田口实验设计
实验计划法田口式实验法

案例二:电子产品研发中的优化设计
总结词
田口式实验法在电子产品研发中应用,有助于优化产品设计,提高产品性能和用户体验。
详细描述
电子产品研发过程中,设计优化是关键。田口式实验法通过设计合理的实验方案,对不同设计方案进 行对比和分析,以找出最优设计方案。同时,通过实验验证和数据分析,还可以对产品性能进行预测 和改进,提高产品的性能和用户体验。
02
田口式实验法的基本原理
田口式实验法的概念
田口式实验法是一种以正交表为基础,通过实验 设计、数据分析与优化来研究多因素多水平系统 的一种实验设计方法。
它是由日本学者田口玄一先生提出,被广泛应用 于工业工程、生产制造、品质管理等领域。
田口式实验法的优点
科学性强
田口式实验法采用正交表进行实验设计,能 够科学地安排实验因素和水平,减少实验次 数,提高实验效率。
06
田口式实验法的总结与展望
总结
田口式实验法是一种 以正交表为基础,通 过控制实验条件进行 多水平实验的方法。
田口式实验法广泛应 用于各种领域,如化 工、机械、电子等, 旨在提高产品质量和 性能。
田口式实验法的核心 思想是通过控制三个 因素(质量、成本和 交货期)的组合,实 现产品优化。
田口式实验法采用正 交表设计实验方案, 具有高效、经济、灵 活的特点。
部分因子设计
只考虑部分可能的因素组合,以减少实验次数并获得 有价值的结论。
随机设计
以随机顺序进行实验,以避免实验者偏差和系统误差 。
实验误差控制
01 重复实验
进行多次实验以增加结果的可靠性和稳定性。
02 盲法
消除实验者和被试者对实验目的和分组情况的知 晓,以避免主观影响。
03 对照实验
DOE -田口实验设计方法

7
田口博士的成就
• 在日本提出 “田口品质工程” • 获得戴明奖 • 主持福特汽车供应者协会 • 主持美国供应者协会 统计学之贡献 • DOE • S/N Ratio
DOE基本概念
控制因子
讯号
制程
误差因子 干扰因子/杂音
响应 品质特性
实验设计主要对试验进行合理安排,以较 小的试验次数、较短的试验周期和较低的 试验成本,获得理想的试验结果以及得出 科学的结论。
3
为什么需要DOE
同样在生产同规格的产品,为什么有些厂商良品率 是比较高
同样是在生产同类型的产品,为什么有些厂商的产 品性能以及寿命是比较好,而成本又比较低呢?
日本工业强盛的原因
用Y7与Y6比较18
全因子实验计划法
实验计划当中,考虑全部实验因子所有水准的全部组合!
A
B
C
C1
2
C1
A2
C2
B2
C1
C2
23=8 所有可能的排列组合模式
19
七个可变的因素,每个因素两种选择, 用全因素实验法进行筛选,就有128种组合, 如果用小型设备做实验,每个实验做一天, 买上8个实验用的小炉子,同时做八个实验, 8天即可完成,然后在所有128个组合中寻 找产品尺寸变异最小的组合即可
日本人在很多制造业:如汽车、钢铁、电子和纺织方 面,居于领导地位,主要是因为他们能以具有竞争力 的价格,生产高质量的产品
日本人的致胜法宝之一:田口方法
4
DOE的历史起源
20世纪20年代由英国学者费舍尔 R.A.Fisher)率先提出:最初在农田试验方面 取得重要成果,欧美各国将此法用于生物学, 医学等领域的科学研究
实验设计DOE田口方法

实验设计DOE田口方法田口方法(Taguchi Method)是一种实验设计(Design of Experiments, DOE)方法,旨在通过设计有限数量的实验来优化产品和过程。
这种方法是由日本工程师田口幸三在上世纪60年代提出的,已经在全球范围内应用广泛。
田口方法的主要目标是确定控制因素对产品或过程的性能目标的影响,并找到一组最优的控制因素设置,以实现这些性能目标。
田口方法通过以下三个步骤来实现这一目标:1.识别关键因素:首先,需要确定影响产品或过程性能的关键因素。
这些因素可能包括材料特性、工艺参数、环境条件等。
田口方法通过对影响因素进行分析和筛选,确定出最终需要考虑的关键因素。
2. 设计实验矩阵:在确定了关键因素后,需要设计一组实验来评估这些因素的影响。
田口方法采用正交实验设计(Orthogonal Array Design,OAD)来构建实验矩阵,以尽量减少实验数量同时保证数据的准确性。
正交实验设计可以在有限的实验次数情况下获得全面而有效的数据。
3. 分析实验数据:实验数据的分析是田口方法的核心。
不同的性能目标可能需要不同的统计分析方法。
常用的分析方法包括方差分析(Analysis of Variance,ANOVA)、信号/噪声比(Signal-to-Noise Ratio,S/N Ratio)分析等。
通过对实验数据的分析,可以确定关键因素的最佳设置,以达到性能目标的最优值。
田口方法的优点在于它可以在实验次数有限的情况下获得准确的数据,并最小化因素相互影响的效应。
此外,田口方法还可以有效地提高产品和过程的稳健性,使其对外部变化具有较强的抗干扰能力。
田口方法的应用非常广泛,适用于各种不同的工业领域。
它可以用于优化产品设计、改进工艺参数、减少能源和资源消耗等方面。
田口方法已经得到了许多企业的认可,并在实践中取得了显著的效果。
总结起来,田口方法是一种有效的实验设计方法,通过有限的实验次数来确定关键因素对产品或过程性能的影响,并找到最佳的因素设置来实现优化。
实验设计DOE田口方法

1.2. 应用领域、目的、特点
二战之后,日本的田口玄一博士,将试验设计方法应用于改进产品和系统质 量,并研究开发出“田口品质工程方法”,简称田口方法。从而提升了日本产品 品质及日本产业界的研发设计能力,成为日本战后质量管理及设计开发的核心工 具。
田口方法具有很强的抗干扰能力,因此又称为“稳健参数设计”——通过 调整可控因子的水平,来降低或弱化噪音对Y的影响, 从而提高设计方案的抗干扰 能力.
田口方法的优势: 通过调整可控因子的水平,来降低或弱化噪音对Y的影响, 从而提高设计方案
的抗干扰能力.
16
1.9. 田口方法中正交表的特点
试验观察值
实验次数成倍数增加: 9*8 = 72 次
一次游程(设置)重复了8次,在重复试验每一次对噪音a,b,c,d的水平有调整,—— 会造成 Nhomakorabea件间的变异。
对于噪音的识别分类,还可以有更多的分类,只要有益于改进,就应该做深入地分析!
噪音是量产过程“人、机、料、法、环”的非可控部分;它不是人为的破坏或不遵守,不 是硬件资源故障,不是违背管理要求的非批准供方物料,不是原材料的彻底不合格等。它 是过程要素在批准准备或批准(作为PPAP的前提条件或已经PPAP)条件下(即许可的量 产条件下)的非受控波动。如:资格(拟)认可的两个班次的操作者;(拟)批准两家合 格供应商供应的同一材料号或不同批号;(拟)批准的两种测量方法;(拟)批准的常规 生产环境;(拟)批准的协变量(非受控的连续变量)-如:环境温度等等
正交表具有正交性,导致对试验结果有“均衡分散,整齐可比”的特点,有 利于计算回归方程。因此,虽然是局部试验(使用了全部试验的一部分),但 仍有可靠的代表性。 ➢ 信噪比 —— 评价品质优劣的基础
工程应用分析之田口式实验计划法

工程应用分析之田口式实验计划法田口式实验计划法(Taguchi Method)是由日本质量管理专家田口玄一郎于20世纪60年代提出的一种工程应用分析方法。
该方法是通过设计和执行一系列实验来优化产品、系统或过程的设计参数,以实现最佳性能和品质控制。
田口式实验计划法以其简洁、高效和准确的特点在全球范围内被广泛应用于工程领域。
田口式实验计划法的核心思想是通过考虑设计参数对结果的影响,确定最佳的参数组合来优化产品或系统的性能。
与传统的试验方法相比,田口式实验计划法减少了实验次数,但仍能得出可靠的结论。
田口式实验计划法主要包括三个步骤:参数选择、水平选择和实验设计。
首先,确定影响结果的关键参数。
然后,为每个参数选择适当的水平。
最后,设计实验矩阵并执行实验,以收集数据和分析结果。
在参数选择阶段,田口式实验计划法强调选择对结果影响最大的参数。
通过使用正交实验矩阵,可以确定最少的实验次数来获得最大的信息量。
正交实验矩阵是一种特殊的矩阵,具有平衡各种因素的能力,并且可以减少因素之间的相互作用。
因此,正交实验矩阵能够在最少的实验次数下提供有效的数据。
在水平选择阶段,田口式实验计划法要求选择适当的水平来代表参数的范围。
通常,参数的水平可以分为三种类型:高水平、低水平和中心水平。
高水平和低水平用于极端测试,而中心水平用于检测参数的相互作用。
通过选择不同水平的参数组合,可以确定最佳的参数组合来实现最佳性能。
在实验设计阶段,根据正交实验矩阵的设计,执行一系列实验并收集数据。
通过对数据进行统计分析,可以确定影响结果的关键参数和最佳参数组合。
这种分析方法可以减少试验次数和时间,并提高实验结果的准确性和可靠性。
田口式实验计划法的应用非常广泛,涵盖了各个领域的工程问题。
例如,在产品设计中,田口式实验计划法可以优化产品的功能、性能和可靠性。
在生产过程中,田口式实验计划法可以优化工艺参数,减少产品的变异性和缺陷率。
此外,田口式实验计划法还可以用于系统设计、质量改进和环境优化等领域。
田口实验设计方法 -回复

田口实验设计方法-回复什么是田口实验设计方法?田口实验设计方法,又称为田口方法或田口质量工程,是一种广泛应用于工程和科学领域的实验设计方法。
它由日本工程师田口玄一于20世纪60年代提出,并由此得名。
田口实验设计方法旨在通过最小的实验次数,获得较为准确的研究结果,从而提高产品或过程的质量和效率。
田口实验设计方法的核心理念是寻找和优化实验因素对于结果的影响情况。
这些实验因素也被称为设计变量,它们是在一个实验中被设定和调整的不同变量。
通过系统的实验设计和数据分析,田口方法帮助研究者确定哪些设计变量对于结果的影响最大,并帮助找到优化的工作条件。
如何运用田口实验设计方法?田口实验设计方法的运用可以分为以下几个步骤:1.明确研究目标:首先需要明确研究目标,确定要优化的结果是什么。
这可以是产品质量、工艺性能、生产效率等。
2.确定关键因素和水平:在田口方法中,关键因素是指对结果有较大影响的变量。
研究者需要根据经验或文献调研确定哪些因素可能对结果有影响,并确定每个因素的水平。
水平可以是离散的(例如高、中、低)或连续的。
3.构建田口表:田口表是田口实验设计方法的基础,它通过系统地排列和组合不同水平的因素来构建。
该表的设计使得能够识别出主要因素的影响,同时最小化实验次数。
4.进行实验和收集数据:根据田口表进行实验,并记录每个实验条件下的结果数据。
确保数据的准确性和可重复性。
5.分析数据和建立模型:通过统计方法和数据分析,研究者可以确定不同因素对结果的影响程度。
这有助于建立模型并找出优化的工作条件。
6.验证和优化:最后一步是验证和优化结果。
通过对实验结果的确认和分析,可以确定最佳的工作条件,并对过程或产品进行进一步的改进。
田口实验设计方法的优势和应用领域田口实验设计方法具有以下几个优势:1.最小化实验次数:田口实验设计方法的设计能够最小化实验次数,节约时间和资源。
2.系统的变量分析:田口方法能够系统地分析多个变量对结果的影响,帮助确定主要因素并解释变量之间的相互作用。
实验设计─田口方法

实验设计─田口方法实验设计是科学研究中非常重要的一环,能够确保实验结果可靠、有效。
田口方法(Taguchi method)是一种常用的实验设计方法,采用统计学原理和数学模型,能够在较少的实验次数下得到较准确的实验结果。
下面将详细介绍田口方法的原理和实施步骤。
田口方法的原理基于“变动因子设计”的思想,即通过有选择性地改变实验因素,观察其对实验结果的影响,从而找到对结果最敏感的因素。
田口方法的核心原则是尽量降低实验次数,同时保持实验可靠性和有效性。
以下是田口方法的实施步骤:1.确定实验目标和结果指标:首先明确实验的目标和所要考察的结果指标。
结果指标应具体、可量化并符合实验目的。
例如,如果实验目标是改进产品的质量,结果指标可以是产品的尺寸、外观等。
2.选择实验因素和水平:在确定了实验目标和结果指标后,选择对结果指标有潜在影响的因素和其水平。
实验因素可以是材料的组成、工艺参数等。
每个因素应有两个或多个不同的取值水平。
3.构建田口表:田口表是田口方法的核心工具,用于设计实验矩阵。
根据实验因素和水平的选择,使用田口表,可以确定实验的设计,以达到尽量少的实验次数。
田口表是一个n×k的矩阵,其中n表示实验次数,k表示实验因素的个数。
4.进行实验并记录结果:按照田口表中的设计,在每一次实验中使用对应的实验参数,在相同条件下进行实验。
记录每次实验的条件设定和所得的结果。
5.分析实验结果:通过对实验结果的统计分析,寻找对结果产生最大影响的因素和最佳水平组合。
可以使用图形分析、假设检验等方法进行分析。
6.优化实验条件:根据实验结果的分析,调整实验因素的水平,以达到最佳的实验结果。
通过最优化实验条件,可以找到最佳的因素组合,提高产品的质量或性能。
田口方法的优点在于它能够在较少的实验次数下获得比较准确和可靠的结果。
由于实验设计是经过统计学原理和数学模型导出的,因此可以避免大量的试验和浪费资源。
此外,田口方法还可以降低环境因素的干扰,提高实验的稳定性。
实验设计─田口方法

实验设计─田口方法实验设计是科学研究中非常重要的一环,能够有效地提高实验效率和准确性。
田口方法是一种常用的实验设计方法,可以帮助研究人员在有限的资源和时间下,确定最优的因素组合,提高产品质量和工艺效率。
本文将以田口方法为基础,设计一个关于某化工工艺优化的实验。
1. 实验目的:通过田口方法,优化某化工工艺的反应条件和操作参数,以提高产品产率和纯度。
2. 实验因素:(1)温度:低温(20℃)、常温(25℃)、高温(30℃)(2)反应时间:短时(5min)、适中(10min)、长时(15min)(3)催化剂用量:低量(0.1mol%)、适量(0.3mol%)、高量(0.5mol%)3. 响应变量:(1)产品产率:所需产品的产量百分比(2)产品纯度:目标产品的纯度百分比4. 实验设计:(1)确定实验水平:根据实验目的和工艺要求,确定每个因素的实验水平数。
在本实验中,温度有3个水平,反应时间有3个水平,催化剂用量有3个水平,因此总共有27个实验条件。
(2)随机排列实验顺序:为了避免实验结果受到顺序影响,需要随机排列实验顺序,保证每个实验条件的出现概率相等。
(3)进行实验:按照设计好的实验顺序,依次进行每个实验条件。
记录每个实验条件下的产量和纯度数据。
(4)数据分析:根据实验结果,进行数据分析,找出最佳的因素组合。
可以借助田口方法中的正交表进行实验效果的评价和因素优化。
(5)确定最佳因素组合:综合考虑产量和纯度两个响应变量,确定最佳的因素组合,以达到实验目的和工艺要求。
5. 预期结果:通过田口方法进行实验设计和数据分析,我们可以得到最佳的因素组合,从而优化某化工工艺的反应条件和操作参数。
预期结果是提高产品产率和纯度,降低生产成本和工艺风险。
总之,田口方法是一种有效的实验设计方法,可以帮助研究人员在有限的资源和时间下,确定最优的因素组合。
本文以某化工工艺的优化为例,详细介绍了田口方法的实验设计步骤和预期结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
❖ 适用对象:研发设计人员、生产制程技术开发与工序 优化、工程改善、品质工程等相关工程师
二、基本原理与概念
稳健设计
➢稳健(robustness):所设计的产品质量受到周围影响的敏感度为最小
波峰焊工序参数优化与 DOE之田口方法
Roc.Luo 2011.01.05
内容
1. 田口方法概述 2. 基本原理与概念 3. 波峰焊工序优化试验
一、田口方法概述
❖ 田口方法(Taguchi Method)在日本称为品质工程, 为田口玄一博士所创立。
❖ 田口方法将日本产品引导至优质品质境界,颠覆传 统技术藩篱。打破要好品质就需好材料的传统观念, 利用正交表与S/N比两工具在实验计划中使工程参 数的设计最适化,降低重要品质特性变异而达到降低 总成本的目标。
➢“降低”变异原因的影响来改善质量,而非去除变异的原因来改善质量
➢将各种变异极小化,使产品对变异的来源最不敏感
➢利用参数设计可达到产品或制程最适化
三、波峰焊工序优化试验
第1和2步:陈述问題和目的
陈述 问題
BCR5197主板过波峰焊后的连锡现 象比较突出,每块板焊点不良率为 3.1%
实验 目的
通过DOE之田口实验以优化波峰焊 设置参数或找到导致真正连锡的不 良原因
➢是一种工程方法,使高质量、低成本的产品快速生产出来 •就操作成本而言(EX:降低产品对环境的影响) •就制造成本而言(EX:使用低等级原料,较不昂贵的设备而能维持一定质 量水平) •就研发成本而言(EX:缩短开发时间、减少资源使用)
➢可处理产品和制程工程师所关心的两大问题 •如何有效降低产品机能在消费者使用环境下的变异? •如何保证在实验室的最适条件,在生产及消费环境下仍是最适?
三、波峰焊工序优化试验
第3,4,5步:因变量,因子及水平
因变量 每块板的平均不良焊点数
因子
预热温度(0C) 链速(mm/min) 实际锡温(0C)
水平
100 1650 240
125 1750 250
140 1900 260
三、波峰焊工序优化试验
第6步:实验设计--创建田口设计
Minitab中: 统计>DOE>田口>创建田口设计
三、波峰焊工序优化试验
第8-2步:主效果图Fra bibliotek三、波峰焊工序优化试验
两次实验结果对比与分析
从两次实验主效应图可以看出:三个因素影响波峰焊焊接效果 从大到小的顺序为:链速》锡炉实际锡温》预热温度,但从主 效果图看,不良焊点数与中线线均值都在1PCS以内,由此初 步判断上述三因子均非导致该款主板连锡不良率高的主要原因。
改进措施: 优化焊盘设计;
验证:优化焊 盘后问题得到 解决
三、波峰焊工序优化试验
从其它方面找原因
从每块板的不良焊点Defect Map(不良品分布图)发现其连锡位置绝大多数为(控制板) 排针及网口座,两处不良率达90%;从PCB焊盘上可以看出:排针的第一个焊盘偏大 (呈方形)、网口焊盘过密,由此初步判断这些才可能是造成连锡的root cause(真因)。
三、波峰焊工序优化试验
第6步:实验设计--创建田口设计
Minitab自动生成田口正交实验表(左下表)
第7步:按照正交实验表做试验、收据数据并输入 右上表中( 数据在WaveSold.mtw文件中)
三、波峰焊工序优化试验
第8-1步:建立ANOVA表
选择: 统计 > 方差分析 > 一般线性模型
Minitab结果—一般线性模型