ]
D [-
3
2
,
3
2
]
座位号
7. 在△ABC 中,AB=2 AC=3 AB ·BC = ( ) A 3 B 7 C 22 D 23
8.如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆。
在扇形OAB 内随机取一点,则此点取自阴影部分的概率是( ) A. π
2
1-
B.
π121- C. π2 D. π
1
9.设a ∈Z ,且0≤a ≤13, 若512012
+a 能被13整除,则a=( )
A.0
B.1
C.11
D.12 10 设定义在R 上的函数f(x)是最小正周期2π的偶函数,f(x)的导函数,当X ∈[0,π] 时, 0<f(x)<1;当x ∈(0,π)且x ≠
2π时 ,(x- 2
π
)f ’(x)>0 ,则函数y=f(x)-sinx 在[-2π,2π] 上的零点个数为( )
A 2
B 4
C 5
D 8 请将选择题的答案填入答题卡内
1 2 3 4 5 6 7 8 9 10 B
C
D
D
A
B
A
A
D
B
二、填空题 (每小题5分,共20分,15题选做,全做只按第一题给分) 11.设△ABC 的内角A ,B ,C ,所对的边分别是a ,b ,c 。
若(a+b-c )(a+b+c )=ab , 则角C=______________。
12.阅读如图所示的程序框图,运行相应的程序,输出的结果s=___________.
13.回文数是指从左到右与从右到左读都一样的正整数。
如22,,11,3443,94249等。
显然2位回文数有9个:11,22,33…,99.3位回文数有90个:101,111,121,…,191,202,…,999。
则
(Ⅰ)4位回文数有______个;
(Ⅱ)2n +1(n ∈N +)位回文数有______个。
14.如图,双曲线122
22=+b
y a x (0,0>>b a )的两顶点为A 1,A 2,虚轴两端点为1B ,2B 两焦
点为F 1,F 2。
若以A 1A 2为直径的圆内切于菱形F 1B 1F 2B 2,切点分别为A ,B ,C ,D 。
则
(Ⅰ)双曲线的离心率e=______;
(Ⅱ)菱形F 1B 1F 2B 2的面积S 1与矩形ABCD 的面积S 2的比值
2
1
S S =______。
15. A 在直角坐标系xOy 中,已知曲线C1:x=t+1 (t 为参数)与曲线C2 :x=asin θ
y= 1-2t y=3cos θ
(θ为参数,a >0 ) 有一个公共点在x 轴上,则a 等于 ———— B.不等式|2x+1|-2|x-1|>0的解集为 . 三、解答题 (共75分)
16、(本小题满分12分)在ABC ∆中,角A,B,C 所对应的边分别是a,b,c,且
c
a b
C B -=
2cos cos (1)求角B 的大小, (2)若2
7
=
b , 233=∆ABC S ,求
c a +的值
17、(本小题满分12分)
某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示。
已知这100位顾客中的一次购物量超过8件的顾客占55%。
(Ⅰ)确定x ,y 的值,并求顾客一次购物的结算时间X 的分布列与数学期望;
(Ⅱ)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过...2.5分钟的概率。
(注:将频率视为概率) 18、(本小题满分12分)
如图5,在四棱锥P-ABCD 中,PA ⊥平面ABCD ,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E 是CD 的中点。
(Ⅰ)证明:CD ⊥平面PAE ;
(Ⅱ)若直线PB 与平面PAE 所成的角和PB 与平面ABCD 所成的角相等,求四棱锥P-ABCD
一次购物量 1至4件 5至8件 9至12件
13至16件
17件以上
顾客数(人)
x 30 25 y
10 结算时间(分钟/人)
1
1.5
2
2.5
3
的体积。
19、(本小题满分12分)
已知a ,b 是实数,函数b ax x a x x f +++-=
4)1(3
1)(23
(1)若函数)(x f 在3=x 处取得极小值为2
1
,求.,的值b a
(2)若函数)(x f 在()1,1-上有且只有一个极值点.求实数a 的取值范围.
20、(本小题满分13分)
已知等差数列{a n }前三项的和为-3,前三项的积为8. (1)求等差数列{a n }的通项公式;
(2)若a 2,a 3,a 1成等比数列,求数列{}
n a 的前n 项的和。
21、(本小题满分14分)
已知椭圆C 的焦点在x 轴上,它的一个顶点恰好是抛物线2123x y =的焦点,它的离心率为2
1
, ①求椭圆C 的标准方程
②21,l l 是过点P(0,2)且互相垂直的两条直线,1l 交椭圆于A,B 两点,2l 交椭圆于C,D 两
点,AB, CD 的中点分别是M,N.求1l 的斜率k 的取值范围。
③ 在②的条件下,求N O M O ϖ
ρ⋅的取值范围?。