一元二次方程--华师大版

合集下载

华师大版-数学-九年级上册-一元二次方程 教案

华师大版-数学-九年级上册-一元二次方程 教案

一元二次方程教学内容本章主要内容包括:一元二次方程的概念、一元二次方程的一般形式、一元二次方程的解法(直接开平方法,因式分解法、配方法、公式法)、应用一元二次方程解决简单的实际问题等.在一元二次方程的解法中,综合应用了因式分解和整式的乘法公式等知识,是整式乘法知识的应用和提升,同时也为今后学习二次函数打下基础,一元二次方程是解决实际问题的一个重要工具.本章学习中体现了应用方程解决实际问题的重要思想.知识结构:三维目标1.知识与技能.(1)了解一元二次方程的概念,会写出一元二次方程的一般形式.(2)理解配方法,会用直接开平方法、因式分解法、公式法、•配方法解一元二次方程.(3)会根据具体问题中的数量关系,列出一元二次方程解决简单实际问题.(4)能根据具体问题的实际意义,检验解方程的结果是否合理.2.过程与方法.(1)通过认识一元二次方程,体会方程概念的发展.(2)经历探索一元二次方程的解法过程.•体验从不同角度寻求解决问题策略的多样性,培养学生的实践能力和创新精神.(3)经历探索列一元二次方程解应用题的过程,•体会方程是刻画现实世界的一个有效数学模型和重要方法.3.情感、态度与价值观.(1)激发学生积极参与数学探索的热情,•并有独立克服困难和运用知识求解一元二次方程的体验.(2)在独立思考的基础上,形成积极参与对数学问题的讨论,•敢于发表自己的见解的学习习惯,并能从交流中获益.(3)从列一元二次方程解应用题的过程中,•体验和认识到数学是解决实际问题与进行交流的重要工具.体会数学的应用价值.教学重点一元二次方程的解法及其应用.教学难点1.配方法的理解.2.列一元二次方程解应用题.教学关键1.理解解一元二次方程中的降次思想.2.熟悉解一元二次方程的各种方法的具体过程和步骤.3.熟悉列一元二次方程解应用题的过程与方法.课时划分一元二次方程 1课时一元二次方程的解法 6课时实践与探索 3课时复习与小结 1课时一元二次方程教学内容本节主要了解一元二次方程的概念及其一般形式.教学目标1.知识与技能.(1)了解一元二次方程的概念.(2)会将一元二次方程化成一般形式,•并能根据一元二次方程的一般形式写出二次项系数、一次项系数、常数项.(3)能根据简单具体问题的数量关系列出一元二次方程.2.过程与方法.(1)经历从实际问题中抽象出一元二次方程概念的过程.(2)参与将一元二次方程化为一般形式的过程,•体会一元二次方程一般形式的结构与特征.(3)发现二次项系数、一次项系数、常数项与一元二次方程一般形式的关系.3.情感、态度与价值观.(1)了解数学知识源于实际,又反过来服务于实际的道理.(2)树立学好数学的自信心.(3)体验探索活动中获得成功的感受.重难点、关键1.重点:一元二次方程的概念及其一般形式.2.难点:从实际问题中抽象出一元二次方程概念.3.关键:认识二次项系数、一次项系数、•常数项与一元二次方程一般形式的关系.教学准备1.教师准备:三角板、小黑板.(本节课的总结图表)2.学生准备:预习提纲.教学过程一、创设情境,导入新知试一试.根据题意,列出方程.(不必求解)1.已知正方形的边长为2cm,求它的对角线长.2.绿苑小区规划设计时,准备在每两幢楼房之间,安排面积为900平方米的一块长方形绿地,并且长比宽多10米,那么绿地的长和宽各为多少?3.学校图书馆去年年底有图书5万册,预计到明年年底增加到7.2万册,•求这两年的年平均增长率.二、合作交流,探索新知1.从实际问题抽象出一元二次方程的概念点拨:(1)设正方形的对角线为xcm,由勾股定理可得:22+22=x2,整理得:x2=8.(2)设长方形绿地的宽为x米,依题意可得:x(x+10)=900,整理得:x2+10x-900=0.(3)设这两年的年平均增长率为x,去年年底有图书5万册,则今年年底可达5(•1+x)万册;明年年底可达5(1+x)·(1+x)=5(1+x)2万册.依题意可得:5(1+x)2=7.2,整理得:5x2+10x-2.2=0.2.思考:(1)上述得到的方程叫做什么方程,它们有什么共同的特征?(2)上述整理后所得方程具有怎样的结构形式?(3)看书P19内容,讨论并理解下列问题:①什么叫做一元二次方程?(强调二次项系数不为0的限制条件)②什么叫做一元二次方程的一般形式?③什么叫做一元二次方程的二次项系数、一次项系数、常数项;它们与一元二次方程的一般形式有什么联系?三、范例学习,加深理解例:将下列一元二次方程化为一般形式,并写出它们的二次项系数,一次项系数和常数项.1.2x-5x2=1 2.6-2x=x23.(x-8)x=36 4.(x+3)(x-7)=48解:1.一般形式为:-5x2+2x-1=0二次项系数是-5,一次项系数是2,常数项是-1.2.一般形式为:-x2-2x+6=0二次项系数是-1,一次项系数是-2,常数项是6.3.一般形式为:x2-8x-36=0二次项系数是1,一次项系数是-8,常数项是-36.4.一般形式为:x2-4x-48=0二次项系数是1,一次项系数是-4,常数项是-48.点拨:本例中的一般形式可以有不同的表达形式,而二次项系数,•一次项系数和常数项应该随一般形式的确定而确定.四、随堂练习,巩固深化1.基础训练.课本P19练习题第(1)、(2)、(3)、(4)题2.探研时空.你能猜出上述P19练习题第(1)、(2)两题的解吗?五、归纳总结,提高认识1.综述本节课的主要内容.2.谈谈本节课的收获与体会.3.展示本节课的总结图形.六、布置作业,专题突破1.课本P19习题23.1第1、2、3题.2.选用课时作业设计七、课后反思(略)课时作业设计1.下列方程中,哪些是一元二次方程?(1)x+32=6-x (2)5-2x 2=1(3)21x +2=6 (4)(x-6)(x+3)=300 2.将下列一元二次方程化为一般形式,并写出它们的二次项系数、•一次项系数和常数项.(1)8x-5=x 2 (2)2-7x 2=x(3)(x-3)(x+12)=100 (4)4x=3x 23.根据题意,列出方程.(不必求解)(1)在一块长为12cm ,宽为8cm 的长方形的四周各剪去一个同样大小的小正方形,再折合成一个无盖的长方体盒子,如果长方体的底面积为50cm 2,•求剪去的小正方形的边长.(2)某企业的年产值在两年内从1000万元增加到1210万元,求平均每年增长的百分率.(3)某公司成立3周年以来,•积极向国家上交利税,•由第一年的200•万元增长到800万元,求平均每年增长的百分率.答案:1.方程(2)、(4)是一元二次方程2.(1)x 2-8x+5=0,二次项系数为1,•一次项系数为-8,常数项为5(2)-7x 2-x+2=0,二次项系数为-7,一次项系数为-1,常数项为2 •(3)x 2+9x-136=0,二次项系数为1,一次项系数为9,常数项为-136(4)3x 2-4x=0,•二次项系数为3,一次项系数为-4,常数项为03.(1)•设剪去的小正方形的边长为x,•则(12-2x)·(8-2x)=50 (2)设平均每年增长的百分率为x,则1000(1+x)2=1210 (3)•设平均每年增长的百分率为x,则200(1+x)2=800.。

华师大版初中数学九年级上册22.2.4 一元二次方程根的判别式

华师大版初中数学九年级上册22.2.4 一元二次方程根的判别式

华师大版初中数学重点知识精选掌握知识点,多做练习题,基础知识很重要!华师大初中数学和你一起共同进步学业有成!4.一元二次方程根的判别式1.理解并掌握一元二次方程根的判别式,能运用判别式,在不解方程的前提下判断一元二次方程根的情况;(重点、难点) 2.通过一元二次方程根的情况的探究过程,体会从特殊到一般、猜想及分类讨论的数学思想,提高观察、分析、归纳的能力. 一、情境导入老师写了4个一元二次方程让同学们判断它们是否有解,大家都才解第一个方程呢,小强突然站起来说出每个方程解的情况,你想知道他是如何判断的吗?二、合作探究探究点一:一元二次方程的根的情况【类型一】判断一元二次方程根的情况不解方程,判断下列方程的根的情况.(1)2x 2+3x -4=0; (2)x 2-x +=0; 14(3)x 2-x +1=0.解析:根据根的判别式我们可以知道当b 2-4ac ≥0时,方程才有实数根,而b 2-4ac <0时,方程没有实数根.由此我们不解方程就能判断一元二次方程根的情况. 解:(1)2x 2+3x -4=0,a =2,b =3,c =-4,∴b 2-4ac =32-4×2×(-4)=41>0.∴方程有两个不相等的实数根. (2)x 2-x +=0,a =1,b =-1,c =14.∴b 2-4ac =(-1)2-4×1×=0.∴方程1414有两个相等的实数根.(3)x 2-x +1=0,a =1,b =-1,c =1.∴b 2-4ac =(-1)2-4×1×1=-3<0.∴方程没有实数根. 方法总结:给出一个一元二次方程,不解方程,可由b 2-4ac 的值的符号来判断方程根的情况.当b 2-4ac >0时,一元二次方程有两个不相等的实数根;当b 2-4ac =0时,一元二次方程有两个相等的实数根;当b 2-4ac <0时,一元二次方程无实数根.【类型二】由一元二次方程根的情况确定字母系数的取值已知关于x 的一元二次方程(a -1)x 2-2x +1=0有两个不相等的实数根,则a 的取值范围是( )A .a >2B .a <2C .a <2且a ≠1D .a <-2解析:由于一元二次方程有两个不相等的实数根,判别式大于0,得到一个不等式,再由二次项系数不为0知a -1不为0.即4-4(a -1)>0且a -1≠0,解得a <2且a ≠1.选C. 方法总结:若方程有实数根,则b 2-4ac ≥0.由于本题强调说明方程是一元二次方程,所以,二次项系数不为0.因此本题还是一道易错题. 【类型三】 一元二次方程根的判别式与三角形的综合已知a ,b ,c 分别是△ABC 的三边长,求证:关于x 的方程b 2x 2+(b 2+c 2-a 2)x +c 2=0没有实数根. 解析:欲证一元二次方程没有实数根,只需证明它的判别式Δ<0即可.由a ,b ,c 是三角形三条边的长可知a ,b ,c都是正数.由三角形的三边关系可知a +b >c ,a +c >b ,b +c >a . 证明:∵b 为三角形一边的长,∴b ≠0,∴b 2≠0,∴b 2x 2+(b 2+c 2-a 2)x +c 2=0是关于x 的一元二次方程.∴Δ=(b 2+c 2-a2)2-4b 2c 2=(b 2+c 2-a 2+2bc )(b 2+c 2-a 2-2bc )=[(b +c )2-a 2][(b -c )2-a 2]=(b +c+a)(b+c-a)(b-c+a)(b-c-a)=(a+b+c)[(b+c)-a][(a+b)-c][b-(a+c)].∵a,b,c是三角形三条边的长,∴a>0,b>0,c>0,且a+b+c>0,a+b>c,b+c>a,a +c>b.∴(b+c)-a>0,(a+b)-c>0,b-(a +c)<0,∴(a+b+c)[(b+c)-a][(a+b)-c][b-(a+c)]<0,即Δ<0.∴原方程没有实数根.方法总结:利用根的判别式与三角形的三边关系:常根据判别式得到关于三角形三边的式子,再结合三边关系确定Δ符号.【类型四】利用根的判别式解决存在性问题是否存在这样的非负整数m,使关于x的一元二次方程m2x2-(2m-1)x+1=0有两个不相等的实数根?若存在,请求出m的值;若不存在,请说明理由.解:不存在,理由如下:假设m2x2-(2m-1)x+1=0有两个不相等的实数根,则[-(2m-1)]2-4m2>0,解得m<.∵m为非负整数,∴m=0.14而当m=0时,原方程m2x2-(2m-1)x+1=0是一元一次方程,只有一个实数根,与假设矛盾.∴不存在这样的非负整数,使原方程有两个不相等的实数根.易错提醒:在求出m=0后,常常会草率地认为m=0就是满足条件的非负整数,而忽略了二次项系数不为0的这一隐含条件,因此解题过程中务必考虑全面.三、板书设计本节课是在一元二次方程的解法的基础上,学习根的判别式的应用.学生容易在计算取值范围的时候忘记二次项系数不能为零,这是本节课需要注意的地方,应予以特别强调.相信自己,就能走向成功的第一步教师不光要传授知识,还要告诉学生学会生活。

华师大版数学九年级上册22.1《一元二次方程》参考教案

华师大版数学九年级上册22.1《一元二次方程》参考教案

22.1 一元二次方程教学目标1.知道一元二次方程的定义,能熟练地把一元二次方程整理成一般形式02=++c bx ax (a ≠0)2.在分析、揭示实际问题的数量关系并把实际问题转化为数学模型(一元二次方程)的过程中使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识。

教学过程一、做一做:1.问题1绿苑小区住宅设计,准备在每两幢楼房之间,开辟面积为900平方米的一块长方形绿地,并且长比宽多10米,那么绿地的长和宽各为多少?分析:我们可以运用方程解决实际问题.现设长方形绿地的宽为x 米,不难列出方程x(x +10)=900整理可得 x 2+10x -900=0. (1)2.问题2学校图书馆去年年底有图书5万册,预计到明年年底增加到7.2万册.求这两年的年平均增长率.分析:设这两年的年平均增长率为x ,我们知道,去年年底的图书数是5万册,则今年年底的图书数是5(1+x )万册;同样,明年年底的图书数又是今年年底的(1+x )倍,即5(1+x )(1+x)=5(1+x)2万册.可列得方程5(1+x )2=7.2,整理可得 5x 2+10x -2.2=0. (2)3.思考、讨论这样,问题1和问题2分别归结为解方程(1)和(2).显然,这两个方程都不是一元一次方程.那么这两个方程与一元一次方程的区别在哪里?它们有什么共同特点呢?( 学生分组讨论,然后各组交流 )共同特点:(1)都是整式方程;(2) 只含有一个未知数;(3) 未知数的最高次数是2.二、一元二次方程的概念上述两个整式方程中都只含有一个未知数,并且未知数的最高次数是2,这样的方程叫做一元二次方程).通常可写成如下的一般形式:ax 2+bx +c =0(a 、b 、c 是已知数,a≠0)。

其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数,c 叫做常数项。

三、 例题讲解与练习巩固1.例1下列方程中哪些是一元二次方程?试说明理由。

初中数学华东师大九年级上册第章 一元二次方程一元二次方程根的判别式

初中数学华东师大九年级上册第章 一元二次方程一元二次方程根的判别式
①当b2-4ac>0时,方程有个的实数根;
②当b2-4ac=0时,方程有个的实数根;x1=x2=
③当b2-4ac<0时,方程实数根.
这里的b2-4ac叫做一元二次方程的根的判别式,通常用“Δ2-x+1=0,可由b2-4ac=0直接判断它实数根.
(3)当b2-4ac<0时,一元二次方程ax2+bx+c=0(a≠0)没有实数根.
3.方法规律:
一元二次方程的根的判别式可以用来:
(1)不解方程,判断根的情况;
(2)利用方程有无实数根,确定取值范围.解题时,务必分清“有实数根”“有两个实数根”“有两个相等的实数根”等关键性字眼.
当堂训练
1.已知方程x2+px+q=0有两个相等的实根,则p与q的关系是.
续表
【例1】不解方程,判定方程根的情况
(1)16x2+8x=-3;(2)9x2+6x+1=0;
(3)2x2-9x+8=0;(4)x2-7x-18=0.
分析:不解方程,判定根的情况,只需用b2-4ac的值大于0、小于0、等于0的情况进行分析即可.
教师指导
1.易错点:
用判别式时一定要看清方程是不是一元二次方程,因为只有一元二次方程才有根的判别式.
2.不解方程,试判定下列方程根的情况.
(1)2+5x=3x2;
(2)x2-(1+2 )x+ +4=0.
板书设计
一元二次方程根的判别式
1.(1)当b2-4ac>0时,一元二次方程ax2+bx+c=0(a≠0)有两个不相等实数根,即x1= ,x2= .
(2)当b2-4ac=0时,一元二次方程ax2+bx+c=0(a≠0)有两个相等实数根,即x1=x2=- .

一元二次方程练习题及答案【华师大版】

一元二次方程练习题及答案【华师大版】

2021学年上学期学生测验评价参考资料九年级数学第22章 (一元二次方程)班级 姓名 学号一、选择题 (共8题,每题有四个选项,其中只有一项符合题意。

每题3分,共24分): 1.下列方程中不一定是一元二次方程的是( ) A.(a-3)x 2=8 (a ≠3) B.ax 2+bx+c=0232057x +-=2下列方程中,常数项为零的是( )A.x 2+x=1B.2x 2-x-12=12;C.2(x 2-1)=3(x-1)D.2(x 2+1)=x+2 3.一元二次方程2x 2-3x+1=0化为(x+a)2=b 的形式,正确的是( )A. 23162x ⎛⎫-= ⎪⎝⎭; B.2312416x ⎛⎫-= ⎪⎝⎭; C. 231416x ⎛⎫-= ⎪⎝⎭; D.以上都不对4.关于x 的一元二次方程()22110a x x a -++-=的一个根是0,则a 值为( )A 、1B 、1-C 、1或1-D 、125.已知三角形两边长分别为2和9,第三边的长为二次方程x 2-14x+48=0的一根, 则这个三角形的周长为( )A.11B.17C.17或19D.196.已知一个直角三角形的两条直角边的长恰好是方程22870x x -+=的两个根,则这个直角三角形的斜边长是( )A 、、3 C 、6 D 、97.使分式2561x x x --+ 的值等于零的x 是( )A.6B.-1或6C.-1D.-68.若关于y 的一元二次方程ky 2-4y-3=3y+4有实根,则k 的取值范围是( )A.k>-74B.k ≥-74 且k ≠0C.k ≥-74D.k>74且k ≠09.已知方程22=+x x ,则下列说中,正确的是( ) (A)方程两根和是1 (B)方程两根积是2(C)方程两根和是1- (D)方程两根积比两根和大210.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元, 如果平均每月增长率为x,则由题意列方程应为( )A.200(1+x)2=1000B.200+200×2x=1000C.200+200×3x=1000D.200[1+(1+x)+(1+x)2]=1000 二、填空题:(每小题4分,共20分)11.用______法解方程3(x-2)2=2x-4比较简便.12.如果2x 2+1与4x 2-2x-5互为相反数,则x 的值为________. 13.22____)(_____3-=+-x x x14.若一元二次方程ax 2+bx+c=0(a ≠0)有一个根为-1,则a 、b 、c 的关系是______. 15.已知方程3ax 2-bx-1=0和ax 2+2bx-5=0,有共同的根-1, 则a= ______, b=______.16.一元二次方程x 2-3x-1=0与x 2-x+3=0的所有实数根的和等于____. 17.已知x 2+mx+7=0的一个根,则m=________,另一根为_______.18.已知两数的积是12,这两数的平方和是25, 以这两数为根的一元二次方程是___________.19.已知x x 12,是方程x x 2210--=的两个根,则1112x x +等于__________.20.关于x 的二次方程20x mx n ++=有两个相等实根,则符合条件的一组,m n 的实数值可以是m = ,n = .三、用适当方法解方程:(每小题5分,共10分)21.22(3)5x x -+=22.230x ++=四、列方程解应用题:(每小题7分,共21分)23.某电视机厂计划用两年的时间把某种型号的电视机的成本降低36%, 若每年下降的百分数相同,求这个百分数.24.如图所示,在宽为20m ,长为32m 的矩形耕地上,修筑同样宽的三条道路,(互相垂直),把耕地分成大小不等的六块试验田,要使试验田的面积为570m 2,道路应为多宽?25.某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件。

22.2一元二次方程的解法--配方法教案-华东师大版九年级数学上册

22.2一元二次方程的解法--配方法教案-华东师大版九年级数学上册

班级:______姓名:___________ 年级九年级科目数学课型运算课课时 1 主备主讲课题一元二次方程的解法——配方法教研组长签字教学副校长签字一、教学目标1.能准确找到配方所需的常数;会用配方法解二次项系数为1的一元二次方程。

2.让学生经历配方法的探究过程,培养学生的应用意识,转化思想,提高学生的运算能力;3.感受成功的快乐,体验独自克服困难、解决数学问题的过程,有克服困难的勇气,具备学好数学的信心二、教学过程知识预备 1. 用直接开平方法解方程:27)132=+x(2.问题导入:学校要建一个操场,要求长比宽多10m,并且面积为375m2,那么操场的长和宽分别为多少?自主探究(一)探究配方所需的常数1.回顾: 完全平方公式:2)ba±(= ,说出公式的特点2.根据你所掌握的公式特点,将下列代数式配成完全平方的形式试一试:2x+6x+()= x()22x- 5x+() = x()22x+8x+() = x()23、思考:当二次项系数为1时,常数项与一次项系数有怎样的关系?常数项为一次项系数一半的平方(二)用配方法解一元二次方程1、尝试解一元二次方程375102=+xx2.解下列方程。

(1)016-62=+xx(2)024-2=+xx课堂小结配方法解一元二次方程的一般步骤:1、将二次项系数化为1;2、将常数项移到方程的右边;3、方程两边都加上一次项系数一半的平方;4、写成()2mx n p+=的形式,用直接开平法求解。

九年级数学第二十二章 一元二次方程华东师大版

九年级数学第二十二章 一元二次方程华东师大版

第二十二章一元二次方程一、知识结构二、学习一元二次方程这章内容作用.一元二次方程是中学数学的主要内容,在初中代数中占有重要的地位,在学习一元二次方程及有关的知识之前,我们已经掌握了实数与代数式的运算、一元一次方程、分式方程和一次方程组,掌握了这些内容,为学习一元二次方程奠定了基础,而且通过一元二次方程的学习,又对以前学过的数学知识加以巩固,同时一元二次方程也为今后学习指数方程、对数方程、函数等等打下基础,掌握了一元二次方程之后,对学习其它学科知识也有重要的意义.三、知识要点:1.关于一元二次方程:①元的个数是一个,方程是整式方程;②含有未知数的最高次项的次数是二次;③若方程有实数根,则解的个数一定是两个.2.关于配方法解一元二次方程:①首先将二次项系数变为1;②方程两边各加上一次项系数一半的平方,这是配方法的关键的一步,方程左边配成完全平方式,当右边是非负实数时,用开平方法即可求得方程的解.3.一元二次方程ax2+bx+c=0(a≠0)的求根公式:x=(b2-4ac0)4.一元二次方程ax2+bx+c=0(a≠0)根的判别式:Δ=b2-4ac,其作用如下:(1)=b2-4ac>0方程有两个不相等的实数根(2)=b2-4ac=0方程有两个相等的实数根(3)=b2-4ac<0方程没有实数根5.列方程解应用题:(列举几种类型仅供参考)①有关数字问题;②有关增长率问题;③有关几何图形面积问题;④有关溶液、浓度、求容器体积问题;⑤有关行程问题、工作量问题.四、实践与探索:设x1,x2是方程ax2+bx+c=0(a0)的两个根,x1+x2=-,x1 x2=,其作用如下:①能运用它由已知方程的一个根,求出另一个根及未知数的系数;②可以利用它求出两根的平方和、立方和、两根倒数和的平方等等;③利用x1+x2和x1·x2的关系可以解特殊的二元二次方程组;④利用根与系数关系判定两根的符号及方程各项系数的符号;⑤利用根与系数的关系,可以造出新的一元二次方程ax2+bx+c=a(x-x1)(x-x2)五、本章主要数学思想、方法.在数学中,使一种研究对象在一定条件下转化为另一种研究对象的思想称为转化的思想,有未知向已知的转化,复杂问题向简单问题的转化,实际问题向数学问题的转化,数与形的转化,一般与特殊的转化,不同的数学问题之间的转化等等.解决一些数学问题实质就是一个不断转化的过程.这样一些数学思想与数学方法与解题技巧在本章教学中有较多的体现.为了实现这些转化引入了许多数学方法.如本章中的降次法、换元法、配方法等.这里特别要指出的是,怎样转换?转换的结果如何?从而概括总结出一般规律,在学习这些重要方法时可以充分领略数学思想的风采,突出数学思想,提高数学素质,提高数学能力。

用配方法解一元二次方程[上学期]--华师大版

用配方法解一元二次方程[上学期]--华师大版
电动托盘搬运车/
电动托盘搬运车 [问答题,简答题]定(减)径机如何进行变形分配(制定孔型减径系列)? 电动托盘搬运车 [单选,A1型题]长期的全胃肠外营养中,最严重的并发症是()A.高渗性非酮性昏迷B.溶质性利尿C.血磷过低D.凝血酶原过低E.氮质血症 电动托盘搬运车 [判断题]液体气化的方法有蒸发和沸腾。()A.正确B.错误 电动托盘搬运车 [名词解释]内生环境 电动托盘搬运车 [填空题]色漆的遮盖力常用遮盖1m2面积所需用的()来表示。 电动托盘搬运车 [单选]关于精神障碍的一级预防,下列说法哪项不对()A.是预防精神障碍最主动、最积极的措施B.主要针对病因已经明确的精神疾病C.传染性疾病、寄生虫病和营养不良等所致的精神障碍在我国已基本得到控制D.开展精神病流行病学调查和基础理论研究是一级预防的主要内容 电动托盘搬运车 [单选]当我们每个月给工人发放工资时,货币执行的是()。A.交换媒介B.价值标准C.延期支付标准D.储藏手段 电动托盘搬运车 [名词解释]声景观 电动托盘搬运车 [判断题]船舶机舱内有燃油、滑油和沾油的棉纱头等易燃物质.A.正确B.错误 电动托盘搬运车 [单选]焊接热裂纹的形成温度一般为()A、100~600℃B、900~1100℃C、700~900℃D、1100~1300℃ 电动托盘搬运车 [多选]以下哪些原则是培训评价应遵循的基本原则()A、系统性原则B、客观性原则C、指导性原则D、需求性原则E、随机性原则F、思想性原则 电动托盘搬运车 [判断题]违反反洗钱法规定,要承担法律责任的主体只是金融机构。A.正确B.错误 电动托盘搬运车 [单选]按拣货单位分区的目的是将(),使拣取与搬运作业单元化,并简化拣取作业。A.储存单位与拣货单位分类统一B.拣货单位分类C.储存单位分类D.物品分类统一 电动托盘搬运车 [判断题]地图载负量分为长度载负量和数值载负量。A.正确B.错误 电动托盘搬运车 [单选]在如下几条命令中,哪条是查看cisco设备版本信息的()。A、showflash:B、showiosC、showversionD、showconfig 电动托盘搬运车 [单选,A4型题,A3/A4型题]26岁女性,已婚2年,G1P0,婚后一直服用短效口服避孕药避孕,但意外妊娠,于孕50天行人工流产术。患者打算2年后妊娠,希望继续避孕,下列建议正确的是()A.停用口服避孕药,改用IUD避孕B.停用口服避孕药,改用长效避孕针C.停用口服避孕药 电动托盘搬运车 [单选,A2型题,A1/A2型题]治疗鼻出血致休克首选的方法是()。A.鼻内镜检查B.烧灼法C.鼻腔纱条填塞D.补液、输血、给升压药、保暖等抗休克治疗E.血管结扎法 电动托盘搬运车 [单选]下列情况易因使用抗生素而诱发呼吸肌麻痹,不包括()A.肾功能不全患者用药蓄积B.全麻与筒箭毒碱和琥珀胆碱等肌松药合用C.静脉内、腹腔内和胸腔内用药D.血钙增高E.重症肌无力病患者 电动托盘搬运车 [单选]最重要的可控制的中风危险因素是()A.高胆固醇和高脂血症B.糖尿病C.吸烟D.高血压病E.高血黏稠度 电动托盘搬运车 [单选,A2型题,A1/A2型题]溶血对血清中的酶活性影响最大的是()A.LPSB.LDC.ASTD.AMYE.ALT 电动托盘搬运车 [单选]下列有关建设单位申请领取施工许可证应具备的法定条件的表述中,错误的是()。A.需要拆迁的,已取得房屋拆迁许可证B.有保证工程质量和安全的具体措施C.工程所需的消防设计按规定审核合格D.建设资金已经落实 电动托盘搬运车 [多选]某施工单位在某工程项目的施工中,因自身原因导致施工中出现质量问题,给建设单位造成损失,该施工单位承担责任的方式应包括()。A.停业整顿B.赔偿损失C.返还财产D.修理E.吊销资质证书 电动托盘搬运车 [多选]低压开关设备是指用于()以下的开关电器。A.交流1200VB.交流380VC.直流1500VD.直流220V 电动托盘搬运车 [单选]亚急性感染性心内膜炎最常见的并发症是()A.心肌脓肿B.心力衰竭C.急性心肌梗死D.肾脓肿E.化脓性脑膜炎 电动托盘搬运车 [多选]对倾斜岩层的厚度,下列()的说法是正确的()A.垂直厚度总是大于真厚度B.当地面与层面垂直时,真厚度等于视厚度C.在地形地质图上,其真厚度就等于岩层界限顶面和底面标高之差D.真厚度的大小与地层倾角B.功夫C.代森锰锌D.呋喃丹 电动托盘搬运车 [单选,A2型题,A1/A2型题]LD酶有几种结构不同的同工酶().A.2B.3C.4D.5E.6 电动托盘搬运车 [单选,A1型题]上消化道出血的主要临床表现为()A.中下腹疼痛B.右下腹腹块C.鲜血便或略红色血便D.呕血呈咖啡色,大便呈柏油样E.恶心、呕吐胃内容物 电动托盘搬运车 [单选]患者,女性,超声见乳房内无回声光团,边清壁薄,CDFI未见血流,如图所示考虑为()。A.乳腺癌B.乳腺腺瘤C.乳腺脓肿D.乳腺囊肿E.以上都不是 电动托盘搬运车 [单选,B1型题]呕吐物多且有粪臭味的是()A.幽门梗阻B.十二指肠淤积症C.小肠梗阻D.胃潴留E.胃癌 电动托盘搬运车 [单选,A型题]《中华人民共和国药典》是由A、国家药典委员会制定的药物手册B、国家药典委员会编写的药品规格标准的法典C、国家颁布的药品集D、国家药品监督局制定的药品标准E、国家药品监督管理局实施的法典 电动托盘搬运车 [单选,A2型题,A1/A2型题]梅毒引起的鼻中隔穿孔多位于()。A.Little区B.鼻中隔前上部C.鼻中隔前下部D.鼻中隔骨部E.鼻中隔软骨部 电动托盘搬运车 [单选,A1型题]适合扶正祛邪并用的病证是()A.邪气盛,正气未衰B.正气虚,邪气未盛C.邪正俱盛D.邪气盛,正气已衰E.邪祛正虚 电动托盘搬运车 [问答题,简答题]凝结水系统由哪些设备组成? 电动托盘搬运车 [单选]离心泵在额定工况效率最高是因为该工况()损失最小。A.漏泄B.机械摩擦C.泵内液体摩擦D.液体进、出叶轮撞击 电动托盘搬运车 [单选]小陈是某中学初三学生。临近中考,学校进行了一次摸底考试,并划定了分数线,规定凡低于这个分数的学生都将被班主任“劝退”,不能报名参加当年的中考。考试结果出来,小陈的名字赫然在被“劝退”之列。小陈的父亲曾找过班主任和学校领导,要求学校准许孩子 电动托盘搬运车 [多选]短暂性脑缺血发作,下列哪些方面是正确的()A.颈内动脉系或椎基底动脉系的神经症状及体征B.神经系统症状于24小时内完全消失C.脑膜刺激征阴性D.脑CT扫描正常E.脑脊液正常 电动托盘搬运车 [问答题,简答题]分级护理原则? 电动托盘搬运车 [单选]一孕妇产前检查胎儿双顶径12.2cm,剖宫产后胎儿经颅超声检查示胎儿脑室系统形态失常,第三脑室呈圆形,无回声区内未见光点群回声,脑组织受压变薄萎缩,脑室宽度为7mm,最可能的诊断是()。A.脑出血B.脑积水C.脑肿瘤Dandy-Walker综合征E.HIE 电动托盘搬运车 [单选]兽药房专业技术人员调剂处方时必须做到“四查十对”,下列选项哪项不是所查内容?()A、查药品B、查配伍禁忌C、查价格D、查用药合理性
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档