中考数学一轮复习教学设计3数的开方与二次根式鲁教版 大赛获奖教案
【鲁教版】山东省中考数学一轮复习三《数的开方与二次根式》教学设计

【鲁教版】山东省中考数学一轮复习三《数的开方与二次根式》教学设计一. 教材分析《数的开方与二次根式》是山东省中考数学一轮复习三的内容,主要包括数的开方、平方根、立方根的定义和性质,以及二次根式的概念、性质和运算。
这部分内容是初中数学的基础,对于提高学生的数学思维能力和解决实际问题具有重要意义。
二. 学情分析学生在学习这部分内容时,已经掌握了实数的基本概念和运算,对数的运算有一定的基础。
但部分学生对数的开方和二次根式的理解不够深入,容易混淆概念和性质。
因此,在教学过程中,需要关注学生的学习情况,针对性地进行讲解和辅导。
三. 教学目标1.理解数的开方、平方根、立方根的定义和性质;2.掌握二次根式的概念、性质和运算;3.提高学生的数学思维能力和解决实际问题的能力。
四. 教学重难点1.数的开方、平方根、立方根的概念和性质;2.二次根式的概念、性质和运算;3.数的开方和二次根式在实际问题中的应用。
五. 教学方法1.采用问题驱动法,引导学生主动探究数的开方和二次根式的概念和性质;2.运用实例分析法,让学生通过实际问题体验数的开方和二次根式的应用;3.采用小组合作学习法,培养学生的团队协作能力和沟通能力。
六. 教学准备1.准备相关的教学课件和教案;2.准备一些实际问题,用于引导学生应用数的开方和二次根式解决问题;3.准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用一个实际问题,如测量物体的高度,引入数的开方和二次根式的概念。
引导学生思考如何利用数学知识解决这个问题。
2.呈现(15分钟)讲解数的开方、平方根、立方根的定义和性质,以及二次根式的概念、性质和运算。
通过举例说明,让学生清晰地理解这些概念和性质。
3.操练(20分钟)让学生分组讨论,尝试解决一些实际问题,运用数的开方和二次根式进行计算。
教师巡回指导,解答学生的问题,并给予反馈。
4.巩固(10分钟)出示一些练习题,让学生独立完成,巩固所学知识。
中考数学一轮复习 数的开方与二次根式学案

数的开方与二次根式章节第一章课题数的开方与二次根式课型3复习课教法讲练结合教学目标(知识、能力、教育)1.理解平方根、立方根、算术平方根的概念,会用根号表示数的平方根、立方根和算术平方根。
会求实数的平方根、算术平方根和立方根2.了解二次根式、最简二次根式、同类二次根式的概念,会辨别最简二次根式和同类二次根式。
掌握二次根式的性质,会化简简单的二次根式,能根据指定字母的取值范围将二次根式化简;3.掌握二次根式的运算法则,能进行二次根式的加减乘除四则运算,会进行简单的分母有理化。
教学重点使学生掌握二次根式的有关概念、性质及根式的化简.教学难点二次根式的化简与计算.教学媒体学案教学过程一:【课前预习】(一):【知识梳理】1.平方根与立方根(1)如果x2=a,那么x叫做a的。
一个正数有个平方根,它们互为;零的平方根是;没有平方根。
(2)如果x 3=a ,那么x 叫做a 的 。
一个正数有一个 的立方根;一个负数有一个 的立方根;零的立方根是 ;2.二次根式(1)(2)(3)(4)二次根式的性质①20,a ≥=若则(a) ;③ab = (0,0)a b ≥≥②2()()a a a a ⎧==⎨-⎩;④(0,0)a a a b b b =≥(5)二次根式的运算①加减法:先化为 ,在合并同类二次根式;②乘法:应用公式(0,0)a b ab a b ⋅=≥≥; ③除法:应用公式(0,0)a a a b b b =≥④二次根式的运算仍满足运算律,也可以用多项式的乘法公式来简化运算。
(二):【课前练习】1.填空题2. 判断题3. 如果2(x-2)=2-x那么x取值范围是()A、x ≤2 B. x <2 C. x ≥2 D. x>24. 下列各式属于最简二次根式的是()A.225x+1 B.x y C.12 D.0.55. 在二次根式:①12, ②32③23;④273和是同类二次根式的是()A.①和③B.②和③C.①和④D.③和④二:【经典考题剖析】1. 已知△ABC 的三边长分别为a 、b 、c, 且a 、b 、c 满足a 2 -6a+9+4|5|0b c -+-=,试判断△ABC的形状.2. x 为何值时,下列各式在实数范围内有意义(1)23x -+; (2)211x x -+; (3)14x -3.找出下列二次根式中的最简二次根式:22221127,,2,0.1,,21,,,22a x y x x y ab x x a b ++--+4.判别下列二次根式中,哪些是同类二次根式:311123,75,18,,2,,,8(0),327255032a ab b b b -5. 化简与计算 ①675;②244(2)x x x -+;③111625-;④22447()692m m m m m -+-++⑤()()22236236+---+;⑥()()2332623326+--+三:【课后训练】1. 当x ≤2时,下列等式一定成立的是( )A 、()222x x -=- B 、()233x x -=- C 、 ()()2323x x x x --=-⋅- D 、3322x x x x --=--2. 如果2(x-2)=2-x 那么x 取值范围是()A 、x ≤2 B. x <2 C. x ≥2 D. x >23. 当a 为实数时,2a =-a 则实数a 在数轴上的对应点在( )A .原点的右侧B .原点的左侧C .原点或原点的右侧D .原点或原点的左侧4. 有下列说法:①有理数和数轴上的点—一对应;②不带根号的数一定是有理数;③负数没有立方根;④-17是17的平方根,其中正确的有( )A .0个B .1个C .2个D .3个5. 计算321a +a a所得结果是______. 6. 当a ≥0时,化简23a =7.计算(1)、2259259x x x +-; (2)、()()200320045252-+(3)、()22332-; (4)、548627123-+8. 已知:22x -4+4-x +1x y y=x-2、为实数,,求3x+4y 的值。
【鲁教版】最新中考数学一轮复习:全一册教学设计(打包14套,Word版)(加精)

实数的有关概念一个数的相反数和绝对值,会比较实数的大小能用数轴上的点表示实数,an)在数轴上表示出四家公共场所的位置;(2)列式计算青少年宫与商场之整数集合{为零.2、 一个数的倒数的相反数是115,则这个数是( ) A .65 B .56 C .65 D .-56、一个数的绝对值等于这个数的相反数,这样的数是() .分类讨b=___________. |AB|=|BO|=|b|=|a综上,数轴上A、B两点之间的距离|AB|=|a-b|(2)回答下列问题:的取值范围是(实数的运算)念、掌握有理数运算法则、运算委和运算顺序,实数的加、减、乘、除、乘方、开方的混合运算,绝对值、非负数的。
互为相反的数相乘,积的符号由①除以一个数,等于_________________________<【经典计算三个住宅区在年国内2003)本周内该股票收盘时的最高价、最低价分别是多少?(数的开方与二次根式)的概念,会辨别最简【知识梳理的立方根;一个负))),在合并同类二次根式;④二次根式的运算仍满足运算律,也可以用多项式的乘法公式来简化运算。
为何值时,下列各式在实数范围内有意义b-)2)2+;⑥)36+26当7.计算“先化简下式,再求值:a+误的;代数式的初步知识能分析简单问题的数量关系加、减、乘、除、乘方、开方B.0.15a贩将原来每桶价格_____________就个数的和是个数应该是7.颗.颜色的正六边形地面砖按如下所示的规律,拼成若干个图案:上面数表中第9行,第7列的数是_________.观察下面的点阵图和相应的等式,探究其中的规律:⑴在④和⑤后面的横线上分别写出相应的等式;整式式,的积的代数式叫做单项式。
)去括号法则:括号前是“+”号,括号前是“-”号,6÷2.①④阅读材料并解答问题:我们已经知道,完全平方公式可以用平面几何图形的面积来)请仿照上)按题目要求写出一个与上述不同的代数恒.等式,画出与所写代数恒等生对应的平面几何图形即可(答案不唯一).n=_____)…(1.则化学老师做三⑵由此可以猜想:3+n(n+1)(n+2)=______-.(因式分解)1)在用公式时,若是两项,可考虑用平方差公式;若是三项,可考虑用完全平方公式;若是三项以上,可先进行适当的分组,然后分解因式。
中考数学一轮复习 教学设计三(数的开方与二次根式) 鲁教版

中考数学一轮复习教学设计三(数的开方与二次根式)鲁教版(数的开方与二次根式)知教育)1.理解平方根、立方根、算术平方根的概念,会用根号表示数的平方根、立方根和算术平方根。
会求实数的平方根、算术平方根和立方根2.了解二次根式、最简二次根式、同类二次根式的概念,会辨别最简二次根式和同类二次根式。
掌握二次根式的性质,会化简简单的二次根式,能根据指定字母的取值范围将二次根式化简;3.掌握二次根式的运算法则,能进行二次根式的加减乘除四则运算,会进行简单的分母有理化。
教学过程一:【课前预习】(一):【知识梳理】1.平方根与立方根(1)如果x2=a,那么x叫做a的。
一个正数有个平方根,它们互为;零的平方根是;没有平方根。
(2)如果x 3=a ,那么x 叫做a 的 。
一个正数有一个 的立方根;一个负数有一个 的立方根;零的立方根是 ;2.二次根式(1)(2)(3)(4)二次根式的性质①20,a ≥=若则(a) ;③ab = (0,0)a b ≥≥ ②2()()a a a a ⎧==⎨-⎩;④(0,0)a a a b b b =≥(5)二次根式的运算①加减法:先化为 ,在合并同类二次根式;②乘法:应用公式(0,0)a b ab a b ⋅=≥≥;③除法:应用公式(0,0)a a a b b b =≥④二次根式的运算仍满足运算律,也可以用多项式的乘法公式来简化运算。
(二):【课前练习】1.填空题2. 判断题3. 如果2(x-2)=2-x 那么x 取值范围是()A 、x ≤2 B. x <2 C. x ≥2 D. x >24. 下列各式属于最简二次根式的是( )A .225x +1 B.x y C.12 D.0.55. 在二次根式:①12, ②32③23;④273和是同类二次根式的是( ) A .①和③ B .②和③ C .①和④ D .③和④二:【经典考题剖析】1. 已知△ABC 的三边长分别为a 、b 、c, 且a 、b 、c 满足a 2 -6a+9+4|5|0b c -+-=,试判断△ABC 的形状.2. x 为何值时,下列各式在实数范围内有意义(1)23x -+; (2)211x x -+; (3)14x - 3.找出下列二次根式中的最简二次根式:22221127,,2,0.1,,21,,,22a x y x x y ab x x a b ++--+ 4.判别下列二次根式中,哪些是同类二次根式:311123,75,18,,2,,,8(0),327255032a ab b b b- 5. 化简与计算 ①675;②244(2)x x x-+;③111625-;④22447()692m m m m m -+-++ ⑤()()22236236+---+;⑥()()2332623326+--+ 三:【课后训练】1. 当x ≤2时,下列等式一定成立的是( )A 、()222x x -=- B 、()233x x -=- C 、 ()()2323x x x x --=-⋅- D 、3322x x x x --=--2. 如果2(x-2)=2-x 那么x 取值范围是()A 、x ≤2 B. x <2 C. x ≥2 D. x >23. 当a 为实数时,2a =-a 则实数a 在数轴上的对应点在( )A .原点的右侧B .原点的左侧C .原点或原点的右侧D .原点或原点的左侧4. 有下列说法:①有理数和数轴上的点—一对应;②不带根号的数一定是有理数;③负数没有立方根;④-17是17的平方根,其中正确的有( )A .0个B .1个C .2个D .3个5. 计算321a +a a 所得结果是______. 6. 当a ≥0时,化简23a =7.计算 (1)、2259259x x x +-; (2)、()()200320045252-+(3)、()22332-; (4)、548627123-+8. 已知:22x -4+4-x +1x y y=x-2、为实数,,求3x+4y 的值。
中考数学一轮复习讲数的开方与二次根式PPT课件

故本选项错误;
3 D.
-8=-2,故本选项正确.
故选 D.
答案 D
【例题2】 (2011·广东茂名)已知:一个正数的两个平 方根分别是2a-2和a-4,则a的值是________. 解析 ∵正数有两个平方根,它们互为相反数, ∴2a-2+a-4=0,解得a=2. 答案 2
(1)正数 a 的平方根是± a,
2010年
简单二次根式的化简 与计算(3分)
江省
中考 2011年 二次根式的化简(3分)
情况
选择题 填空题
容易 容易
2012年
二次根式被开方数的 非负性(3分)
填空题
容易
网 络构 建
6个概念:“三根”和“三式”; 4条性质:二次根式的性质;
考 点梳 理
平方根、立方根及算数平方根
平方根、算术平方根与立方根: 若 x2=a(a≥0),则称 x 为 a 的_平__方__根__,记为+ a或-
名师助学 求平方根有两个,互为相反准没错; 正的叫做算术根,零都得零别放过.
二次根式及其性质
1.二次根式:式子 a_≥_0__叫二次根式,其中 a 叫被__开___ 方___数_.
2.最简二次根式:满足下面两个条件的二次根式是 最简二次根式. (1)被开方数中不含能___开__得__尽__方_的因数或因式; (2)被开方数中不含有_分__母__.
(3)混合运算:与实数的混合运算顺序相同. 状元笔记 (1)加减运算:需先化简,再合并; (2)乘除运算:可先乘除,后化简.
对 接中 考
对接点一:平方根、立方根及算数平方根
常考角度 1. 平方根、算术平方根与立方根的概念; 2. 求一个数的平方根、算术平方根与立方根.
【例题1】 (2012·浙江宁波)下列计算正确的是( ).
中考数学第一轮复习教学案 第4课时 二次根式

的值为 3 ,则输出的数值为______。
▲6. 下面与 2 是同类二次根式的是( )
A. 3 B. 12 C. 8 D. 2 1 ▲7.(08,重庆)计算 8 2 的结果是( )
15.把二次根式 x 1 1 中根号外的因式移
1 x
到根号内,结果是__________。
A.6 B. 6
C.2 D. 2
) B.7 到 8 之间 D.9 到 10 之间
▲12(. 08,大连)若 x a b, y a b ,
(2) 3 +(5- 3 )=________ _.
则 xy 的值为 ( )
▲3.(08,黄冈)化简 5 x -2 x =__ ____。
▲4.(08,中山)下列根式中不是最简二次根式 的是( )
. ▲27.(08,长沙)已知 a、b 为两个连续整数,且
▲20.(08,宁夏)计算:5 2 8 =
.
▲21.二次根式 1 a 中,字母 a 的取值范围是 A. a 1 B.a≤1 C.a≥1 D. a 1
a< 7 <b,则 a b =
.
28.(07,烟台)观察下列各式:
1 1 2 1 , 2 1 3 1 , 3 1 4 1 ,....
33
44
55
▲22.函数 y 1 自变量 x 的取值范围是_ _. 1 x
▲23.下列各组二次根式中是同类二次根式的是
A. 12与 1 2
B. 18与 27
C. 3与 1 3
D. 45与 54
▲24.(07,邵阳)下列计算正确的是(
)
第3页
请你将发现的规律用含自然数 n(n≥1)的等式
表示出来_______________
29.(08,宁波)若实数 x,y 满足
鲁教版数学八年级下册7.1《二次根式》教学设计2

鲁教版数学八年级下册7.1《二次根式》教学设计2一. 教材分析《二次根式》是鲁教版数学八年级下册第七章第一节的内容,主要介绍了二次根式的定义、性质和运算方法。
这一节内容是学生在学习了实数、有理数、无理数等相关知识的基础上进行的,是进一步学习函数、方程等数学知识的基础。
教材通过引入二次根式,让学生感受数学的广泛应用,提高学生学习数学的兴趣。
二. 学情分析学生在学习本节内容前,已经掌握了实数、有理数、无理数等知识,具备了一定的逻辑思维能力和运算能力。
但二次根式作为一种新的数学概念,对学生来说较为抽象,需要通过具体实例和练习来理解和掌握。
同时,学生对于二次根式的应用可能存在一定的困难,需要教师在教学中给予引导和帮助。
三. 教学目标1.知识与技能:理解二次根式的定义,掌握二次根式的性质和运算方法,能够进行二次根式的化简和计算。
2.过程与方法:通过观察、思考、探究、交流等过程,培养学生的逻辑思维能力和运算能力。
3.情感态度与价值观:感受数学的广泛应用,提高学生学习数学的兴趣和自信心。
四. 教学重难点1.重点:二次根式的定义、性质和运算方法。
2.难点:二次根式的化简和计算,以及二次根式的应用。
五. 教学方法1.情境教学法:通过具体实例和实际问题,引发学生对二次根式的兴趣和好奇心。
2.引导发现法:引导学生观察、思考、探究二次根式的性质和运算方法,培养学生的问题解决能力。
3.合作学习法:学生进行小组讨论和交流,促进学生之间的相互学习和合作。
六. 教学准备1.教学课件:制作精美的课件,辅助教学,提高学生的学习兴趣。
2.练习题:准备一定数量的练习题,用于巩固和检验学生的学习效果。
3.教学资源:收集相关的教学资源,如视频、文章等,为学生提供丰富的学习材料。
七. 教学过程1.导入(5分钟)通过一个实际问题引入二次根式的概念,引发学生的兴趣和好奇心。
例如,计算一个物体的体积,需要求解一个二次根式。
2.呈现(10分钟)讲解二次根式的定义和性质,通过示例和图示来说明二次根式的概念和特点。
中考数学一轮复习 教学设计五(整式) 鲁教版

中考数学一轮复习教学设计五(整式)鲁教版一. 教材分析中考数学一轮复习的教学设计五(整式)鲁教版,主要针对的是学生对整式的理解、掌握和应用。
教材内容主要包括整式的概念、性质、运算以及应用。
本节课的教学内容是在学生已经掌握了实数、代数式、方程等基础知识的基础上进行教学的,因此,教师在教学过程中应注重引导学生将已学知识与整式知识相结合,提高学生的综合运用能力。
二. 学情分析学生在学习整式之前,已经掌握了实数、代数式、方程等基础知识,具备一定的代数运算能力。
但是,对于整式的理解和应用,部分学生可能还存在一定的困难。
因此,在教学过程中,教师需要关注学生的个体差异,针对不同的学生制定不同的教学策略,提高学生的学习效果。
三. 教学目标1.知识与技能目标:使学生掌握整式的概念、性质和运算方法,能够熟练地进行整式运算。
2.过程与方法目标:通过自主学习、合作交流等方法,提高学生对整式的理解和应用能力。
3.情感态度与价值观目标:培养学生对数学的兴趣,增强学生的自信心,使学生树立合作、探究的学习态度。
四. 教学重难点1.教学重点:整式的概念、性质、运算方法以及应用。
2.教学难点:整式的运算规律以及在不同情境下的应用。
五. 教学方法1.引导法:教师通过提问、设疑等方式引导学生思考,激发学生的学习兴趣。
2.案例分析法:教师通过具体的例子进行分析,使学生更好地理解整式的概念和应用。
3.小组讨论法:学生分组进行讨论,培养学生的合作精神和沟通能力。
4.自主学习法:学生通过自主学习,提高自己的学习能力和解决问题的能力。
六. 教学准备1.教学课件:制作相关的教学课件,以便于教师在课堂上进行演示和讲解。
2.练习题:准备一些与整式相关的练习题,用于巩固学生的学习效果。
3.教学素材:准备一些与整式相关的素材,用于引导学生进行自主学习和合作交流。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾已学过的实数、代数式、方程等基础知识,为新课的学习做好铺垫。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(数的开方与二次根式)
理解平方根、立方根、算术平方根的概念,会用根号表示数的平方
了解二次根式、最简二次根式、同类二次根式
(一):【知识梳理】
的立方根;一个负
)
)
)
④二次根式的运算仍满足运算律,也可以用多项式的乘法公式来简化运算。
为何值时,下列各式在实数范围内有意义
b
)2
-)
2
36+;⑥)
26+
B D. x B 个 6. 当 7.计算
阅读下面的文字后,回答问题:小明和小芳解答题目:“先化简下式,再求值:
是错误的;
(实数的运算)
理解乘方、幂的有关概念、掌握有理数运算法则、运算委和运算顺序,实数的加、减、乘、除、乘方、开方的混合运算,绝对值、非负数的
数的两个数相加得
的数相乘,积的符号由
①除以一个数,等于
_________________________
<
二:【经典考题剖析】
计算有理数的和与无理数的积的差
同一条直线上,位置如图所示,该公司的接送车打算在此间设一个停靠
年国内生产总值(
003
价分别是多少?。