中国矿业大学 线性代数 第一章、第二章测验

合集下载

线性代数第二章习题部分答案

线性代数第二章习题部分答案

线性代数第二章习题部分答案第二章向量组的线性相关性§2-1 §2-2 维向量,线性相关与线性无关(一)一、填空题1. 设3 α1α +2 α2+α =5 α3+α , 其中α1=(2,5,1,3)T,α2=(10,1,5,10)T, α3=(4,1,1,1)T, 则α= (1,2,3,4)T .2. 设α1=(1,1,1)T, α2=(2,1,1)T,α3=(0,2,4)T,则线性组合α13α2+α3= (5,0,2)T .3. 设矩阵A= 5 ,设βi为矩阵A的第i个列向量,则2β1+β2β3= (2,8,2)T .二、试确定下列向量组的线性相关性1. α1=(2,1,0)T, α2=(1,2,1)T, α3=(1,1,1)T解:设k1α1+k2α2+k3α3=0,则k1 210 +k2 121 +k3 111 = 000即2k1+k2+k3=0k1+2k2+k3=0k2+k3=0 k1+2k2+k3=03k2k3=0k2+k3=0 k1+2k2+k3=0k2+k3=0k3=0 k1=k2=k3=0,线性无关。

2. α1=(1,1,2)T, α2=(0,0,0)T, α3=(1,4,3)T线性相关三、设有向量组α1=(1,1,0)T, α2=(1,3,1)T, α3=(5,3,t)T,问t取何值时该向量组线性相关。

解:设k1α1+k2α2+k3α3=0,则k1 110 +k2 131 +k3 53t =0即k1+k2+5k3=0k1+3k23k3=0k2+tk3=0 k1+k2+5k3=0k24k3=0k2+tk3=0k1+k2+5k3=0k1+3k23k3=0(t4)k3=0所以,t=4, 线性相关; t≠4, 线性无关四、设a1,a2线性无关,a1+b,a2+b线性相关,求向量b用a1,a2线性表示的表示式。

解:因为a1+b,a2+b线性相关,所以存在不全为零的k1,k2,使得k1(a1+b)+k2(a2+b)=0, 即(k1+k2)b=k1a1k2a2.又因为a1,a2线性无关,所以k1+k2≠0,于是,b=k1k1+k2a1k2k1+k2a2.五、已知向量组α1,α2,,α2n,令β1=α1+α2,β2=α2+α3,,β2n=α2n+α1,求证向量组β1,β2,,β2n线性相关。

线性代数第一章习题参考答案

线性代数第一章习题参考答案

解:4234231142342311)1342(4432231144322311)1324()1()1(a a a a a a a a a a a a a a a a =--=-ττ4.计算abcdef abcdef abcdef abcdef efcf bfde cd bdae ac ab r r r r c c c r f r d r a c ec c c b 420020111111111111111111111)1(12133213213211,1,11,1,1-=--=--=---=-----++5.求解下列方程10132301311113230121111112121)1(12322+-++-++=+-++-+=+-+-+++x x x x x x x x x x x x c c r r 1132104201)3(113210111)3(21+-+--++=+-+-++=-x x x x x x x x x r r 3,3,30)3)(3(11421)3(3212-==-==-+=+---++=x x x x x x x x x 得二列展开cx b x a x b c a c a b x c x b x a c b a x c b a x c b a x ====------=32133332222,,0))()()()()((1111)2(得四阶范得蒙行列式6.证明322)(11122)1(b a b b a a b ab a -=+右左证明三行展开先后=-=-=-----=----=+=+--323322222)(11)()()()1(100211122)1(:2132b a b a b a ba ba b a b b a a b b a b a b b ab ab a b b a ab ab ac c c c1432222222222222222222222222(1)(2)(3)(1)2369(1)(2)(3)(1)2369(3))(1)(2)(3)(1)2369(1)(2)(3)(1)2369c c c ca a a a a a a ab b b b b b b b cc c c cc c cd d d d d d d d --++++++++++++==++++++++++++二三列成比例))()()()()()((1111)4(44442222d c b a d c d b c b d a c a b a d c b a dcbad c b a D +++------==44444333332222211111)(x d c b a xdcbax d c b a x d c b a x f 五阶范得蒙行列式解考虑函数=(5)))()()()()()(())()()()()()(()()())()()()()()()()()((454545453453d c d b c b d a c a b a d c b a A M D d c d b c b d a c a b a d c b a A ,A x x f ,Mx x f D a b b c a b c d b d a d d x c x b x a x ------+++-==------+++-=----------=于是的系数是中而对应的余子式中是(5)n n a a a a a xx x x 12101000000000100001----解:nn n n n n n n n n nn x a x a a x a x a a a a a a a xx x x D +++=-++--+--=---=+++-++++-10)1()1(1211110121)1()1()1()1()1(1000000000100001按最后一行展开7、设n 阶行列式)det(ij a D =把D 的上下翻转、或逆时针旋转090、或依副对角线翻转、依次得111131111211111,,a a a a D a a a a D a a a a D n n nn n nn n nnnn=== 证明D D D D D n n =-==-32)1(21,)1(证明:将D 上下翻转,相当于将对D 的行进行)1(21-n n 相邻对换得1D ,故D D n nn 2)1(1)1(--=将D 逆时针旋转090相当于将T D 上下翻转,故D n n D n n D T 2)1(2)1(2-=-=D 依副对角线翻转相当于将D 逆时针旋转090变为2D , 然后再2D 左右翻转变为3D ,故D D D D n n n n n n =--=-=---2)1(2)1(22)1(3)1()1()1(8、计算下列行列式(k D 为k 阶行列式)(1)aa D n 11=,其中对角线上元素都是a ,未写出的元素都是0;解:)1()1(0100)1(1122211111-=-+=-+==--++-+a a a a a aa a a D n n n n n n n n n n 列展开按行展开按(2)x a a a x a a a x D n=解:xaa x a a a n x x a aa x a a a x D nc c c n111])1([21-+==+++12)]()1([0001])1([1--≥--+=---+=n r r k a x a n x ax a x a a a n x k(3)111111)()1()1()()1()1(11111n a n a a a n a n a a a n a n a a a D n n n n n nnm n -+---+---+--=----+解:11111(1)(1)22111111(1)(1)()(1)(1)()111111111111()()()((1)(1)()(1)(1)()n nnn n n n n n n n n n n j i n n n n mnnna a a n a n a a a n a n D a a a n a n a a a n a n j i a a a n a n a a a n a n ----++++≥>≥------+---+-=--+---+-=-=--=--+---+-∏上下翻11)n j i i j +≥>≥-∏(4)n n nnn d c d c b a b a D11112=(未写出的均为0)解:)1(2)1(211112)(02232--↔↔-===n n n n n n n nnn r r c c nnnnn D c b d a D d c b a d c d c b a b a D mn得递推公式)1(22)(--=n n n n n n D c b d a D ,而11112c b d a D -=递归得∏=-=ni i i i i n c b d a D 12)((5)det(),||n ij ij D a a i j ==-解111,2,,1120121111110121111210311111230123010001200(1)(1)211201231i i j r r n i n c c n n n n D n n n n n n n n n n n n +-=-+-------==-------------==---------解:11211*222,3,,1111111(6)1111111111101111000111100:01111i n nr r n i n nna a D a a a a a D D a a -=+++=++-+-===+-解111211121,2,,12111(1)1110001(1)0000i inc c na n i ni ina a a a a a a a a a ++==++++==+∑9.设3351110232152113-----=D ,D 的),(j i 元的代数余子式为ij A ,求44333231223A A A A +-+解:24335122313215211322344333231=-----=+-+A A A A。

新版线性代数1-2章练习和参考答案

新版线性代数1-2章练习和参考答案

1 四、设 a, b, c 是互异的实数,证明: a a3
1 b b3
1 c = 0 的充要条件是 a + b + c = 0 。 c3
8
院(系) , 一、填空: 1.方程组 ⎨
班, 姓名 练习 2.4 行列式的应用
学号
⎧7 x + 8 y = 6 的解 x = ⎩3x − 5 y = 11
, y=
解或有无穷解.
3
院(系) ,
班, 练习 1.4
姓名
学号
矩阵的标准形
一、填空: 1.设一个 m × n 线性方程组的系数矩阵为 A ,它等价于 ⎜
⎛ Er ⎝0
0⎞ ⎟ ;其增广矩阵为 0 ⎠ m×n
⎛E B ,它等价于 ⎜ k ⎝ 0

0⎞ . 那么方程组有解的充分必要条件可以用 r 和 k 描述 ⎟ 0 ⎠m×( n +1)


当 n = 2 时, D =
;当 n ≥ 3 时, D =
1 −2 5. 4 −8 0 1 6.设有 x 1 1 1 7. 1 0 1 1 0 1
1 1 1 1 1 0 1 x 1 0 1 1
1 1 2 3 = 4 9 8 27 x 1 0 1 0 1 = 1 1

1 x = 0 ,则 x = 1 0
三、不计算行列式的值,证明行列式
能被 18 整除.
6
院(系) , 一、填空:
班, 姓名 练习 2.3 行列式的计算
学号
2 0 0 0 1 −1 1. 0 −4 0 5 2 −3
4 2 = 0 8
−1 1 1 x −1 −1 x +1 −1 1 ;2. = −1 1 x −1 1 −1 1 x +1 −1 1 0 中,元素 x 的代数余子式是 0 1

线性代数-统考试题(A)试题(答案)

线性代数-统考试题(A)试题(答案)

1 1 0 记 P 0 1 0 ,则(
0 0 1
)。【A】
(A) C PAP 1 ; (B) C P 1AP ; (C) C P T AP ; (D) C PAP T 。
3.设 m n 阶矩阵 A 的秩等于 n ,则下面结论错误的是( )。【D】
(A) AT A 是对称矩阵;
诚信关乎个人一生,公平竞争赢得尊重。
以下行为是严重作弊行为,学校将给予留校察看或开除学籍处分:1.替他人考试或由他人替考;2.通讯工具作弊;3.团伙作弊。
中国矿业大学 2017~2018 学年第 1 学期
《线性代数》试卷(A)卷
答题时间:100 分钟
考试方式:闭卷
学院____________班级_______________姓名__________________学号_____________
2
与向量组 α1, α2 等价,则向量 β2 _____________。【 1 [1, 2, 1]T 或 1 [1, 2, 1]T 】
6
6
a a a a

4.已知矩阵 A
1
1
1

(a

0)
,则
A
的所有代数余子式之和等于________。【1】
1 1



1
5.设二次型 f (x1, x2 , x3 ) t x12 x22 2x32 2x1x2 2x1x3 2x2 x3 为正定二次型,则 t 的取值范围
k11 k22 k33 0
式(1)两边左乘 A 得
k11 k22 k3 2 3 0
式(1)减式(2)
2k11 k32 0

线性代数 第一章矩阵 参考答案

线性代数 第一章矩阵 参考答案

0 A2
0 A1
0 I A11r1 , A21r2 I 0 I 0 0 I
0 A11
A2 1 0
P31 习题 1.4 1.按上课要求做,则此题中行阶梯形答案不唯一,行最简形和标准形答案唯一
1 1 1 (1) 0 2 1 0 0 0
法一
2 1 1 B ( A 2 I ) A ,求出 ( A 2 I ) 1 1 1 4 3 4 2 3 3 8 B 1 5 3 1 1 0 2 9 1 6 4 1 2 3 2 12
4.解: 4 X
4 0 0 4 8 (3) 2 14 2 (4) 3 11 5 11 5 4 10 1 1 0 1 7.解: AB ; BA 1 2 0 0 1 2
1 0 (2) 0 0 1 0 (3) 0 0 1 0 (4) 0 0
1 1 0 0 3 2 0 0 1 1 0 0
1 1 0 0 3 1 1 0 2 1 0 0
1 0 1 ,0 1 2 1 0 0 1 1 0 0 0 1 1 1 , 0 0 0 1 0 0 0 0 7 0 1 5 1 , 0 1 1 0 0 0 0 2 1 1 0 5 1 ,0 1 1 0 0 0 0 0 0 0
(法二)
A1 X1 X 2 的逆阵为 B ,则有 0 X 3 X4 A1 X 1 X 2 I 0 0 X X I 0 4 3
A21 。 0
I 0 r1 r2 A2 0 I 0 0 A21 1 所以 A 1 0 A1 A1 0

线性代数第一章习题解答

线性代数第一章习题解答

习题 1.11.计算下列二阶行列式.(1)5324;(2)ααααcos sin sin cos .解(1)146205324=−=;(2)ααααcos sin sin cos αα22sin cos −=.2.计算下列三阶行列式.(1)501721332−−;(2)00000d c b a ;(3)222111c b a c b a ;(4)cb a b a ac b a b a a c b a ++++++232.解(1)原式62072)5(1)3(12317)3(301)5(22−=××−−××−−××−××−+××+−××=(2)原式00000000000=⋅⋅−⋅⋅−⋅⋅−⋅⋅+⋅⋅+⋅⋅=d c b a c a d b ;(3)原式))()((222222b c a c a b c b ac b a c a ab bc −−−=−−−++=;(4)原式)()()2()23)((b a ac c b a ab b a ac c b a b a a +−++++++++=3)23())(2(a c b a ab c b a b a a =++−+++−.3.用行列式解下列方程组.(1)⎩⎨⎧=+=+35324y x y x ;(2)⎪⎩⎪⎨⎧=++=++=++82683321321321x x x x x x x x x ;(3)⎩⎨⎧=−=+0231322121x x x x ;(4)⎪⎩⎪⎨⎧=−+=+=−−031231232132321x x x x x x x x .解(1)75341−==D ,253421−==D ,333212−==D 所以721==D D x ,732==D D y .(2)2121111113−==D ,21281161181−==D ,41811611832−==D ,68216118133−==D ;所以111==D D x ,222==D Dx ,333==DD x .(3)132332−=−=D ,220311−=−=D ,303122−==D 所以1321==D D x ,1332==D D y .(4)8113230121−=−−−=D ,81102311211−=−−−=D ,81032101112=−−=D ;20131301213=−=D 所以111==D D x ,122−==D Dx ,333==DD x .4.已知xx x x x x f 21112)(−−−=,求)(x f 的展开式.解xxx x x x f 21112)(−−−=22)(11)(1)(111)(2)()(2⋅⋅−⋅−⋅−⋅−⋅−−⋅⋅+−⋅⋅−+⋅−⋅=x x x x x x x x x x xx x 23223+−−=5.设b a ,为实数,问b a ,为何值时,行列式010100=−−−a b b a .解01010022=−−=−−−b a a b b a 0,022==⇒−=⇒b a b a .习题 1.21.求下列各排列的逆序数.(1)1527364;(2)624513;(3)435689712;(4))2(42)12(31n n L L −.解(1)逆序数为14;62421527364it ↓↓↓↓↓↓↓ (2)逆序数为5;311624513it ↓↓↓↓↓↓ (3)逆序数为19;554310010435689712it ↓↓↓↓↓↓↓↓↓(4)逆序数为2)1(−n n :2122210000421231↓↓−−−↓↓↓↓↓−n n n n t n i L L L L2.在由9,8,7,6,5,4,3,2,1组成的下述排列中,确定j i ,的值,使得(1)9467215j i 为奇排列;(2)4153972j i 为偶排列.解(1)j i ,为分别3和8;若8,3==j i ,则93411)946378215(=+++=τ,为奇排列;若3,8==j i ,则1234311)946873215(=++++=τ,为偶排列;(2)j i ,为分别6和8;若8,6==j i ,则205135231)397261584(=++++++=τ,为偶排列;若6,8==j i ,则215335131)397281564(=++++++=τ,为奇排列;3.在五阶行列式)det(ij a =D 展开式中,下列各项应取什么符号?为什么?(1)5145342213a a a a a ;(2)2544133251a a a a a ;(3)2344153251a a a a a ;(4)4512345321a a a a a .解(1)因5)32451(=τ,所以前面带“-”号;(2)因7)53142(=τ,所以前面带“-”号;(3)因10)12543()53142(=+ττ,所以前面带“+”号;(4)因7)13425()25314(=+ττ,所以前面带“-”号.4.下列乘积中,那些可以构成相应阶数的行列式的项?为什么?(1)12432134a a a a ;(2)14342312a a a a ;(3)5514233241a a a a a ;(4)5512233241a a a a a .解(1)可以,由于该项的四个元素乘积分别位于不同的行不同的列;(2)不可以,由于14342312a a a a 中的1434a a 都位于第四列,所以不是四阶行列式的项;(3)可以,由于该项的五个元素乘积分别位于不同的行不同的列;(4)不可以,由于5512233241a a a a a 中没有位于第四列的元素。

《线性代数》第1章习题详解

《线性代数》第1章习题详解

一、习题1参考答案1. 求下列排列的逆序数,并说明它们的奇偶性.(1)41253; (2)3712456; (3)57681234; (4)796815432 解(1)()4125330014τ=+++= 偶排列(2)()37124562500007τ=+++++= 奇排列(3)()576812344544000017τ=+++++++= 奇排列 (4)()7968154326755032129τ=+++++++= 奇排列 2. 确定i 和j 的值,使得9级排列.(1)1274569i j 成偶排列; (2)3972154i j 成奇排列. 解 (1) 8,3i j == (2) 8,6i j == 3.计算下列行列式.(1) 412-3- (2) 2211a a a a ++-1 (3) cos sin sin cos x xx x -(5)2322a a bab (6) 1log log 3b aab (7) 000xy x z y z--- 解(1)131523125=⨯-⨯=- (2)4(3)2(1)4212=-⨯--⨯=--3- (3)()22322211(1)11a a a a a a a a a a =-++-=--++-1 (4)22cos sin cos sin 1sin cos x x x x x x -=+= (5)233232220a a a b a b bab =-=(6)1log 3log log 2log 3b b aa ab a b=-=(7) 0000000xyxz xyz xyz y z -=+----=--4. 当x 取何值时3140010xx x≠ ? 解 因为314010xx x2242(2)x x x x =-=-所以当0x ≠且2x ≠时,恒有3140010xx x ≠5. 下列各项,哪些是五阶行列式ij a 中的一项;若是,确定该项的符号.1225324154(1);a a a a a 3112435224(2);a a a a a 4221351254(3)a a a a a解 (1)不是 (2)不是 (3)不是6. 已知行列式11121314212223243132333441424344a a a a a a a a a a a a a a a a ,写出同时含21a 和21a 的那些项,并确定它们的正负号.解 12213443a a a a (2143)2τ= 符号为正; 14213243a a a a (2134)1τ= 符号为负. 7. 用行列式定义计算下列行列式.(1) 11121314152122232425313241425152000000a a a a a a a a a a a a a a a a (2)020200002200(3) 01000200001000n n-解 (1)行列式的一般项为12345()1122334455(1)j j j j j j j j j j a a a a a τ-若345,,j j j 中有两个取1,2列,则必有一个取自3,4,5列中之一的零元素,故该行列式的值为零,即原式0=(2)行列式中只有一项(3241)13223441(1)16a a a a τ-=不为零,所以原式16= (3)行列式的展开项中只有(2,3,4)11223341,1(1)(1)!n n n n n a a a a a n τ---=- 一项不为零,所以原式1(1)!n n -=-8. 用行列式性质计算下列行列式.(1) 111314895(2)1234234134124123(3)41241202105200117⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦(4)2141312112325062⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎣⎦(5)ab ac aebd cd debf cf ef---(6)a b aa a bb a aa b a解 (1) 111314895321331r rr r--111021013--232r r-111005013--23r r↔111013005---5=(2)12342341341241232341c c c c+++10234103411041210123123413411014121123=121314r rr rr r-+-+-+123401131002220111------34222r rr r-+123401131000440004---160=(3)4124120210520011712r r↔12024124105200117-2131410r rr r--120207240152200117-----24r r↔120201170152200724----3242157r rr r++1202011700178500945342r r-12020117001500945=--(4) 2141312112325062-13r r↔1232312121415062--213141325r rr rr r---12320775032301098----------232r r -12320131032301098-3242310r r r r --123201310076002118----0=(5) abac ae bdcd de bfcfef---每列都提取公因式bc eadf bc e b c e ---每列都提取公因式111111111adfbce --- 1213r r r r ++11102020abcdef -23r r ↔11120002abcdef --4abcdef = (6)0000a b a a a b b a a a b a 4321r r r r +++2222000a b a b a b a ba a bb a a a b a ++++()11110200aa b a b b a a a ba =+121314ar r br r ar r -+-+-+()1111002000a b aa b a b b a b b a a --+----- 3232r r r r +-()11110020000a b aa b b b b b --+---=()2111100201100101a b a b a b --+--- 3424r r r ar ++()211110002200110101b a b a b -+---24c c ↔()211110101200110002b a b b a-+---()()2422224b a b b a b a b =+-=-9. 证明下列等式.(1) 111222222222111333333333a b c bc a c ab a bc a b c b c a c a b a b c =-+(2)11122122111211121112111221222122212221220000a a a a a a b b c c b b a a b b c c b b = (3) ax byay bzaz bxay bzaz bx ax by az bxax by ay bz +++++++++=33()xy z a b y z x zxy+(4) 222244441111a b c da b c d a b c d ()()()()()a b a c a d b c b d =-----()()c d a b c d ⋅-+++ 证明 (1)左式123123123321213132a b c b c a c a b a b c a b c a b c =++--- 133321233212332()()()a b c b c b a c a c c a b a b =---+-=222222111333333b c a c a b a b c b c a c a b -+=右式(2)1112212211121112212221220000a a a a c c b b c c b b 按第一行展开222111121112121111122221222121220000a a a c b b a c b b c b b c b b - 111211121122122121222122b b b b a a a a b b b b =-1112111221222122a ab b a a b b =(3) ax byay bzaz bxay bzaz bx ax by az bxax by ay bz +++++++++ 按第一列分开x ay bzaz bxa y az bx ax by z ax by ay bz ++++++ y ay bzaz bxb z az bx ax by x ax by ay bz +++++++2(0)xay bz z ay az bx x z ax by y +++++分别再分(0)yz az bxb z x ax by x y ay bz++++33x y z y z x a y z x b z x y zxy x yz +分别再分332(1)x y z x y za yz x b yz x z xy zxy=+-=右边 (4) 222244441111a b c d a b c d a b c d 213141c c c c c c --- 222222244444441000a b a c a d aa b a c a d a a b a c a d a --------- 按第一列展开222222222222222()()()b ac ad ab ac ad a b b a c c a d d a --------- 每列都提取公因式222111()()()()()()b ac ad a b a c a d a b b a c c a d d a ---++++++ 1213c c c c -+-+()()()b ac ad a ---222221()()()()()b ac bd bb b ac c a b b ad d a b b a +--++-++-+ 按第一列展开()()()()()b ac ad a c b d b -----222211()()()()c bc b a c bd bd b a d b ++++++++()()()()()a b a c a d b c b d =-----()()c d a b c d -+++10.设行列式30453221--,求含有元素2的代数余子式的和. 解 含有元素2的代数余子式是12222313A A A A +++()()()()345453343050111121212222--=-+-+-+---11161026=---=- 11. 设行列式3040222207005322=--D ,求第四行各元素余子式之和的值是多少? 解 解法一:第四行各元素余子式之和的值为41424344M M M M +++040340300304222222222222700000070070=+++---780314(7)(1)(2)28=-⨯++⨯+-⨯-⨯-=-解法二:第四行各元素余子式之和的值为4142434441424344M M M M A A A A +++=-+-+3040222207001111=---按第3行展开32340(7)(1)222111+----232r r +340704111--按第2行展开34282811-=---12.已知 1012110311101254-=-D ,试求: (1) 12223242A A A A -+- (2) 41424344A A A A +++ 解 (1)方法一:虽然可以先计算处每个代数余子式,然后再求和,但是这很烦琐.利用引理知道,第一列每个元素乘以第二列的代数余子式的和等于零。

线性代数

线性代数

规定 AB C (cij )mn ,

其中 cij ai1b1 j ai 2b2 j L aisbs=j aikbkj k1 (i 1,2,L ,m;j 1,2,L ,n)
注: 1)条件 左矩阵A的列数等于右矩阵B的行数
2)方法 左行右列法——矩阵乘积 C的元素 cij 等于左矩阵 A的第 行i 与右矩阵 的B第 列j对应元素
6、 若 A (aij )mn , B (bij )mn ,且 aij bij ,
称两矩阵相等.
线性代数 第二章
7
矩阵用A、B、C 表示。
同型矩阵:行列数都相等.
矩阵相等: 设A (aij )mn, B (bij )mn, 若aij bij , i 1, ,m, j 1, ,n. 则称A与B相等,记作A B.
对称矩阵的特点是: 它的元素以主对角线 为对称轴对应相等.
线性代数 第二章
113
反对称矩阵
定义 设A为 n阶方阵,若 AT ,即A ,aij a ji
那么 A称为反对称矩阵.
0

1
1 0
2 5
1
2
反对称矩阵的主要特点是: 主对角线上的元素为0,其余
2 5 0 1 的元素关于主对角线互为相
线性代数 第二章
116
一、矩阵的加法 §2.3 矩阵的运算
1、定义 若 A (aij )mn , B (bij )mn, 规定 A B (aij bij )mn
注意:只有同型矩阵才能进行加法运算.
2、运算规律(设ABCO均是同型矩阵)
(1)A B B(交A换律)
(2)( A B) C A( 结(B合律C ))
则 AB 0 0, BA 2 2 ,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
可得: 边同时左乘 A ,可得: p = dA p ,即:
−1 −1
−1
A p = d p 又因为 p = [1,1, ⋯ ,1] , 所以
−1 −1
T
A 中每行元素之和都等于 d
−1
−1

11.设 A ,B 都是 m × n 实矩阵,并且 r ( A + B ) = n ,证明对于 . 实矩阵,
方程组有唯一解; 当 k ≠ 0 时 且 k ≠ 1 r ( A) = r ([ A, b ]) = 3 方程组有唯一解; 方程组无解; 当 k = 0 时 r ([ A, b ]) = 3 , r ( A) = 2 ,方程组无解; 当 k = 1 时,方程组有无穷多解
k 1 − 1 k A = 1 k 1 , b = 1 1 1 − k k 1 −k k 2 λ −1 1 1 初等行变换 [A, b] = λ − 1 1 2 r ↔r ,r −→−kr ,r +r 0 k − 1 k + 1 1 − k = [B, c] 1 3 2 r1 ,r3 1 3 2 2 2 4 5 − 5 − 1 0 0 k + k 1− k
(3)有无穷多解 )
2 A=λ 4
λ
−1 5
−1
1 = 0 且 R( A) = R([A, b])
−5
由前述分析可知: 由前述分析可知: λ = 1
1 0 0 1 1 0 [A, b] → 0 − 1 1 − 1 ,向量形式的通解为 − 1 + k 1 其中任意 k 为实数。 为实数。 0 0 0 0 0 1
−1
1 0 1 1 0 0 2 0 1 故 B = (A + E ) = 0 2 0 + 0 1 0 = 0 3 0 − 1 0 1 0 0 1 − 1 0 2
2 x1 + λx 2 − x3 = 1 8.讨论 λ 为何值时,方程组 λx1 − x 2 + x3 = 2 为何值时, . 4 x + 5 x − 5 x = −1 2 3 1
第一章、 第一章、第二章测验
1.已知 a = [1 , 1 , 3] , b = [2, 0 , 2] , 则 (ba ) .
T T T
2008
2.已知 n 阶方阵 A 满足 A + A − 7 E = O ,则 ( A − 2E ) .
2
=?
−1
=?
3.设 3 阶方阵的列分块矩阵 A = [a1 , a 2 , a 3 ] ,且 det A = 3 ,若三阶方 . 阵 B = [ a1 ,−2a 2 ,3a 3 ] ,则 A + B =?
的值为多少? 的值为多少? (a + ( n − 1)b )(a − b )
n −1




b b b ⋯ a n× n 5. 如果非齐次线性方程组 Ax = b ( b ≠ 0 )中方程个数少于未知数个数,那 中方程个数少于未知数个数, .
么 (a) Ax = b 必有无穷多解; 必有无穷多解; (b) Ax = 0 必有非零解; 必有非零解; (c) Ax = 0 仅有零解; 仅有零解; (d) Ax = b 一定无解。 一定无解。 因为秩(A)< 未知数个数 请说明理由 (b) 因为秩
解: 因为 A − E = 0
1 0 =1≠ 0 −1 0 0
−1
可逆, 所以 A − E 可逆,即 ( A − E ) 存在
存在, 因为 ( A − E ) 存在,两边同时乘以 ( A − E )
−1
AB + E = A 2 + B ⇔ A 2 − E = AB − B ⇔ ( A − E )( A + E ) = ( A − E )B ⇔ (A + E ) = B
A = λ − 1 1 = 5(λ − 1) λ + 4 5 −5 2
λ
−1
4 4 ≠ 0 ⇒ λ ≠ 1且 λ ≠ − 5 5
(2)方程组无解时, R( A) ≠ R ([ A, b]) )方程组无解时,
λ − 1 1 2 λ − 1 1 2 初等行变换 [A, b] = λ − 1 1 2 → λ − 1 1 2 4 5 − 5 − 1 4+5λ 0 0 9 4 当 λ= − 时 R ([ A, b]) = 3 , R( A) = 2 , R( A) = 2 < 3 = R ([A, b]) 5
10. 可逆矩阵中每行元素之和都等于常数 .
d ,且 d ≠ 0 , 证明: A 中每行元素之和都 证明: −1 等于 d 。 证明: 中每行元素之和都等于 证明: 设可逆矩阵 A 中每行元素之和都等于 T 常 数 d , 令 p = [1,1, ⋯ ,1] , 容 易 验 证 Ap = dp 。 因为 A 可逆且 d ≠ 0 ,所以在 Ap = 的两
6 . 设 矩 阵 B 满 足 : 2 ABA
−1
= AB + 6 E , 其 中 E 为 单 位 阵 , 且
− 1 − 2 − 1 A = − 3 1 − 5 ,求矩阵 B。 。 − 3 − 2 − 1 −1 解: 2 ABA = AB + 6 E ⇒ AB (2 E − A) = 6 A ⇒ B (2 E − A) = 6 E
T
12. 设 A 为 n 阶矩阵,并且 A A = AA = E , A = −1 , . 阶矩阵,
T T
证明 r ( A + E ) < n ; 证明: 证明:
T
因为 E = AA
A + E = A + AA = A E + A
T
(
T
) = A (A
T
+E
)
T
= A A+ E
故: r ( A + E ) < n
1 1 − 1 1 r −r 1 1 − 1 1 3 0 0 2 0 →2 0 0 2 0 [B, c] = 0 0 2 0 0 0 0 0 1 − 1 1 0 + µ 1 + µ 0 其中任意 µ , µ 为实数。 向量形式的通解为 1 2 1 2 为实数。 0 0 1
kx1 + x 2 − x 3 = k 9.讨论 k ≥ 0 为何值时,方程组 x1 + kx 2 + x 3 = 1 为何值时, . x + x − kx = k 2 3 1
有唯一解?无解?有无穷多解?在有无穷多解求通解。 有唯一解?无解?有无穷多解?在有无穷多解求通解。 解:令方程组的系数矩阵和常数项分别为
kx1 + x 2 − x3 = k 9. 讨论 k ≥ 0 为何值时 , 方程组 x1 + kx2 + x3 = 1 为何值时, . x + x − kx = k 2 3 1
(选做) 选做) 有唯一解?无解?有无穷多解?在有无穷多解求通解。 有唯一解?无解?有无穷多解?在有无穷多解求通解。 10. 可逆矩阵中每行元素之和都等于常数 d , d ≠ 0 , 证 . 且 明: A 中每行元素之和都等于 d
因为 2E-A 可逆
⇒ B = 6(2 E − A)
B = 6(2 E − A)
−1
−1
−1
3 2 1 = 63 1 5 3 2 3
4 − 9 7 = − 6 − 6 12 − 3 0 3
1 0 1 2 7. 设 A, B 都是 3 阶方阵,且满足 AB + E = A + B ,又设 A = 0 2 0 ,求矩阵 B。 阶方阵, . 。 −1 0 1 0 0 1
T T
答案
1.已知 a = [1 , 1 , 3] , b = [2, 0 , 2] , 则 (ba ) .
T T T
2008
2 2 6 = 8 2007 0 0 0 2 2 6
−1
2.已知 n 阶方阵 A 满足 A + A − 7 E = O ,则 ( A − 2E ) .
2 x1 + λx 2 − x3 = 1 为何值时, 8.讨论 λ 为何值时,方程组 λx1 − x 2 + x3 = 2 . 4 x + 5 x − 5 x = −1 2 3 1
有唯一解?无解?有无穷多解?在有无穷多解时求通解。 有唯一解?无解?有无穷多解?在有无穷多解时求通解。
零向量; 零向量;
⇒ 当 Ax ≠ 0 时, ( Ax ) Ax > 0 T T 又因为 x B Bx ≥ 0 T T T T 所以 x A Ax + x B Bx > 0 T T T T 同理可证, 同理可证,当 Bx ≠ 0 时, x A Ax + x B Bx > 0 T T T T 综上可知, 综上可知, ∀ n ×1 的实向量 x ≠ 0 , x A Ax + x B Bx > 0
2
= A + 3E 3 . 设 3 阶方阵的列分块矩阵 A = [ a1 , a 2 , a 3 ] , 且 det A = 3 , 若三阶方阵
B = [a1 ,−2a 2 ,3a 3 ] ,则 A + B = a b b ⋯ b b a b ⋯ b
4. 阶行列式 D = b . n
-24
b a ⋯ b
∀ n ×1 的实向量 x ≠ 0 , x A Ax + x B Bx > 0 证明: 证明: 因为 r ( A + B ) = n ,所以 ∀ x ≠ 0 , ( A + B )x ≠ 0 ⇒ Ax ≠ 0 , Bx ≠ 0 至少有一个成立,即 Ax , Bx 不能同时为 至少有一个成立,
相关文档
最新文档