华师大版 一元二次方程单元测试题
华师大版数学九年级上册第22章一元二次方程单元测试卷(含答案)

第22章学情评估一、选择题(每题3分,共24分)题序12345678答案1.下列方程是一元二次方程的是( )A .-6x +2=0B .2x 2-y +1=0 C.1x 2+x =2 D .x 2+2x =02.一元二次方程x 2+x -2=0根的判别式的值为( )A .-7B .3C .9D .±33.方程(x -3)2=4的根为( )A .x 1=x 2=5B .x 1=5,x 2=1C .x 1=x 2=1D .x 1=7,x 2=-14.关于x 的方程mx 2+2x =1有两个不相等的实数根,则m 的值可以是( )A .1B .0C .-1D .-25.等腰三角形的两条边长分别是方程x 2-8x +12=0的两根,则该等腰三角形的周长是( )A .10B .12C .14D .10或146.以x =4±16+4c 2为根的一元二次方程可能是( )A .x 2-4x -c =0B .x 2+4x -c =0C .x 2-4x +c =0D .x 2+4x +c =07.对于一元二次方程ax 2+bx +c =0(a ≠0),给出下列说法:①若a +b +c =0,则b 2-4ac ≥0;②若方程ax 2+c =0有两个不相等的实数根,则方程ax 2+bx +c =0必有两个不相等的实数根;③若x 0是一元二次方程ax 2+bx +c =0的根,则b 2-4ac =(2ax 0+b )2;④若c 是方程ax 2+bx +c =0的一个根,则一定有ac +b +1=0成立.其中正确的是( )A .①②B .①②④C .①②③④D .①②③8.在△ABC 中,∠ABC =90°,AB =6 cm ,BC =8 cm ,动点P 从点A 沿线段AB向点B运动,动点Q从点B沿线段BC向点C运动,两点同时开始运动,点P的速度为1 cm/s,点Q的速度为2 cm/s,当Q到达点C时两点同时停止运动.若△PBQ的面积为5 cm2,则点P运动的时间为( )A.1 s B.4 s C.5 s或1 s D.4 s或1 s二、填空题(每题3分,共18分)9.一元二次方程3x2+2x-5=0的一次项系数是________.10.已知关于x的一元二次方程x2+kx-3=0的一个根是x=1,则另一个根是________.11.已知x=-1是关于x的方程x2+mx-n=0的一个根,则m+n的值是________.12.定义运算:m&n=m2-mn+2.例如:1&2=12-1×2+2=1,则方程x&3=0的根的情况为____________________.13.如图,从正方形的铁片上沿平行于一条边的直线截去一个3 cm宽的长方形铁片,余下(阴影部分)面积为40 cm2,则原来的正方形铁片的面积是________cm2.(第13题)14.若实数a,b分别满足a2-4a+3=0,b2-4b+3=0,且a≠b,则(a+1)(b+1)的值为________.三、解答题(15题8分,16,17题每题9分,18,19题每题10分,20题12分,共58分)15.解方程:100(1-x)2=81.①你选用的解法是____________;②直接写出该方程的解是____________;③请你结合生活经验,设计一个问题,使它能利用方程“100(1-x)2=81”来解决.你设计的问题是______________________________________.16.已知x1,x2是方程x2-(3+1)x+3=1 的两个根.求:3(1)x 12+x 22; (2)1x 1+1x 2.17.已知关于x 的一元二次方程kx 2-(2k +4)x +k -6=0有两个不相等的实数根.(1)求k 的取值范围;(2)当k =1时,用配方法解方程.18.下面是某月的日历表,在该月日历表上可以用一个方框圈出4个数(如图所示),若圈出的4个数中,最小数与最大数的乘积为48,求这个最小数.(请用方程的知识解答,否则不给分)(第18题)19.在蚌埠花博园附近某盆栽销售处发现:进货价为每盆50元,销售价为每盆80元的某盆栽平均每天可售出20盆.现此销售处决定采取适当的降价措施,扩大销售量,增加盈利.经市场调查发现:如果每盆降价2元,那么平均每天就可多售出3盆.设每盆降价x元.(1)现在每天卖出________盆,每盆盈利________元(用含x的代数式表示);(2)当x为何值时,销售这种盆栽平均每天能盈利700元,同时又可以使顾客得到较多的实惠?(3)该销售处通过销售这种盆栽平均每天能盈利1 000元吗?请说明理由.20. 阅读材料:各类方程及方程组的解法.求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似地,求解三元一次方程组,把它转化为二元一次方程组来解.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程及方程组的解法不尽相同,但是它们有一个共同的基本数学思想——转化,即把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x3+x2-2x=0,可以通过提公因式把它转化为x(x2+x-2)=0,解方程x=0和x2+x-2=0,可得方程x3+x2-2x=0的根.(1)问题:方程x3+x2-2x=0的根是x1=0,x2=________,x3=________;5(2)拓展:用“转化”思想求方程 2x +3=x 的根;(3)应用:如图,已知矩形草坪ABCD 的长AD =8 m ,宽AB =3 m ,小华先把一根长为10 m 的绳子的一端固定在点B ,沿草坪边缘BA ,AD 走到点P 处,把绳子PB 段拉直并固定在点P ,然后沿草坪边缘PD ,DC 走到点C 处,把绳子剩下的一段拉直,绳子的另一端恰好落在点C 处,求AP 的长.(第20题)答案一、1.D 2.C 3.B 4.A 5.C 6.A 7.D 8.A 点拨:设点P 运动的时间为t s ,则BP =(6-t )cm ,BQ =2t cm ,依题意得12(6-t )×2t =5,整理,得t 2-6t +5=0,解得t 1=1,t 2=5.因为当Q 到达点C 时两点同时停止运动,所以0≤2t ≤8,所以0≤t ≤4,所以t =1.故选A.二、9.2 10.x =-3 11.1 12.有两个不相等的实数根13.64 14.8 三、15.①直接开平方法②x 1=0.1,x 2=1.9③某种药品的原价是100元/盒,经过两次降价后的价格是81元/盒,求平均每次降价的百分率(答案不唯一)16.解:原方程可变形为x 2-(3+1)x +3-1=0,由题意得x 1+x 2=3+1,x 1x 2=3-1.(1)x 12+x 22=(x 1+x 2)2-2x 1x 2=(3+1)2-2×(3-1)=6.(2)1x 1+1x 2=x 1+x 2x 1x 2=3+13-1=(3+1)2(3-1)(3+1)=4+2 32=2+ 3.17.解:(1)因为关于x 的一元二次方程kx 2-(2k +4)x +k -6=0有两个不相等的实数根,所以Δ=[-(2k +4)]2-4k (k -6)>0,且k ≠0,解得k >-25且k ≠0.(2)当k =1时,原方程为x 2-(2×1+4)x +1-6=0,即x 2-6x -5=0.移项,得x 2-6x =5.配方,得x2-6x+9=5+9,即(x-3)2=14.直接开平方,得x-3=±14,所以x1=3+14,x2=3-14.18.解:设这个最小数为x,则最大数为x+8,依题意得x(x+8)=48,整理,得x2+8x-48=0,解得x1=4,x2=-12(不合题意,舍去).答:这个最小数为4.19.解:(1)(20+3x2);(30-x)(2)由题意得(30-x)(20+3x2)=700,解得x1=10,x2=203.因为要使顾客得到较多的实惠,所以x=10.(3)不能.理由:若销售这种盆栽平均每天能盈利1 000元,则(30-x)(20+3x)=1 000,整理,得3x2-50x+800=0,因为Δ=(-50)2-4×3×800=-7 100 2<0,所以原方程无实数根,所以该销售处通过销售这种盆栽平均每天不能盈利1 000元.20.解:(1)-2;1(2)方程的两边平方,得2x+3=x2,即x2-2x-3=0,所以(x-3)(x+1)=0,解得x1=3,x2=-1.当x=-1时,2x+3=1=1≠-1,舍去;当x=3时,2x+3=3=x,所以方程2x+3=x的根是x=3.(3)因为四边形ABCD是矩形,所以∠A=∠D=90°,AB=CD=3 m.设AP=xm,则PD=(8-x)m,因为BP+CP=10 m,BP=AB2+AP2,CP=PD2+CD2,所以9+x2+(8-x)2+9=10,所以(8-x)2+9=10-9+x2,两边平方,得(8-x)2+9=100-209+x2+9+x2,整理,得5x2+9=4x+9,两边平方并整理,得x2-8x+16=0,即(x-4)2=0,解得x1=x2=4.经检验,x=4是方程的根.答:AP的长为4 m.7。
华师大版-数学-九年级上册- 一元二次方程 单元测试4

第22章一元二次方程单元测试一、选择题:(每小题2分,共20分)1.下列方程中不一定是一元二次方程的是( )A.(a-3)x2=8 (a≠0)B.ax2+bx+c=02320 57x+-=2.已知一元二次方程ax2+c=0(a≠0),若方程有解,则必须有C等于( )A.-12B.-1C.12D.不能确定3.若关于x的方程ax2+2(a-b)x+(b-a)=0有两个相等的实数根,则a:b等于( )A.-1或2B.1或12C.-12或1 D.-2或14.若关于y的一元二次方程ky2-4y-3=3y+4有实根,则k的取值范围是( )A.k>-74B.k≥-74且k≠0C.k≥-74D.k>74且k≠05.已知方程11x ax a+=+的两根分别为a,1a, 则方程1111x ax a+=+--的根是( )A.1,1aa-B.11,1aa--C.11,aa- D.,1aaa-6.关于x的方程x2+2(k+2)x+k2=0的两个实数根之和大于-4,则k的取值范围是( )A.k>-1B.k<0C.-1<k<0D.-1≤k<07.若方程x2-kx+6=0的两个实数根分别比方程x2+kx+6=0的两个实数根大5,则k的值为( )8.使分式2561x xx--+的值等于零的x是( )A.6B.-1或6C.-1D.-69.方程x2-4│x│+3=0的解是( )A.x=±1或x=±3B.x=1和x=3C.x=-1或x=-3D.无实数根10.如果关于x的方程x2-k2-16=0和x2-3k+12=0有相同的实数根,那么k的值是( )A.-7B.-7或4C.-4D.4二、填空题:(每小题3分,共30分)11.已知是方程x2+mx+7=0的一个根,则m=________,另一根为_______.12.已知方程3ax2-bx-1=0和ax2+2bx-5=0,有共同的根-1, 则a= ______, b=______.13.若一元二次方程ax2+bx+c=0(a≠0)有一个根为1,则a+b+c=______;若有一个根为-1,则b 与a、c之间的关系为_______;若有一个根为零,则c=_______.14.若方程2x2-8x+7=0的两根恰好是一个直角三角形两条直角边的长,则这个直角三角形的斜边长是___________.15.一元二次方程x2-3x-1=0与x2-x+3=0的所有实数根的和等于____.16.某食品连续两次涨价10%后价格是a元,那么原价是__________.17.已知两数的积是12,这两数的平方和是25, 以这两数为根的一元二次方程是___________.18.如果关于x的方程x2-2(1-k)+k2=0有实数根α,β,那么α+β的取值范围是_______.19.设A是方程x2的所有根的绝对值之和,则A2=________.20.长方形铁片四角各截去一个边长为5cm的正方形, 而后折起来做一个没盖的盒子,铁片的长是宽的2倍,作成的盒子容积为 1. 5 立方分米, 则铁片的长等于________,宽等于________.三、解答题:(每题7分,共21分)21.设x1,x2是关于x的方程x2-(k+2)x+2k+1=0的两个实数根,且x12+x22=11.(1)求k的值;(2)利用根与系数的关系求一个一元二次方程,使它的一个根是原方程两个根的和,另一根是原方程两根差的平方.22.设a、b、c是△ABC的三条边,关于x的方程x2x+2c-a=0有两个相等的实数根,方程3cx+2b=2a的根为0.(1)求证:△ABC为等边三角形;(2)若a,b为方程x2+mx-3m=0的两根,求m的值.23.如图,已知△ABC 中,∠ACB=90°,过C 点作CD ⊥AB,垂足为D,且AD=m,BD= n,AC 2:BC 2=2:1,又关于x 的方程14x 2-2(n-1)x+m 2-12=0 两实数根的差的平方小于192,求:m,n 为整数时, 一次函数y=mx+n 的解析式.n mCD BA四、解意自编题:(9分)24.小李和小张各自加工15个玩具,小李每小时比小张多加工1个,结果比小张少12小时完成任务.问两个每小时各加工多少个玩具?要求:先根据题意,设合适未知数列出方程或方程组(不需解答), 然后根据你所方程或方程组,编制一道行程问题的应用题.使你所列方程或方程组恰好也是你所编的行程应用题的方程或方程组,并解这个行程问题.五、列方程解应用题:(每小题10分,共20分)25.国家为了加强对香烟产销的宏观管理,对销售香烟实行征收附加税政策. 现在知道某种品牌的香烟每条的市场价格为70元,不加收附加税时, 每年产销100万条,若国家征收附加税,每销售100元征税x 元(叫做税率x%), 则每年的产销量将减少10x 万条.要使每年对此项经营所收取附加税金为168万元,并使香烟的产销量得到宏观控制,年产销量不超过50万条,问税率应确定为多少?26.已知一个小灯泡的额定功率为1.8W,额定电压小于8V.当它与一个30 的电阻并联后接入电路时,干流电路的电流是0.5A,且灯泡正常发光. 求小灯泡的额定电压.参考答案一、1.B 2.D 3.B 4.B 5.D 6.D. 7.D. 8.A 9.A 10.D二、11.m=-6,另一根为.12.a=1,b=-2.13.a+b+c=0,b=a+c,c=0.14.315.316.100 121a元17.x2+7x+12=0或x2-7x+12=018.a+β≥119.4083 提示:由公式法得x=2,则=∴A2=408320.60,30三、21.k=-3,y2-20y-21=022.(1)证明:方程x2x+2c-a=0有两个相等的实根,∴△=0,即△)2-4×(2c-a)=0,解得a+b=2c,方程3cx+2b=2a的根为0,则2b=2a,a=b,∴2a=2c,a=c,∴a=b=c,故△ABC为等边三角形.(2)解:∵a、b相等,∴x2+mx-3m=0有两个相等的实根,∴△=0,∴△=m2+4×1×3m=0,即m1=0,m2=-12.∵a、b为正数,∴m1=0(舍),故m=-12.23.当n=1,m=2时,所求解析式为y=2x+1,当n=2,m=4时,解析式为y=4x+2.四、24.所以小张每小时加工5个零件,只要符合条件就行,本题是开放性题目,答案不惟一. 五、25.税率应确定为6%.26.小灯泡的额定电压是6V.。
华师大版九年级数学上册《一元二次方程》单元试卷检测练习及答案解析

华师大版九年级数学上册《一元二次方程》单元试卷检测练习及答案解析一、选择题1、下列方程中是一元一次方程的是( )A.B.C.D.2、若方程(m-1)x2+x-2=0是关于x的一元二次方程,则m的取值范围是()。
A.m = 0 B.m ≠ 1C.m ≥0且m ≠ 1 D.m 为任意实数3、下列方程是一元二次方程的一般形式的是()A.5x2-3x=0 B.3(x-2)2=27C.(x-1)2=16 D.x2+2x=84、下列方程中,两个实数根的和为4的是()A.x2-4x+5=0 B.x2+4x-l=0C.x2-8x+4=0 D.x2-4x-1=05、方程经过配方法化为的形式,正确的是A.B.C.D.6、方程x2=5x的根是().A.x1=0,x2=5 B.x1=0,x2=-5C.x=0 D.x=57、若m、n是一元二次方程x2-5x-2=0的两个实数根,则m+n-mn的值是()A.7 B.-7 C.3 D.-38、若、是一元二次方程的两个根,则的值是()A.-1 B.0 C.1 D.29、某农家前年水蜜桃的亩产量为800千克,今年的亩产量为1200千克.假设从前年到今年水蜜桃亩产量的年平均增长率都为x,则可列方程()A.800(1+2x)=1200 B.800(1+x2)=1200C.800(1+x)2=1200 D.800(1+x)=120010、某商品计划以每件600元的均价对外销售,后来为加快资金周转,对价格经过两次下调后,决定以每件486元的均价销售.则平均每次下调的百分率是().A.30% B.20% C.15% D.10%二、填空题11、已知(a-1)x2-5x+3=0是一个关于x的一元二次方程,则不等式3a+6>0的解集_______。
12、若关于的一元二次方程的一个根是0,则=_______________。
13、关于的方程的一个根是2 ,则_______ 。
14、已知(x2+y2+1)2=81,则x2+y2=________________。
最新华师大版2022年九年级上册《一元二次方程》单元测试题 (解析版)

《一元二次方程》单元测试题一.选择题(共10小题,满分30分,每小题3分)1.下列方程中,是一元二次方程的是()A.x2+2xy=1B.x2+x+1C.x2=4D.ax2+bx+c=0 2.方程2x2+4x﹣3=0的二次项系数、一次项系数、常数项分别是()A.2,﹣3,﹣4B.2,﹣4,﹣3C.2,﹣4,3D.2,4,﹣3 3.用配方法解一元二次方程x2﹣4x﹣9=0,可变形为()A.(x﹣2)2=9B.(x﹣2)2=13C.(x+2)2=9D.(x+2)2=134.如果关于x的方程x2﹣2x﹣k=0有实根.那么以下结论正确的是()A.k>lB.k=﹣1C.k≥﹣1D.k<﹣15.已知k为一元二次方程x2+7x﹣1=0的一个根,则2k2+14k+2016的值是()A.2016B.2017C.2018D.20196.用求根公式法解方程x2﹣2x﹣5=0的解是()A.x1=1+,x2=1﹣B.x1=2+,x2=2﹣C.x1=1+,x2=1﹣D.x1=2+,x2=2﹣7.方程=5﹣x的解是()A.x=3B.x=8C.x1=3,x2=8D.x1=3,x2=﹣8 8.设方程x2+x﹣2=0的两个根为α,β,那么α+β﹣αβ的值等于()A.﹣3B.﹣1C.1D.39.2020年,新型冠状病毒感染的肺炎疫情牵动着全国人民的心.雅礼中学某学生写了一份预防新型冠状病毒倡议书在微信朋友圈传播,规则为:将倡议书发表在自己的朋友圈,再邀请n个好友转发倡议书,每个好友转发倡议书,又邀请n个互不相同的好友转发倡议书,以此类推,已知经过两轮传播后,共有931人参与了传播活动,则方程列为()A.(1+n)2=931B.n(n﹣1)=931C.1+n+n2=931D.n+n2=93110.已知一元二次方程a(x+m)2+n=0(a≠0)的两根分别为﹣3,1,则方程a(x+m﹣2)2+n=0(a≠0)的两根分别为()A.1,5B.﹣1,3C.﹣3,1D.﹣1,5二.填空题(共6小题,满分24分,每小题4分)11.若关于x的方程+3x+5=0是一元二次方程,则a应满足.12.方程x2=2020x的解是.13.已知关于x的一元二次方程(a﹣3)x2﹣2x+a2﹣9=0的常数项是0,则a=.14.已知x1,x2是关于x的方程x2﹣(m﹣1)x﹣m=0的两个根,且x1+x2=3,则m的值是.15.用一根20m长的绳子围成一个面积为24m2矩形,则矩形的长与宽分别是.16.关于x的一元二次方程mx2﹣(3m﹣1)x+2m﹣1=0.其根的判别式的值为1,则该方程的根为.三.解答题(共8小题,满分66分)17.(12分)解方程(1)(2x﹣5)2=9(2)x2﹣4x=96(3)x2﹣9x﹣8=0(4)3(x﹣2)2=x(x﹣2)18.(6分)今年我国发生了较为严重的新冠肺炎疫情,口罩供不应求,某商店恰好年前新进了一批口罩,若按每个盈利1元销售,每天可售出200个,如果每个口罩的售价上涨0.5元,则销售量就减少10件,问应将每个口罩涨价多少元时,才能让顾客得到实惠的同时每天利润为480元?19.(7分)已知:△ABC的两边AB、AC的长是关于x的一元二次方程x2﹣(2k+3)x+k2+3k+2=0的两个实数根,第三边BC 的长为5.(1)k为何值时,△ABC是等腰三角形?并求△ABC的周长.(2)k为何值时,△ABC是以BC为斜边的直角三角形?20.(7分)某玩具销售商试销某一品种的玩具(出厂价为每个30元),以每个40元销售时,平均每月可销售100个,现为了扩大销售,销售商决定降价销售,在原来1月份平均销售量的基础上,经2月份的试场调查,3月份调整价格后,月销售额达到5760元,已知该玩具价格每个下降1元,月销售量将上升10个.(1)求1月份到3月份销售额的月平均增长率.(2)求三月份时该玩具每个的销售价格.21.(8分)如果x1,x2是一元二次方程ax2+bx+c=0(a≠0)两根,那么x1+x2=﹣,x1•x2=,这就是著名的韦达定理.已知m,n是方程2x2﹣5x﹣1=0的两根,不解方程计算:(1)+;(2).22.(8分)目前,某镇正在为小城市建设做着不懈努力,镇政府决定在新城区政府大楼前建设一块个长a米,宽b米的长方形草坪,并计划在该草坪场上修筑宽都为2米的两条互相垂直的人行道(如图).(1)用含a,b的代数式表示两条人行道的总面积;(2)若已知a:b=3:2,并且四块草坪的面积之和为2204平方米,试求原长方形的长与宽各为多少米?23.(9分)已知关于x的一元二次方程x2﹣(8+k)x+8k=0.(1)证明:无论k取任何实数,方程总有实数根.(2)若,求k的值.(3)若等腰三角形的一边长为5,另两边长恰好是这个方程的两个根,求这个等腰三角形的周长.24.(9分)阅读探究:“任意给定一个矩形A,是否存在另一个矩形B,它的周长和面积分别是已知矩形周长和面积的一半?”(完成下列空格)(1)当已知矩形A的边长分别为6和1时,小亮同学是这样研究的:设所求矩形的两边分别是x和y,由题意得方程组,消去y 化简得:2x2﹣7x+6=0,∵b2﹣4ac=49﹣48>0,∴x1=,x2=,∴满足要求的矩形B存在.(2)如果已知矩形A的边长分别为2和1,请你仿照小亮的方法研究是否存在满足要求的矩形B.(3)如果矩形A的边长为m和n,请你研究满足什么条件时,矩形B存在?参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:A、该方程属于二元二次方程,故本选项不符合题意.B、它不是方程,故本选项不符合题意.C、该方程符合一元二次方程的定义,故本选项符合题意.D、当a=0时,该方程不是关于x的一元二次方程,故本选项不符合题意.故选:C.2.解:方程2x2+4x﹣3=0的二次项系数是2,一次项系数是4、常数项是﹣3,故选:D.3.解:∵x2﹣4x﹣9=0,∴x2﹣4x=9,则x2﹣4x+4=9+4,即(x﹣2)2=13,故选:B.4.解:由题意知△=(﹣2)2﹣4×1×(﹣k)≥0,解得:k≥﹣1,故选:C.5.解:∵k是一元二次方程x2+7x﹣1=0的一个根,∴x=k满足该方程,即k2+7k﹣1=0,解得k2+7k=1.∴2k2+14k+2016=2(k2+7k)+2016=2018故选:C.6.解:△=(﹣2)2﹣4×1×(﹣5)=24,x==1±,所以x1=1+,x2=1﹣.故选:A.7.解:两边平方,得x+1=x2﹣10x+25,即x2﹣11x+24=0,(x﹣3)(x﹣8)=0,则x﹣3=0,x﹣8=0,解得:x=3或8.检验:当x=3时,左边=2,右边=2,则左边=右边,则x=3是方程的解;当x=8时,左边=3,右边=﹣3,则x=8不是方程的解.总之,方程的解是x=3.故选:A.8.解:∵α,β是方程x2+x﹣2=0的两个根,∴α+β=﹣1,αβ=﹣2,∴原式=﹣1﹣(﹣2)=1.故选:C.9.解:由题意,得n2+n+1=931,故选:C.10.解:∵一元二次方程a(x+m)2+n=0(a≠0)的两根分别为﹣3,1,∴方程a(x+m﹣2)2+n=0(a≠0)中x﹣2=﹣3或x﹣2=1,解得:x=﹣1或3,即方程a(x+m﹣2)2+n=0(a≠0)的两根分别为﹣1和3,故选:B.二.填空题(共6小题,满分24分,每小题4分)11.解:是方程二次项,即a2﹣1=2,a2=3,∴a=±.12.解:∵x2﹣2020x=0,∴x(x﹣2020)=0,则x=0或x﹣2020=0,解得x1=0,x2=2020,故答案为:x1=0,x2=2020.13.解:∵关于x的一元二次方程(a﹣3)x2﹣2x+a2﹣9=0的常数项是0,∴a2﹣9=0,即a=3或a=﹣3,当a=3时,方程为﹣2x=0,不符合题意,则a=﹣3.故答案为:﹣3.14.解:∵x1,x2是关于x的方程x2﹣(m﹣1)x﹣m=0的两个根,且x1+x2=3,∴m﹣1=3,∴m=4.故答案为:4.15.解:设矩形的长为xm,则宽为m,依题意,得:x•=24,整理,得:x2﹣10x+24=0,解得:x1=6,x2=4.∵x≥,∴x≥5,∴x=6,=4.故答案为:6m,4m.16.解:根据题意△=(3m﹣1)2﹣4m(2m﹣1)=1,解得m1=0,m2=2,而m≠0,∴m=2,此时方程化为2m2﹣5x+3=0,(2x﹣3)(x﹣1)=0,∴x1=,x2=1.故答案为x1=,x2=1.三.解答题(共8小题,满分66分)17.解:(1)(2x﹣5)2=9,2x﹣5=±3,所以x1=1,x2=4;(2)x2﹣4x=96,x2﹣4x﹣96=0,(x﹣12)(x+8)=0所以x1=12,x2=﹣8;(3)x2﹣9x﹣8=0,∵a=1,b=﹣9,c=﹣8,△=(﹣9)2﹣4×1×(﹣8)=113,∴x=,所以x1=,x2=;(4)3(x﹣2)2=x(x﹣2)3(x﹣2)2﹣x(x﹣2)=0,(x﹣2)(3x﹣6﹣x)=0,所以x1=2,x2=3.18.解:设应将每个口罩涨价x元,则每天可售出(200﹣10×)件,依题意,得:(1+x)(200﹣10×)=480,化简,得:x2﹣9x+14=0,解得:x1=2,x2=7.又∵要让顾客得到实惠,∴x=2.答:应将每个口罩涨价2元时,才能让顾客得到实惠的同时每天利润为480元.19.解:(1)∵△ABC是等腰三角形;∴当AB=AC时,△=b2﹣4ac=0,∴(2k+3)2﹣4(k2+3k+2)=0,4k2+12k+9﹣4k2﹣12k﹣8=0,方程无解,k不存在;当AB=BC时,即AB=5,∴5+AC=2k+3,5AC=k2+3k+2,解得k=3或4,∴AC=4或6∴△ABC的周长为14或16;(2)∵△ABC是以BC为斜边的直角三角形,BC=5,∴AB2+AC2=25,∵AB、AC的长是关于x的一元二次方程x2﹣(2k+3)x+k2+3k+2=0的两个实数根,∴AB+AC=2k+3,AB•AC=k2+3k+2,∴AB2+AC2=(AB+AC)2﹣2AB•AC,即(2k+3)2﹣2(k2+3k+2)=25,解得k=2或﹣5(不合题意舍去).故k为2时,△ABC是以BC为斜边的直角三角形.20.解:(1)设1月份到3月份销售额的月平均增长率为x,由题意得:40×100(1+x)2=5760∴(1+x)2=1.44∴1+x=±1.2∴x1=0.2=20%,x2=﹣2.2(舍去)∴1月份到3月份销售额的月平均增长率为20%.(2)设三月份时该玩具的销售价格在每个40元销售的基础上下降y元,由题意得:(40﹣y)(100+10y)=5760∴y2﹣30y+176=0∴(y﹣8)(y﹣22)=0∴y1=8,y2=22当y=22时,3月份该玩具的销售价格为:40﹣22=18<30,不合题意,舍去∴y=8,3月份该玩具的销售价格为:40﹣8=32元∴3月份该玩具的销售价格为32元.21.解:∵m,n是方程2x2﹣5x﹣1=0的两根,∴m+n=,mn=﹣.(1)+===﹣10;(2)===.22.解:(1)∵两条人行横道的长分别为a米和b米,宽均为2米,∴人行横道的面积为:2a+2b﹣4;(2)∵a:b=3:2,∴设a=3x,则b=2x,根据题意得:(3x﹣2)(2x﹣2)=2204解答:x=20或x=﹣(舍去)∴3x=60,2x=40,答:原长方形的长与宽各为60米和40米.23.解:(1)∵△=(8+k)2﹣4×8k=(k﹣8)2,∵(k﹣8)2≥0,∴△≥0,∴无论k取任何实数,方程总有实数根;(2)∵x1+x2=8+k,x1•x2=8k,,(x1+x2)2=x+x+2x1•x2,∴(8+k)2=68+16k,解得:k=±2(3)解方程x2﹣(8+k)x+8k=0得x1=k,x2=8,①当腰长为8时,则k=8,8+5=13>8周长=8+8+5=21;②当底边为8时,∴k=5,∴周长=5+5+8=18.24.解:(1)利用求根公式可知:x1==,x2==2.故答案为:;2.(2)设所求矩形的两边分别是x和y,根据题意得:,消去y化简得:2x2﹣3x+2=0.∵b2﹣4ac=(﹣3)2﹣4×2×2=﹣7<0,∴该方程无解,∴不存在满足要求的矩形B.(3)设所求矩形的两边分别是x和y,根据题意得:,消去y化简得:2x2﹣(m+n)x+mn=0.∵矩形B存在,∴b2﹣4ac=[﹣(m+n)]2﹣4×2mn≥0,∴(m﹣n)2≥4mn.故当m、n满足(m﹣n)2≥4mn时,矩形B存在.。
最新华东师大版九年级上册《一元二次方程》单元测试卷 含答案

《一元二次方程》单元测试卷一.选择题(共12小题,满分36分,每小题3分)1.若方程(m﹣1)x2﹣4x=0是关于x的一元二次方程,则m的取值范围是()A.m≠1B.m=1C.m≠0D.m≥12.一元二次方程x2﹣4x﹣3=0的二次项系数、一次项系数和常数项分别是()A.1,4,3B.0,﹣4,﹣3C.1,﹣4,3D.1,﹣4,﹣3 3.已知3是关于x的方程4x2﹣6a+3=0的一个解,则6a的值是()A.42B.39C.36D.334.用配方法解一元二次方程x2﹣6x﹣2=0,配方后得到的方程是()A.(x﹣3)2=2B.(x﹣3)2=8C.(x﹣3)2=11D.(x+3)2=95.一元二次方程x2﹣2x+1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定6.方程=5﹣x的解是()A.x=3B.x=8C.x1=3,x2=8D.x1=3,x2=﹣8 7.关于x的方程x3=4x的解的说法正确的是()A.只有一个解x=2B.有两个解x=0、x=2C.有两个解x=±2D.有三个解x=0、x=±28.将代数式x2﹣10x+5配方后,发现它的最小值为()A.﹣30B.﹣20C.﹣5D.09.某校“研学”活动小组在一次野外实践时,发现一种植物的1个主干上长出x个支干,每个支干上再长出x个小分支.若在1个主干上的主干、支干和小分支的数量之和是43个,则x等于()A.4B.5C.6D.710.在一幅长60dm宽40dm的庆祝建国70周年宣传海报四周镶上相同宽度的金色纸片制成一幅矩形挂图.要使整个挂图的面积为2800dm2,设纸边的宽为xdm,则可列出方程为()A.x2+100x﹣400=0B.x2﹣100x﹣400=0C.x2+50x﹣100=0D.x2﹣50x﹣100=011.若一元二次方程x2﹣3x+1=0的两个根分别为a,b,则a2﹣3a+ab﹣2的值为()A.﹣4B.﹣2C.0D.112.有两个一元二次方程:M:ax2+bx+c=0;N:cx2+bx+a=0,下列结论中错误的是()A.如果方程M有两个相等的实数根,那么方程N也有两个相等的实数根B.如果方程M有两根都是正数,那么方程N的两根也都是正数C.如果5是方程M的一个根,那么是方程N的根D.如果方程M和方程N有一个相同的根,那么这个根可能是x =1二.填空题(共5小题,满分20分,每小题4分)13.已知关于x的方程x2+kx﹣2=0的一个根是x=2,则另外一个根为.14.已知关于x的一元二次方程x2﹣2x﹣k=0有两个实数根,则实数k的取值范围是.15.方程(x﹣1)2=20202的根是.16.若方程x2+mx+1=0和x2+x+m=0有公共根,则常数m的值是.17.三角形的两边长分别为3和6,第三边的长是方程x2﹣6x+8=0的解,则此三角形的周长是.三.解答题(共8小题,满分64分)18.(12分)解下列方程:(1)用开平方法解方程:(x﹣1)2=4(2)用配方法解方程:x2﹣4x+1=0(3)用公式法解方程:3x2+5(2x+1)=0(4)用因式分解法解方程:3(x﹣5)2=2(5﹣x)19.(6分)为满足市场需求,某超市在端午节前夕购进价格为3元/个的某品牌粽子,根据市场预测,该品牌粽子每个售价为4元时,每天可售出500个,并且售价每上涨1元,其每天的销售量就减少100个.若物价部门规定该品牌粽子的售价不能超过进价的200%,则该超市将每个粽子的售价定为多少元时,才能使每天的利润为800元?20.(7分)已知x2﹣x﹣1=0,求:(1)求x的值.(2)求的值.21.(7分)关于x的方程(a2﹣4a+5)x2+2ax+4=0:(1)试证明无论a取何实数这个方程都是一元二次方程;(2)当a=2时,解这个方程.22.(7分)某口罩生产厂生产的口罩1月份平均日产量为20000个,1月底因突然爆发新冠肺炎疫情,市场对口罩需求量大增,为满足市场需求,工厂决定从2月份起扩大产能,3月份平均日产量达到24200个.(1)求口罩日产量的月平均增长率;(2)按照这个增长率,预计4月份平均日产量为多少?23.(7分)阅读下列“问题”与“提示”后,将解方程的过程补充完整,求出x的值.【问题】解方程:x2+2x+4﹣5=0.【提示】可以用“换元法”解方程.解:设=t(t≥0),则有x2+2x=t2原方程可化为:t2+4t﹣5=0【续解】24.(9分)已知关于x的一元二次方程(a+b)x2+2cx+(b﹣a)=0,其中a、b、c分别为△ABC三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.25.(9分)根据要求,解答下列问题:①方程x2﹣2x+1=0的解为;②方程x2﹣3x+2=0的解为;③方程x2﹣4x+3=0的解为;…(2)根据以上方程特征及其解的特征,请猜想:①方程x2﹣9x+8=0的解为;②关于x的方程的解为x1=1,x2=n.(3)请用配方法解方程x2﹣9x+8=0,以验证猜想结论的正确性.参考答案一.选择题(共12小题,满分36分,每小题3分)1.解:由题意得:m﹣1≠0,解得:m≠1,故选:A.2.解:一元二次方程x2﹣4x﹣3=0的二次项系数、一次项系数和常数项分别为1,﹣4,﹣3.故选:D.3.解:把x=3代入方程4x2﹣6a+3=0,得36﹣6a+3=0解得6a=39.故选:B.4.解:∵x2﹣6x﹣2=0,∴x2﹣6x=2,∴(x﹣3)2=11,故选:C.5.解:由题意可知:△=(﹣2)2﹣4×1×1=0,故选:B.6.解:两边平方,得x+1=x2﹣10x+25,即x2﹣11x+24=0,(x﹣3)(x﹣8)=0,则x﹣3=0,x﹣8=0,解得:x=3或8.检验:当x=3时,左边=2,右边=2,则左边=右边,则x=3是方程的解;当x=8时,左边=3,右边=﹣3,则x=8不是方程的解.总之,方程的解是x=3.故选:A.7.解:x3=4x,x(x2﹣4)=0,x1=0,x2=2,x3=﹣2;故选:D.8.解:x2﹣10x+5=x2﹣10x+25﹣20=(x﹣5)2﹣20,当x=5时,代数式的最小值为﹣20,故选:B.9.解:依题意,得:1+x+x2=43,整理,得:x2+x﹣42=0,解得:x1=6,x2=﹣7(不合题意,舍去).故选:C.10.解:设纸边的宽为xdm,那么挂图的长和宽应该为(60+2x)和(40+2x),根据题意可得出方程为:(60+2x)(40+2x)=2800,整理得:x2+50x﹣100=0,故选:C.11.解:根据根与系数的关系可知:a+b=3,ab=1,将x=a代入x2﹣3x+1=0可得:a2﹣3a=﹣1∴原式=﹣1+1﹣2=﹣2故选:B.12.解:A、正确,不符合题意.理由:两个方程的判别式△=b2﹣4ac值相同.B、错误,符合题意.理由:如果方程M有两根都是正数,那么方程N的两根可以都是正数,也可以都是负数.C、正确,不符合题意.理由:因为5是方程M的一个根,所以25a+5b+c=0,所以,所以是方程N的根.D、正确,不符合题意.理由:因为x=1时,a+b+c=0,所以方程M和方程N有一个相同的根,那么这个根可能是x=1.故选:B.二.填空题(共5小题,满分20分,每小题4分)13.解:设方程的另一个根为t,根据题意得2t=﹣2,解得t=﹣1.即方程的另一个根为﹣1.故答案为﹣1.14.解:根据题意得△=(﹣2)2﹣4(﹣k)≥0,解得k≥﹣1.故答案为k≥﹣1.15.解:∵(x﹣1)2=20202,∴x﹣1=2020或x﹣1=﹣2020,解得x1=2021,x2=﹣2019,故答案为:x1=2021,x2=﹣2019.16.解:设方程x2+mx+1=0和x2+x+m=0的公共根为t,则t2+mt+1=0①,t2+t+m=0②,①﹣②得(m﹣1)t=m﹣1,如果m=1,那么两个方程均为x2+x+1=0,△=12﹣4×1×1=﹣3<0,不符合题意;如果m≠1,那么t=1,把t=1代入①,得1+m+1=0,解得m=﹣2.故常数m的值为﹣2.故答案为:﹣2.17.解:x2﹣6x+8=0,(x﹣2)(x﹣4)=0,x﹣2=0,x﹣4=0,x1=2,x2=4,当x=2时,2+3<6,不符合三角形的三边关系定理,所以x=2舍去,当x=4时,符合三角形的三边关系定理,三角形的周长是3+6+4=13,故答案为:13.三.解答题(共8小题,满分64分)18.解:(1)∵(x﹣1)2=4,∴x﹣1=±2,∴x1=3,x2=﹣1.(2)∵x2﹣4x+1=0,∴x2﹣4x+4=3,∴(x﹣2)2=3,∴,∴.(3)∵3x2+5(2x+1)=0,∴3x2+10x+5=0,∴a=3,b=10,c=5,b2﹣4ac=102﹣4×3×5=40,∴,∴.(4)∵3(x﹣5)2=2(5﹣x),∴移项,得:3(x﹣5)2+2(x﹣5)=0,∴(x﹣5)(3x﹣13)=0,∴x﹣5=0或3x﹣13=0,∴.19.解:设每个粽子的定价为x元时,每天的利润为800元.根据题意,得(x﹣3)[500﹣100×(x﹣4)]=800,解得x1=7,x2=5.∵售价不能超过进价的200%,∴x≤3×200%.即x≤6.∴x=5.答:每个粽子的定价为5元时,每天的利润为800元.20.解:(1)x2﹣x﹣1=0,b2﹣4ac=(﹣1)2﹣4×1×(﹣1)=5,∴x=,∴x1=,x2=.(2)x2﹣x﹣1=0,∴x2=x+1,x4=(x2)2=(x+1)2=x2+2x+1=x+1+2x+1=3x+2,x5=x(3x+2)=3x2+2x=3(x+1)+2x=5x+3,2x2=2(x+1)=2x+2,∴===1.21.解:(1)a2﹣4a+5=(a2﹣4a+4)+1=(a﹣2)2+1,∵(a﹣2)2≥0,∴(a﹣2)2+1≠0,∴无论a取何实数关于x的方程(a2﹣4a+5)x2+2ax+4=0都是一元二次方程;(2)当a=2时,原方程变为x2+4x+4=0,解得x1=x2=﹣2.22.解:(1)设口罩日产量的月平均增长率为x,根据题意,得20000(1+x)2=24200解得x1=﹣2.1(舍去),x2=0.1=10%,答:口罩日产量的月平均增长率为10%.(2)24200(1+0.1)=26620(个).答:预计4月份平均日产量为26620个.23.解:(t+5)(t﹣1)=0,t+5=0或t﹣1=0,∴t1=﹣5,t2=1,当t=﹣5时,=﹣5,此方程无解;当t=1时,=1,则x2+2x=1,配方得(x+1)2=2,解得x1=﹣1+,x2=﹣1﹣;经检验,原方程的解为x1=﹣1+,x2=﹣1﹣.24.解:(1)△ABC是等腰三角形,理由:当x=﹣1时,(a+b)﹣2c+(b﹣a)=0,∴b=c,∴△ABC是等腰三角形,(2)△ABC是直角三角形,理由:∵方程有两个相等的实数根,∴△=(2c)2﹣4(a+b)(b﹣a)=0,∴a2+c2=b2,∴△ABC是直角三角形;(3)∵△ABC是等边三角形,∴a=b=c,∴原方程可化为:2ax2+2ax=0,即:x2+x=0,∴x(x+1)=0,∴x1=0,x2=﹣1,即:这个一元二次方程的根为x1=0,x2=﹣1.25.解:(1)①(x﹣1)2=0,解得x1=x2=1,即方程x2﹣2x+1=0的解为x1=x2=1,;②(x﹣1)(x﹣2)=0,解得x1=1,x2=2,所以方程x2﹣3x+2=0的解为x1=1,x2=2,;③(x﹣1)(x﹣3)=0,解得x1=1,x2=3,方程x2﹣4x+3=0的解为x1=1,x2=3;(2)根据以上方程特征及其解的特征,请猜想:①方程x2﹣9x+8=0的解为x1=1,x2=8;②关于x的方程x2﹣(1+n)x+n=0的解为x1=1,x2=n.(3)x2﹣9x=﹣8,x2﹣9x+=﹣8+,(x﹣)2=x﹣=±,所以x1=1,x2=8;所以猜想正确.故答案为x1=x2=1;x1=1,x2=2;x1=1,x2=3;x2﹣(1+n)x+n=0;。
第22章 一元二次方程数学九年级上册-单元测试卷-华师大版(含答案)

第22章一元二次方程数学九年级上册-单元测试卷-华师大版(含答案)一、单选题(共15题,共计45分)1、若a为方程x2+x﹣5=0的解,则a2+a+1的值为()A.12B.6C.9D.162、关于的方程的一个根是,则它的另一个根是()A.0B.1C.-1D.23、用配方法解一元二次方程,下列配方法正确的是()A. B. C. D.4、已知一元二次方程x2﹣6x+c=0有一个根为2,则另一根及c的值分别为()A.2,8B.3,4C.4,3D.4,85、已知m是方程x2-x-1=0的一个根,则代数式m2-m的值为()A.-1B.0C.1D.26、若x=2是一元二次方程x2﹣3x+a=0的一个根,则a的值是()A.0B.1C.2D.37、若等腰三角形的两条边长分别是方程x2-7x+10=0的两根,则等腰三角形的周长为()A.9B.10C.12D.9或128、用配方法解一元二次方程:x2﹣4x﹣2=0,可将方程变形为(x﹣2)2=n的形式,则n 的值是()A.0B.2C.4D.69、我们解一元二次方程3x2﹣6x=0时,可以运用因式分解法,将此方程化为3x(x﹣2)=0,从而得到两个一元一次方程:3x=0或x﹣2=0,进而得到原方程的解为x1=0,x2=2.这种解法体现的数学思想是()A.转化思想B.函数思想C.数形结合思想D.公理化思想10、已知,关于x的一元二次方程(m﹣2)x2+2x+1=0有实数根,则m的取值范围是()A.m<3B.m≤3C.m<3且m≠2D.m≤3且m≠211、方程的解是()A. B. C. D.12、一元二次方程的根的情况为()A.没有实数根B.只有一个实数根C.两个相等的实数根D.两个不相等的实数根13、点的坐标恰好是方程的两个根,则经过点的正比例函数图象一定过()象限A.一、三B.二、四C.一D.四14、下列方程中是关于x的一元二次方程的是( )A. B. C. D.15、若方程(m﹣1)﹣2x﹣m是关于x的一元二次方程,则m的值为()A.-1B.1C.5D.﹣1或1二、填空题(共10题,共计30分)16、若关于x的一元二次方程ax2+bx+6=0的一个根为x=2,则代数式2a+b+6的值为________.17、在元旦前夕,某通讯公司的每位员工都向本公司的其他员工发出了1条祝贺元旦的短信,已知全公司共发出2450条短信,那么这个公司有________员工人.18、按照下图所示的操作步骤,若输出y的值为22,则输入的值x为________.19、设分别为一元二次方程的两个实数根,则________.20、已知是方程的两根,那么的值是________.21、已知是一元二次方程的两个实数根,则代数式________;22、把方程化成一般形式,则一次项系数为________.23、关于的一元二次方程有实数根,则实数的取值范围是________.24、关于x的方程(m-4)x︱m︱-2+(m+4)x+2m+3=0,当m________时,是一元二次方程;25、对于任意实数a、b,定义:a◆b=a2+ab+b2.若方程(x◆2)﹣5=0的两根记为m、n,则m2+n2=________.三、解答题(共5题,共计25分)26、27、若方程(m﹣1)+2mx﹣3=0是关于x的一元二次方程,求m的值.28、解不等式组:29、已知关于x的一元二次方程x2+4x+m=O.(1)当m=1时,请用配方法求方程的根:(2)若方程没有实数根,求m的取值范围.30、已知关于x的方程(k﹣1)x2﹣(k﹣1)x+ =0有两个相等的实数根,求k的值.参考答案一、单选题(共15题,共计45分)1、B2、C3、C4、D5、C6、C7、C8、D9、A10、D11、B12、D13、B15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、29、。
华师大版九年级数学上册 第22章 一元二次方程 单元测试卷(含解析)

华师大版九年级数学上册第22章一元二次方程单元测试卷一、选择题(本大题共10小题,共30分)1.下列方程中,关于x的一元二次方程是()A. x2+x+y=0B. 12x2−3x+1=0C. (x+3)2=x3+2xD. x2+1x=22.把方程x2−8x+3=0化成(x+m)2=n的形式,则m,n的值是()A. 4,13B. −4,19C. −4,13D. 4,193.已知关于x的方程x2+3x+a=0有一个根为−2,则另一个根为()A. 5B. −1C. 2D. −54.方程的x2+6x−5=0左边配成完全平方式后所得的方程为()A. (x+3)2=14B. (x−3)2=14C. (x+6)2=12D. 以上答案都不对5.m是方程x2−2x+c=0的一个根,设M=1−c,N=(m−1)2,则M与N的大小关系正确的是()A. M>NB. M=NC. M<ND. 不确定6.一元二次方程x2−x−1=0的两个实数根中较大的根是()A. 1+√5B. 1+√52C. 1−√52D. −1+√527.已知x1,x2是关于x的一元二次方程x2−(2m+3)x+m2=0的两个不相等的实数根,且满足x1+x2=m2,则m的值是()A. 3或−1B. 3C. 1D. −3或18.已知实数a,b分别满足a2−6a+4=0,b2−6b+4=0,且a≠b,则a2+b2的值为()A. 36B. 50C. 28D. 259.已知3是关于x的方程x2−(m+1)x+2m=0的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC的两条边的边长,则△ABC的周长为()A. 7B. 10C. 11D. 10或1110.关于x的方程mx2+x−m+1=0,则下列说法:①当m=0时,方程只有一个实数解;②当m≠0时,方程有两个不相等的实数解;③无论m取何值,方程都有负数解.其中正确的有()个A. 0B. 1C. 2D. 3二、填空题(本大题共5小题,共15分)11.方程3(x−5)2=2(x−5)的根是___________________.12.如果一元二次方程kx2+2x+1=0有实数根,则实数k的取值范围是______.13.设α、β是方程x2+x+2012=0两个实数根,则α2+2α+β的值为______.14.当(x2+y2)(x2−1+y2)−20=0时,x2+y2=.15.已知点A(1,2)在反比例函数y=k的图象上,则当x>1时,y的取值范围是______.x四、解答题(本大题共7小题,共75分)16.解方程:①(公式法)x2−2√2x+1=0;②2x2−7x+6=0.③(配方法)2x2−4x+1=0.④x(x−2)=2−x.17.已知关于x的一元二次方程(a+c)x2+2bx+(a−c)=0,其中a、b、c分别为△ABC三边的长.(1)如果x=−1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.18.已知关于的一元二次方程x2−(2m+1)x+m2+m=0,(1)求证:方程有两个不相等的实数根;(2)若等腰三角形的一边长为4,另两边长恰好是这个方程的两个根,求这个等腰三角形的周长.19.解方程:(1)x2−4x=0;(2)4x2−25=0;(3)2x(x−3)+x=3.20.某商店经营一种小商品,进价为3元,据市场调查,销售单价是13元时平均每天销售量是400件,而销售价每降低一元,平均每天就可以多售出100件.(Ⅰ)假定每件商品降低x元,商店每天销售这种小商品的利润y元,请写出y与x 之间的函数关系.(注:销售利润=销售收入−购进成本)(Ⅱ)当每件小商品降低多少元时,该商店每天能获利4800元?(Ⅲ)每件小商品销售价为多少时,商店每天销售这种小商品的利润最大?最大利润是多少?21.如图,利用一面墙(墙长度不超过45m),用80m长的篱笆围一个矩形场地.(1)怎样围才能使矩形场地的面积为750m2?(2)能否使所围矩形场地的面积为810m2,为什么?22.如图,在△ABC中,∠B=90°,点P从点A开始,沿AB向点B以1厘米/秒的速度移动,点Q从B点开始沿BC 以2厘米/秒的速度移动,如果P、Q分别从A、B同时出发:(1)几秒后四边形APQC的面积是31平方厘米?(2)若用S表示四边形APQC的面积,在经过多长时间S取得最小值?并求出最小值.答案和解析1.【答案】B【解析】解:A、不是一元二次方程,故此选项错误;B、是一元二次方程,故此选项正确;C、不是一元二次方程,故此选项错误;D、不是一元二次方程,故此选项错误;故选:B.根据一元二次方程的定义:只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程进行分析.此题主要考查了一元二次方程定义,判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.2.【答案】C【解析】解:∵x2−8x+3=0∴x2−8x=−3∴x2−8x+16=−3+16∴(x−4)2=13∴m=−4,n=13故选:C.此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用,把左边配成完全平方式,右边化为常数.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.【解析】【分析】本题考查根与系数的关系,解题的关键是明确两根之和等于一次项系数与二次项系数比值的相反数.根据关于x的方程x2+3x+a=0有一个根为−2,可以设出另一个根,然后根据根与系数的关系可以求得另一个根的值,本题得以解决.【解答】解:∵关于x的方程x2+3x+a=0有一个根为−2,设另一个根为m,∴−2+m=−3,1解得m=−1.故选B.4.【答案】A【解析】【分析】本题主要考查配方法解一元二次方程.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.把方程变形得到x2+6x=5,方程两边同时加上一次项的系数一半的平方,两边同时加上9即可.【解答】解:∵x2+6x−5=0,∴x2+6x=5,∴x2+6x+9=5+9,∴(x+3)2=14.,故选A.5.【答案】B【解析】本题主要考查一元二次方程的解得概念及作差法比较大小,熟练掌握能使方程成立的未知数的值叫做方程的解是根本,利用作差法比较大小是解题的关键. 把m 代入方程x 2−2x +c =0得m 2−2m =−c ,作差法比较可得. 【解答】解:∵m 是方程x 2−2x +c =0的一个根, ∴m 2−2m +c =0,即m 2−2m =−c , 则N −M =(m −1)2−(1−c)=m 2−2m +1−1+c =−c +c=0, ∴M =N , 故选B . 6.【答案】B【解析】解:∵一元二次方程x 2−x −1=0中,a =1,b =−1,c =−1, b 2−4ac =1+4=5>0, ∴x =−b±√b 2−4ac2a=1±√52, x 1=1−√52,x 2=1+√52∴一元二次方程x 2−x −1=0的两个实数根中较大的根是1+√52.故选B .利用求根公式x =−b±√b2−4ac2a求得方程的两个根,然后找出较大的根即可.本题考查了解一元二次方程−公式法,熟记求根公式即可解答该题. 7.【答案】B 【解析】 【分析】本题考查了一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.和根与系数的关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=−ba,x1x2=ca ,反过来也成立,即ba=−(x1+x2),ca=x1x2.根据一元二次方程根与系数的关系的关系可得x1+x2=−ba=2m+3,又x1+x2=m2,所以可建立关于m的方程求出m的值即可.【解答】解:∵方程有两个不相等的实数根,∴△>0,即b2−4ac>0,∴m>−34,∵x1+x2=−ba=2m+3,x1⋅x2=m2,∴m2=2m+3,解得:m1=−1,m2=3,又∵−1<−34,∴m=3.故选B.8.【答案】C【解析】【分析】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=−ba ,x1x2=ca,由于a、b满足a2−6a+4=0,b2−6b+4=0,根据根与系数的关系得到a+b=6,ab=4,再变形得到原式=(a+b)2−2ab=62−2×4=28,然后进行计算.【解答】解:∵a2−6a+4=0,b2−6b+4=0,且a≠b,∴a,b可看作方程x2−6x+4=0的两根,∴a+b=6,ab=4,∴原式=(a+b)2−2ab=62−2×4=28,故选C.9.【答案】D【解析】【分析】本题考查了一元二次方程的解三角形三边的关系有关知识,把x=3代入已知方程求得m的值;然后通过解方程求得该方程的两根,即等腰△ABC的两条边长,由三角形三边关系和三角形的周长公式进行解答即可.【解答】解:把x=3代入方程得9−3(m+1)+2m=0,解得m=6,则原方程为x2−7x+12=0,解得x1=3,x2=4,因为这个方程的两个根恰好是等腰△ABC的两条边长,①当△ABC的腰为4,底边为3时,则△ABC的周长为4+4+3=11;②当△ABC的腰为3,底边为4时,则△ABC的周长为3+3+4=10.综上所述,该△ABC的周长为10或11.故选D.10.【答案】C【解析】【分析】本题考查一元二次方程根的判别式、一元一次方程解的知识以及分类讨论思想的应用.解答本题的关键是掌握根的判别式的意义和分类讨论思想,分当m=0时和当m≠0时两种情况进行讨论.【解答】解:①当m=0时,方程为一元一次方程,x=−1,方程只有一个解,①正确;②当m≠0时,方程为一元二次方程,Δ=1−4m(1−m)=1−4m+4m²=(1−2m)²≥0,方程有两个实数根,但有可能相等,故②错误;③当x=−1时,m−1−m+1=0,即不论m为何值,x=−1是方程的解,故③正确;所以正确的个数为2个.故选C.11.【答案】x1=5,x2=173【解析】解:方程变形得:3(x−5)2−2(x−5)=0,分解因式得:(x−5)[3(x−5)−2]=0,可得x−5=0或3x−17=0,解得:x1=5,x2=17.3故答案为:x1=5,x2=173方程移项变形后,利用因式分解法求出解即可.此题考查了解一元二次方程−因式分解法,熟练掌握因式分解的方法是解本题的关键.12.【答案】k≤1且k≠0【解析】【分析】本题考查了根的判别式,解题的关键是了解根的判别式如何决定一元二次方程根的情况.根据方程根的情况可以判定其根的判别式的取值范围,进而可以得到关于k的不等式,解得即可,同时还应注意二次项系数不能为0.【解答】解:∵关于x的一元二次方程kx2+2x+1=0有实数根,∴△=4−4k≥0,解得:k≤1,∵关于x的一元二次方程kx2+2x+1=0中k≠0,故答案为k≤1且k≠0.13.【答案】−2013【解析】解:∵α是方程x2+x+2012=0的根,∴α2+α+2012=0,∴α2+α=−2012,∴α2+2α+β=−2012+α+β,∵α、β是方程x2+x+2012=0两个实数根,∴α+β=−1,∴α2+2α+β=−2012−1=−2013.故答案为−2013.先利用α是方程x2+x+2012=0的根得到α2+α=−2012,所以α2+2α+β=−2012+α+β,再根据根与系数的关系得到α+β=−1,然后利用整体代入的方法计算即可.本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=−ba ,x1x2=ca.也考查了一元二次方程解的定义.14.【答案】5【解析】【分析】本题主要考查了换元法解一元二次方程,利用x2+y2=u得出关于u的一元二次方程是解题关键,注意平方都是非负数.根据换元法,可得一元二次方程,解一元二次方程,可得答案.【解答】解:设x2+y2=u,原方程等价于u2−u−20=0.解得u=5,u=−4(不符合题意,舍),∴x2+y2=5,故答案为5.15.【答案】0<y<2【解析】解:将点A(1,2)代入反比例函数y=kx的解析式得,k=1×2=2,则函数解析式为y=2x,当x=1时,y=2,由于图象位于一、三象限,第6页,共17页在每个象限内,y 随x 的增大而减小,则x >1时,0<y <2.故答案为0<y <2.根据点A(1,2)在反比例函数y =k x 的图象上,求出k 的值,得到反比例函数解析式,再根据反比例函数的性质求出y 的取值范围.本题考查了反比例函数图象上点的坐标特征及反比例函数的性质,求出反比例函数解析式是解题的关键.16.【答案】解:①(公式法)x 2−2√2x +1=0;这里a =1,b =−2√2,c =1,∵b 2−4ac =8−4=4>0,∴x =2√2±√42×1=√2±1,则x 1=√2+1,x 2=√2−1;②2x 2−7x +6=0.(2x −3)(x −2)=0,2x −3=0,x −2=0,∴x 1=32,x 2=2; ③(配方法)2x 2−4x +1=0.x 2−2x =−12,x 2−2x +1=−12+1,(x −1)2=12, x −1=±√22, ∴x 1=1+√22,x 2=1−√22; ④x(x −2)=2−x .x(x −2)+(x −2)=0,(x −2)(x +1)=0,∴x −2=0,x +1=0,∴x 1=2,x 2=−1.【解析】①找出一元二次方程中的二次项系数a,一次项系数b及常数项c,计算出根的判别式大于0,然后将a,b及c的值代入求根公式,即可求出方程的解;②分解因式,即可得出两个一元一次方程,求出方程的解即可;③先把方程两边都除以2,使二次项的系数为1,然后再配上一次项系数一半的平方,利用配方法解方程.④移项,直接提公因式即可.本题考查了解一元二次方程的应用,解此题的关键是熟练掌握解一元二次方程的方法.17【答案】解:(1)△ABC是等腰三角形,理由如下:∵x=−1是方程的根,∴(a+c)×(−1)2−2b+(a−c)=0,∴a+c−2b+a−c=0,∴a−b=0,∴a=b,∴△ABC是等腰三角形.(2)△ABC是直角三角形,理由如下:∵方程有两个相等的实数根,∴(2b)2−4(a+c)(a−c)=0,∴4b2−4a2+4c2=0,∴a2=b2+c2,∴△ABC是直角三角形;(3)∵△ABC是等边三角形,∴(a+c)x2+2bx+(a−c)=0可整理为:2ax2+2ax=0,∴x2+x=0,解得:x1=0,x2=−1.【解析】此题主要考查了一元二次方程的应用以及根的判别式和勾股定理逆定理等知识,正确由已知获取等量关系是解题关键.(1)直接将x=−1代入得出关于a,b的等式,进而得出a=b,即可判断△ABC的形状;(2)利用根的判别式进而得出关于a,b,c的等式,进而判断△ABC的形状;(3)利用△ABC是等边三角形,则a=b=c,进而代入方程求出即可.18.【答案】解:(1)证明:△=(2m+1)2−4(m²+m)=1>0,∴方程有两个不相等的实数根(2)当4为底时,方程有两个相等的实数根,根据(1)可知4不能为底;当4为腰时,方程的一个解为x=4,把x=4代入方程得m2−7m+12=0得m1=3,m2=4,把m=3代入方程得:x2−7x+12=0,解得x1=3,x2=4,∴等腰三角形的周长为3+4+4=11;把m=4代入方程得:x2−9x+20=0,解得x1=4,x2=5,∴等腰三角形的周长为4+5+4=13.∴这个等腰三角形的周长为11或13.【解析】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2−4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根,也考查了三角形三边的关系以及分类讨论思想的运用.(1)先计算△,整理得到△=1,然后根据△的意义即可得到结论;(2)当4为底时,另外两边相等,根据方程有两个不相等的实数根,可知4不可能为底;当4为腰时,可知方程有一个根为x=4,把x=4代入方程,就可得出m的值,再进行求解,就可得出答案.19.【答案】解:(1)x(x−4)=0;x=0或x−4=0;所以x1=0,x2=4;(2)(2x+5)(2x−5)=0,2x+5=0或2x−5=0,所以x1=−2.5,x2=2.5;(3)将方程整理得2x(x−3)+(x−3)=0;(x−3)⋅(2x+1)=0;x−3=0或2x+1=0;.所以x1=3,x2=−12【解析】第6页,共17页【分析】本题考查了解一元二次方程−因式分解法:因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).(1)利用因式分解法解方程;(2)利用因式分解法解方程;(3)先变形为2x(x−3)+(x−3)=0,然后利用因式分解法解方程.20【答案】(Ⅰ)y=−100x2+600x+4000;(Ⅱ)当每件小商品降低2元或4元时,该商店每天能获利4800元;(Ⅲ)每件小商品销售价为3元时,商店每天销售这种小商品的利润最大,最大利润是4900元.【解析】【分析】(Ⅰ)先表示出降价后的销售量为(400+100x)件,根据销售利润=销售收入−购进成本,把每件的利润乘以销售量即可得到y与x之间的函数关系;(Ⅱ)利用(Ⅰ)中的函数关系中函数值为4800元列一元二次方程,然后解方程即可;(Ⅲ)先把(Ⅰ)中的解析式配成顶点式,然后根据二次函数的性质解决问题.【解答】解:(Ⅰ)y=(13−3−x)(400+100x)=−100x2+600x+4000;(Ⅱ)根据题意得−100x2+600x+4000=4800,整理得x2−6x+8=0,解得x1=2,x2=4,答:当每件小商品降低2元或4元时,该商店每天能获利4800元;(Ⅲ)y=−100x2+600x+4000=−100(x−3)2+4900,因为a=−100<0,所以当x=3时,y有最大值,最大值为4900,答:每件小商品销售价为3元时,商店每天销售这种小商品的利润最大,最大利润是4900元.21.【答案】解:(1)设所围矩形ABCD的长AB为x米,则宽AD为12(80−x)米.依题意,得x⋅12(80−x)=750,即x2−80x+1500=0,解得x1=30,x2=50.∵墙的长度不超过45m,∴x2=50不合题意,应舍去.当x=30时,12(80−x)=12(80−30)=25,所以,当所围矩形的长为30m、宽为25m时,能使矩形的面积为750m2.(2)不能.因为由x⋅12(80−x)=810,得x2−80x+1620=0,又∵b2−4ac=(−80)2−4×1×1620=−80<0,∴上述方程没有实数根,∴不能使所围矩形场地的面积为810m2.因此,不能使所围矩形场地的面积为810m2.【解析】考查了一元二次方程的应用,此题不仅是一道实际问题,而且结合了矩形的性质,解答此题要注意以下问题:(1)矩形的一边为墙,且墙的长度不超过45米;(2)根据矩形的面积公式列一元二次方程并根据根的判别式来判断是否两边长相等.(1)设所围矩形的长AB为x米,则宽AD为12(80−x)米,根据矩形面积的计算方法列出方程求解.(2)假使矩形面积为810m2,则x无实数根,所以不能围成矩形场地.22【答案】解:(1)设经过x秒钟,可使得四边形APQC的面积是31平方厘米,根据题意得:12BP⋅BQ=12AB⋅BC−31,即12(6−x)⋅2x=12×6×12−31,第6页,共17页整理得(x−1)(x−5)=0,解得:x1=1,x2=5.答:经过1或5秒钟,可使得四边形APQC的面积是31平方厘米;(2)依题意得,S四边形APQC=S△ABC−S△BPQ,即S=12AB⋅BC−12BP⋅BQ=12×6×12−12(6−x)⋅2x=(x−3)2+27(0<x<6),当x−3=0,即x=3时,S最小=27.答:经过3秒钟时,S取得最小值27平方厘米.【解析】此题考查了一元二次方程的应用、二次函数的性质,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.(1)设经过x秒钟,可使得四边形APQC的面积是31平方厘米,根据题意列出关于x的方程,求出方程的解即可得到结果;根据面积为31列出方程,判断即可得到结果.(2)根据题意列出S关于x的函数关系式,利用函数的性质来求最值.。
华师大版九年级数学上 第22章 一元二次方程单元测试及答案

第22章 一元二次方程单元测试(满分100分,时间45分钟)姓名 学号 班级 得分一、精心选一选(每小题3分,共30分)1. 方程2269x x -=的二次项系数. 一次项系数. 常数项分别为( ) . A .6. 2. 9 B .2. -6. -9 C .2. -6. 9 D .-2. 6. 9 2. 已知m 是方程022=--x x 的一个根,则m m -2的值是( ) . A . 0 B . 1 C . 2 D . -23.方程3(3)5(3)x x x -=-的根是( ) . A .35 B . 3 C . 35和3 D . 35和-3 4. 将方程0982=++x x 左边变成完全平方式后,方程是( ) .A . 7)4(2=+xB . 25)4(2=+xC . 9)4(2-=+xD . 7)4(2-=+x 5. 方程022=--x x的两根和是( ) .A . 1B . -1C . 2;D . -2 6. 已知两数之差为4,积等于45,则这两个数是( ) . A . 5和9 B . -9和-5 C . 5和-5或-9和9 D . 5和9或-9和-57. 生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了110件,如果全组有x 名同学,那么根据题意列出的方程是( ) . A . x (x +1)= 110 B . x (x -1)= 110 C . x (x +1)=110×2 D . x (x -1)= 110×28. 某型号的手机连续两次降阶,每个售价由原来的1185元降到580元,设平均每次降价的百分率为x ,则列出方程正确的是( ) . A . 2580(1-)1185x = B . 21185(1-)580x =C .2580(1)1185x += D . 21185(1)580x +=.9. 从一块正方形的木板上锯掉2米宽的长方形木条,剩下的面积是48平方米,则原来这块木板的面积是( ) .A . 64平方米B . 100平方米C . 81平方米D . 48平方米 10. 在一幅长80厘米,宽50厘米的矩形图画的四周镶一条金色的纸边,制成一幅矩形挂图,如下图所示,如果要使整个挂图的面积是5400平方厘米,设金色纸边的宽为x 厘米,那么满足的方程是( ) . A .213014000xx +-= B . 213014000x x --= C .2653500xx --= D .2653500x x +-=二、细心填一填(每小题3分,共15分)11. 把方程2(x -3)2 = 5化成一元二次方程的一般形式是 . 12. 方程250x x -=的根是 .13. 若方程x 2-m =0有整数根,则m 可取的值是 .(只填一个即可) 14. 如果-1是方程0422=-+bx x 的一个根,则方程的另一个根是 . 15.若一元二次方程02=--k x x 有两个不相等的实数根,则m .三、耐心解一解(共55分)(16—20题按指定的方法解方程,每题6分,共30分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程单元检测题
一、选择题。
(每题3分,共30分) 1、下列方程是一元二次方程的是(
)
A. B. C. D.2
)1(x x x =-02
=++c bx ax 011
22
=++
x
x 0
12
=+x 2、若方程的两根恰好互为相反数,则的值为(
)。
042
=-+bx x b A. 4 B. –4 C. 2 D. 0
3、将一元二次方程式化成的形式,则等于(
)。
0562=--x x b a x =+2
)(b A. -4
B. 4
C. -14
D. 144、关于的一元二次方程的一根是0,则的值为(
)。
x 01)1(2
2
=-++-a x x a a A. 1 B. –1
C. 1或-1
D. 0
5、若关于的一元二次方程有两个不相等的实数根,则的最大
x 0)12(2
2
=+--k x k x k 整数值是( )。
A. -2
B. -1
C. 0
D. 16、已知的值为3,则的值为(
)。
222-+y y 1242
++y y A. 10
B. 11
C. 10或11
D. 3或11
7、若关于的一元二次方程的两个实根分别为5,-6,则二次三项式
x 02
=++n mx x 可分解为(
)。
n mx x ++2 A.
B.
C.
D. )6)(5(-+x x )6)(5(+-x x )6)(5(++x x )
6)(5(--x x 8、关于的方程的两根同为负数,则( )。
x 02
=++q px x A. 且
B. 且 0>p 0>q 0>p 0<q
C. 且
D. 且0<p 0>q 0<p 0
<q 9、已知为的三边长,则关于的一元二次方程的c b a ,,ABC ∆x 0)(442
2
=+++c x b a x 根的情况(
)。
A. 有两个不相等的实数根
B. 没有实数根 C .有两个相等的实数根
D. 无法判断
10、餐桌桌面是长160cm,宽100cm 的长方形,妈妈准备设计一块桌布,面积是桌面的2倍,
且四周垂下的边等宽。
小明设四周垂下的边宽为cm ,则应列得的方程为(
)。
x A. B.
2100160)100)(160(⨯⨯=++x x 2100160)2100)(2160(⨯⨯=++x x C. D. 100160)100)(160(⨯=++x x 100
160)100160(2⨯=+x x 二、填空题。
(每题4分,共24分)11、若方程是关于x 的一元二次方程,则m
=
013)2(=+++mx x m m。
12、将方程化为二次项系数为1的一元二次方程的一般形式是
8)1)(2(=+-x x ;它的一次项系数是 ,常数项是。
13、若直角三角形的面积为49,并且一直角边长是另一直角边长的2倍,则此直角三角形
的两直角边长分别为。
14、已知三个连续奇数的平方和是251,则这三个数的和等于。
15、已知,则的值为。
63)122)(122(=-+++b a b a b a +16、兰州市政府为解决老百姓看病难的问题,决定下调药品的价格,某种药品经过两次降
价,由原来的每盒72元调至现在的56元。
若每次平均降价的百分率为,由题意可x 列方程为 。
三、解答题。
17、解方程。
(每题4分,共16分) (1)
(2)
)2()2(32
-=-x x x 24)5(=+x x
(2)
(4)(配方法)
2
2)32(4)13(+=-x x 0142
=++x x
18、关于的一元二次方程,其根的判别式的值为1,求
x 012)13(2
=-+--m x m mx 的值及该方程的根. (7分)
m 19、已知是关于的方程的两个实数根,且
21,x x x 0)12(2
2=+-+a x a x ,求的值。
(7分)
11)2)(2(21=++x x a 20、已知实数满足,,且,求
的值。
(8分)b a ,222=+a a 222
=+b b b a ≠b
a
a b +21、阅读下面的例题:(8分)
解方程:。
022
=--x x 解:(1)当时,原方程化为。
0≥x 022
=--x x
解得(不合题意,舍去)
1,221-==x x (2)当时,原方程化为,0<x 022
=-+x x 解得(不合题意,舍去)。
1,221=-=x x 原方程的根是。
∴2,221=-=x x 请参照例题解方程∴0
332=---x x 23、某商店如果将进货价为8元的商品按每件10元售出,每天可销售200件,现在采用提
高售价,减少进货量的方法增加利润,已知这种商品每涨价0.5元,其销量就减少10
件。
(10分)
(1)要使每天获得利润700元,请你帮忙确定售价;
(2)问售价定在多少时能使每天获得的利润最多?并求出最大利润。
20、已知关于的方程。
x 0)2
1(4)12(2
=-++-k x k x (1)求证:无论取什么实数值,方程总有实数根。
k (2)若等腰的一边长为,另两边长恰好是这个方程的两个实数根,求
ABC ∆a c b ,的周长?(10分)
ABC ∆。