用遗传算法求解TSP问题

合集下载

用于求解TSP问题的遗传算法改进

用于求解TSP问题的遗传算法改进

用于求解TSP问题的遗传算法改进一、TSP问题简介TSP问题,全称Traveling Salesman Problem,即旅行商问题。

所谓TSP问题是指,给定一些点和每一对点之间的距离,求出一条遍历每个点恰好一次的最短路径,该问题的解决方法对实际问题中的路径规划和优化有着很大的参考价值。

二、遗传算法的基本思想遗传算法,是模拟自然界中生物遗传进化过程的一种演化计算方法。

它通过模拟生物的繁殖、变异、适应性等生命过程来寻找问题的最优解。

其基本的过程如下:1. 初始化:随机生成一个初始群体,每个个体表示一种可能的解决方案。

2. 选择:根据适应度函数,选择一定数量的优秀个体作为繁殖的父亲。

3. 交叉:将所选父亲进行交叉操作,生成新的子代个体。

4. 变异:对于一部分子代个体,进行变异操作。

5. 替换:用新的子代个体替换掉一部分原有的个体,形成新一代群体。

6. 结束条件:当某种条件达到时结束算法,否则返回步骤二。

在TSP问题中,遗传算法的基本实现方法如下:1.初始化:随机生成一个初始群体,每个个体表示一个解决方案,其中每个基因表示一个城市的编号。

例如,假设有10个城市,则每个个体就是由这10个城市编号随机排列组成的,例如:1-2-5-8-4-3-7-9-6-10等。

2.适应度函数:对于每个个体,计算其总路程,将总路程作为适应度函数的值。

4.交叉:将所选父亲进行交叉操作,生成新的子代个体,交叉方式一般有:顺序交叉法、部分映射交叉法、环形交叉法、边交叉法等。

5.变异:对于一部分子代个体,进行变异操作,变异的方式一般是:交换变异、倒位变异、随机抽样变异等。

7.结束条件:当达到一定条件时结束算法,比如迭代次数达到上限或者群体的适应度达到一定的水平。

传统的遗传算法在求解TSP问题时,存在一些问题:1.收敛速度慢:由于集合了交叉、变异等算子,每一代都要进行大量的计算,所以收敛速度慢。

2.易受陷入局部最优解:由于遗传算法采用的是局部搜索策略,所以可能会陷入到局部最优解中。

实验六:遗传算法求解TSP问题实验2篇

实验六:遗传算法求解TSP问题实验2篇

实验六:遗传算法求解TSP问题实验2篇第一篇:遗传算法的原理与实现1. 引言旅行商问题(TSP问题)是一个典型的组合优化问题,它要求在给定一组城市和每对城市之间的距离后,找到一条路径,使得旅行商能够在所有城市中恰好访问一次并回到起点,并且总旅行距离最短。

遗传算法作为一种生物启发式算法,在解决TSP问题中具有一定的优势。

本实验将运用遗传算法求解TSP问题,以此来探讨和研究遗传算法在优化问题上的应用。

2. 遗传算法的基本原理遗传算法是模拟自然界生物进化过程的一种优化算法。

其基本原理可以概括为:选择、交叉和变异。

(1)选择:根据问题的目标函数,以适应度函数来评估个体的优劣程度,并按照适应度值进行选择,优秀的个体被保留下来用于下一代。

(2)交叉:从选出的个体中随机选择两个个体,进行基因的交换,以产生新的个体。

交叉算子的选择及实现方式会对算法效果产生很大的影响。

(3)变异:对新生成的个体进行基因的变异操作,以保证算法的搜索能够足够广泛、全面。

通过选择、交叉和变异操作,不断迭代生成新一代的个体,遗传算法能够逐步优化解,并最终找到问题的全局最优解。

3. 实验设计与实施(1)问题定义:给定一组城市和每对城市之间的距离数据,要求找到一条路径,访问所有城市一次并回到起点,使得旅行距离最短。

(2)数据集准备:选择适当规模的城市数据集,包括城市坐标和每对城市之间的距离,用于验证遗传算法的性能。

(3)遗传算法的实现:根据遗传算法的基本原理,设计相应的选择、交叉和变异操作,确定适应度函数的定义,以及选择和优化参数的设置。

(4)实验流程:a. 初始化种群:随机生成初始种群,每个个体表示一种解(路径)。

b. 计算适应度:根据适应度函数,计算每个个体的适应度值。

c. 选择操作:根据适应度值选择一定数量的个体,作为下一代的父代。

d. 交叉操作:对父代进行交叉操作,生成新的个体。

e. 变异操作:对新生成的个体进行变异操作,以增加搜索的多样性。

利用遗传算法求解TSP问题

利用遗传算法求解TSP问题

利⽤遗传算法求解TSP问题⼀、摘要TSP问题是指给定平⾯上N个点及每点的坐标,求⼀条路径,遍历所有的点并回到起点,使这条路径长度最⼩。

TSP问题是⼀个组合优化问题。

该问题可以被证明具有NPC计算复杂性。

因此,任何能使该问题的求解得以简化的⽅法,都将受到⾼度的评价和关注。

遗传算法是⼈⼯智能⽅法的⼀种,⽤于求解各种传统⽅法不⽅便求解或耗时很长的问题。

下⾯给出遗传算法求解TSP问题的步骤。

在传统遗传算法求解TSP的基础上,提出了⼀种新的编码⽅式,并且讨论了⼀种优化⽅法的可⾏性。

本次实验的程序⾸先在matlab上验证了基本的算法,然⽽由于matlab运⾏较慢,故⼜移植到C++平台上,经过测试,实验结果良好。

⼆、算法实现遗传算法的实现主要包括编码、选择、交叉、编译、将个体放⼊新种群这么⼏个步骤,经过很多代的编译求解,以逼近最优解。

下⾯讨论每⼀个步骤的实现,其中编码⽅式是我在考虑了传统编码⽅式不利于计算的缺点下,重新设计的⼀种全新的编码⽅式。

编码在传统TSP问题中,编码可以直接采⽤⼆进制编码或⾃然编码的形式,⽐如直接把城市转化成(2,5,4,1,3,6)的形式,表⽰从2到5到4到1到3到6最后回到起点。

但是在求解TSP问题时,如果直接采⽤此种编码⽅式,会导致在交叉或变异时出现冲突的情况。

如(2,5,4,1,3,6)和(3,5,6,1,2,4)交换后变成了(2,5,6,1,2,6)和(3,5,4,1,3,4),显然路径出现了冲突的现象,传统的解决⽅式是通过逐步调整的⽅法来消除冲突,但是这种⽅法增加了编码的复杂度,不利于问题的求解,根据问题的特点,提出了采⽤⼀种插⼊序号的编码⽅式。

假设6个城市(1,2,3,4,5,6)现在有编码(1,1,2,2,1,3),让第n个编码表⽰n放在第⼏个空格处。

那么⽣成路径的规则是⾸先取1放在第⼀个(1),然后取2放在第⼀个空格处(2,1),然后取3放在第⼆个空格处(2,3,1),然后取4放在第⼆个空格处(2,4,3,1)然后取5放在第⼀个空格处(5,2,4,3,1)最后取6放在第3个空格处(5,2,6,4,3,1)。

利用遗传算法解决TSP问题课件

利用遗传算法解决TSP问题课件
编码方式
给每个城市一个固定的基因编号,例如10个城市为 0 1 2 3 4 5 6 7 8 9 ,随机地组成一个染色体(以下所有情况都以10个城市为例说明)。 约定这10个城市之间的行走路线为: 0123456789 (其余基因序列的路线同样道理)
两个城市间的距离(用r[i][j]表示)
轮盘选择
for(mem=0;mem<PopSize;mem++) sum+=population[mem].fitness; for(mem=0;mem<PopSize;mem++) //使小的选中的可能性大 x[mem]=sum-population[mem].fitness; sum=0.0; for(mem=0;mem<PopSize;mem++) sum+=x[mem]; /* Calculate relative fitness */ for(mem=0;mem<PopSize;mem++) population[mem].rfitness=x[mem]/sum;
仿真结果
仿真结果
一个完整路线的长度
例如基因序列为:0 8 2 9 7 5 6 4 1 3,存放在gene[0]~gene[9]中。 表示行旅行路线为: 0829756413 总路程为: r[gene[0]][gene[1]]+r[gene[1]][gene[2]]~ +r[gene[9]gene[0]]
交叉
例如一个基因序列为: 0 2 5 6 9 8 1 3 4 7 产生两个0~9的int型随机数,如得到2和6,将gene[2]和gene[6]之间的基因反序,得到: 0 2 1 8 9 6 5 3 4 7

用于求解TSP问题的遗传算法改进

用于求解TSP问题的遗传算法改进

用于求解TSP问题的遗传算法改进遗传算法是一种常用于解决旅行商问题(TSP)的优化算法。

TSP问题是指在给定一组城市和其之间的距离,找到一条最短路径,使得每个城市只访问一次并最终返回起始城市。

传统的遗传算法在解决TSP问题时存在一些缺点,例如收敛速度慢、易于陷入局部最优解等问题。

对遗传算法进行改进以提高求解TSP问题的效果和效率尤为重要。

改进初始化的方法。

传统的遗传算法一般采用随机生成的方法来初始化种群,但这样会导致种群的多样性不足、容易陷入局部最优解。

可以采用相邻交换法、插入法等启发式方法来生成初始化种群,增加种群的多样性,有助于全局搜索。

改进交叉和变异的操作。

传统的遗传算法中,交叉和变异操作一般是均匀随机进行的,但这样可能会导致交叉和变异带来的新个体的子路径中出现重复的城市,从而违反了TSP问题的约束条件。

可以采用部分映射交叉(PMX)等方法来保证交叉后子路径不会出现重复的城市,同时保持了种群的多样性;可以采用2-opt、3-opt等局部搜索方法来修复变异带来的子路径中出现的重复的城市,提高种群的质量。

可以引入自适应权重的选择策略。

传统的遗传算法中,选择策略一般是基于个体适应度的排序或轮盘赌选择的。

但这种选择策略可能会导致选择压力过大或过小,使种群收敛速度过快或过慢。

可以采用自适应权重的选择策略,根据种群适应度的分布情况动态调整选择概率,使得适应度较高的个体能够更有机会被选中,增加种群的多样性,提高全局搜索能力。

可以引入一些启发式的局部搜索方法。

传统的遗传算法中,局部搜索往往仅在变异操作中进行,但这样可能局部搜索的范围有限,难以跳出局部最优解。

可以在种群进化的过程中,根据种群的适应度情况,选择某些个体进行局部搜索,以进一步改善个体的质量。

对于求解TSP问题的遗传算法改进,可以从初始化方法、交叉和变异操作、选择策略和局部搜索等方面进行改进,以提高算法的效果和效率。

通过引入合适的启发式方法,增加种群的多样性,改善交叉和变异的操作,优化选择策略,加强局部搜索,可以有效地提高遗传算法在求解TSP问题中的性能。

遗传算法求解TSP问题

遗传算法求解TSP问题

遗传算法求解TSP问题⼀、简介遗传算法是基于达尔⽂的⽣物进化论,是⼈⼯智能算法的的重要分⽀,主要⽤于解决⼀类求最优解问题。

如旅⾏商(TSP)问题。

遗传算法是将状态当成染⾊体,状态⾥的每⼀个决策都是染⾊体上的⼀个基因。

然后根据实际情况⽣成⼀个适应度函数,计算每⼀串染⾊体对环境的适应度。

让适应度⾼的遗传到下⼀代,适应度低的淘汰掉,另外在实现的过程中也许会发⽣变异,导致⼀些决策改变。

除此之外,遗传算法是随机性近似算法,所以当我们运⽤该算法时必须采取措施使其收敛到全局最优解,并且尽量提⾼达到最优解的概率。

遗传算法除了设计适应度函数以外,还有很重要的三个部分:选择,交叉,变异。

⼆、遗传算法实现步骤1.评估每条染⾊体所对应个体的适应度。

2.遵照适应度越⾼,选择概率越⼤的原则,从种群中选择两个个体作为⽗⽅和母⽅。

3.抽取⽗母双⽅的染⾊体,进⾏交叉,产⽣⼦代。

4.对⼦代的染⾊体进⾏变异。

5.重复2,3,4步骤,直到新种群的产⽣。

三、遗传算法求解TSP实现步骤1.确定影响因素城市序列、城市个数N、种群个数M、交叉概率Pc、变异概率Pmutation等;2.初始化数据2.1初始化影响因素:城市序列、城市个数N、种群个数M、交叉概率Pc、变异概率Pmutation2.2 初始化数据:读⼊数据源,将坐标转换为距离矩阵(标准化欧式距离)3.计算种群适应度已知任意两个城市之间的距离,每个染⾊体可计算出总距离,因此可以将⼀个随机全排列的总距离的倒数作为适应度函数,即距离越短,适应度函数越好。

4.迭代选择算⼦:赌轮选择策略挑选下⼀代个体。

交叉运算:在交叉概率的控制下,对群体中的个体两两进⾏交叉。

变异运算:在变异概率的控制下,对群体中的个体两两进⾏变异,即对某⼀个体的基因进⾏随机调整。

计算新的种群适应度以及个体累积概率,并更新最优解。

将新种群复制到旧种群中,准备下⼀代进化(迭代)。

5.输出输出迭代过程中产⽣的最短路径长度以及最短路径。

遗传算法解决TSP问题【精品毕业设计】(完整版)

遗传算法解决TSP问题【精品毕业设计】(完整版)
2.2遗传算法原型:
GA(Fitness,Fitness_threshold,p,r,m)
Fitness:适应度评分函数,为给定假设赋予一个评估分数
Fitness_threshold:指定终止判据的阈值
p:群体中包含的假设数量
r:每一步中通过交叉取代群体成员的比例
m:变异率
初始化群体:P←随机产生的p个假设
在本程序的TSP问题中一共有20个城市,也就是在图模型中有20个顶点,因此一个染色体的长度为20。
3.3适应函数f(i)
对具有n个顶点的图,已知各顶点之间( , )的边长度d( , ),把 到 间的一条通路的路径长度定义为适应函数:
对该最优化问题,就是要寻找解 ,使f( )值最小。
3.4选择操作
选择作为交叉的双亲,是根据前代染色体的适应函数值所确定的,质量好的个体,即从起点到终点路径长度短的个体被选中的概率较大。
(2)交叉(Crossover):对于选中进行繁殖的两个染色体X,Y,以X,Y为双亲作交叉操作,从而产生两个后代X1,Y1.
(3)变异(Mutation):对于选中的群体中的个体(染色体),随机选取某一位进行取反运算,即将该染色体码翻转。
用遗传算法求解的过程是根据待解决问题的参数集进行编码,随机产生一个种群,计算适应函数和选择率,进行选择、交叉、变异操作。如果满足收敛条件,此种群为最好个体,否则,对产生的新一代群体重新进行选择、交叉、变异操作,循环往复直到满足条件。
3.变异:使用均匀的概率从Ps中选择m%的成员.对于选出的每个成员,在它表示中随机选择一个为取反
4.更新:P←Ps
5.评估:对于P中的每个h计算Fitness(h)
从P中返回适应度最高的假设
3.
3.1 TSP问题的图论描述

TSP问题的遗传算法求解

TSP问题的遗传算法求解

TSP问题的遗传算法求解一、问题描述假设有一个旅行商人要拜访N个城市,要求他从一个城市出发,每个城市最多拜访一次,最后要回到出发的城市,保证所选择的路径长度最短。

二、算法描述(一)算法简介遗传算法(GeneticAlgorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,通过模拟自然进化过程搜索最优解。

遗传算法是从代表问题可能潜在的解集的一个种群(population)开始的,初代种群产生之后,按照适者生存和优胜劣汰的原理,逐代(generation)演化产生出越来越好的近似解,在每一代,根据问题域中个体的适应度(fitness)大小选择个体,并借助于自然遗传学的遗传算子(geneticoperators)进行组合交叉(crossover)和变异(mutation),产生出代表新的解集的种群。

这个过程将导致种群像自然进化一样的后生代种群比前代更加适应于环境,末代种群中的最优个体经过解码(decoding),可以作为问题近似最优解。

(摘自百度百科)。

(二)遗传算子遗传算法中有选择算子、交叉算子和变异算子。

选择算子用于在父代种群中选择进入下一代的个体。

交叉算子用于对种群中的个体两两进行交叉,有Partial-MappedCrossover、OrderCrossover、Position-basedCrossover等交叉算子。

变异算子用于对种群中的个体进行突变。

(三)算法步骤描述遗传算法的基本运算过程如下:1.初始化:设置进化代数计数器t=0、设置最大进化代数T、交叉概率、变异概率、随机生成M个个体作为初始种群P2.个体评价:计算种群P中各个个体的适应度3.选择运算:将选择算子作用于群体。

以个体适应度为基础,选择最优个体直接遗传到下一代或通过配对交叉产生新的个体再遗传到下一代4.交叉运算:在交叉概率的控制下,对群体中的个体两两进行交叉5.变异运算:在变异概率的控制下,对群体中的个体两两进行变异,即对某一个体的基因进行随机调整6.经过选择、交叉、变异运算之后得到下一代群体P1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

在掌握了遗传算法和TSP问题的基础知 识后,用JAVA语言实现了一种应用 “轮盘赌”选择操作,顺序交叉操作、 启发式变异操作和位置重排变异操作求 解TSP问题的遗传算法。
采用以遍历城市的次序排列进行编码的方法,并将n座城市的数字表示 形式转化为字母表示形式,这样可以借助Java语言的强大字符串处理 函数来降低算法设计难度。 即数字0,1,2,3,4,5,6,7,8,9,10,11,12,13,14, 15,16,17,18,19⋯⋯25,26⋯分别对应字母序列A,B,C,D, E,F,G,H,I,J,K,L,M,N,0,P,Q,R,S,T,⋯⋯Z, a⋯。 单个个体的遍历路径以字符串形式存储,种群中的全部个体的遍历路 径存储在字符串数组中。
1、选择操作 2、顺序交叉 3、启发式变异操作
The end
begin initialization 产生一个初始群体 计算第一代群体中各个个体的适应度 repeat 选择父代 交叉操作 子代变异 计算子代的适应度 子代取代父代,形成新的一代个体 until some stopping criterion applies end
TSP问题可描述为:已知K个城市各城市间的距 离,某一旅行商从某个城市出发访问每个城市 一次且仅一次,最后回到出发城市,怎样 安排才使其所走路线最短。
遗传操作包括以下三个基本遗传算子: 1、选择算子 (1)按比例的适应度计算 (2)基于排序的适应度计算 (3)期望值方法 (4)锦标赛选择方法 2. 交叉算子 (1)单点交叉。 (2)多点交叉 (3)均匀交叉 (4)顺序ห้องสมุดไป่ตู้叉 3、变异算子 (1)启发式变异 (2)交换变异 (3)插入变异 (4)替换变异
用遗传算法求解TSP问题
遗传算法简称GA(Genet ic Algorithm), 在本质上是一种求解问题的高效并行全 局搜索方法。 遗传算法的两大主要特点是群体搜索策 略和群体中个体之间的信息相互交换, 它实际上是模拟由个体组成的群体的整 体学习过程,其中每个个体表示给定问 题搜索空间中的一个解。
相关文档
最新文档