知识点165 坐标与图形性质(解答)解剖
专题09 七年级数学下册 点的坐标的有关性质(知识点串讲)(解析版)

专题09 点的坐标的有关性质知识网络重难突破性质一各象限内点的坐标的符号特征象限横坐标x纵坐标y第一象限正正第二象限负正第三象限负负第四象限正负典例1(2020·平顶山市期末)若点A(n,m)在第四象限,则点B(m2,﹣n)()A.第四象限B.第三象限C.第二象限D.第一象限【答案】A【详解】解:∵点A(n,m)在第四象限,∴n>0,m<0,∴m2>0,﹣n<0,∴点B(m2,﹣n)在第四象限.故选:A.变式1-1(2019·淮南市期末)已知点P(0,m)在y轴的负半轴上,则点M(﹣m,1)在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【详解】解:∵点P(0,m)在y轴的负半轴上,∴m<0,∴﹣m>0,∴点M(﹣m,1)在第一象限,故选:A.变式1-2(2019·广西壮族自治区初二期中)已知,点在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】C【详解】∵∴∴点A在第三象限内,故选:C.变式1-3(2018·宿迁市期末)在平面直角坐标系中,点P(-3,x2+2)所在的象限是A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【详解】解:∵x2≥0,∴x2+2≥2,∴点P(-3,x2+2)所在的象限是第二象限.故选B.变式1-4(2019·福田区期中)已知在第三象限,且,,则点的坐标是()A .B.C.D.【答案】D【详解】解:在第三象限,且,,,,点的坐标是:.故选:D.性质二坐标轴上的点的坐标特征1.x轴上的点,纵坐标等于0;2.y轴上的点,横坐标等于0;3.原点位置的点,横、纵坐标都为0.典例2(2019·深圳市期中)已知点A(a﹣2,a+1)在x轴上,则a等于()A.1 B.0 C.﹣1 D.2【答案】C【详解】∵点A(a﹣2,a+1)在x轴上,∴a+1=0,解得:a=﹣1.故选C.变式2-1(2019·济南市期中)如果点在轴上,那么的值是()A.-3 B.3 C.2 D.-2【答案】A【详解】根据题意得:∴故选A.变式2-2(2019·广西壮族自治区初二期中)在平面直角坐标系中,点在().A.轴正半轴上B.轴负半轴上C.轴正半轴上D.轴负半轴上【答案】D 【详解】 点,横坐标为0,纵坐标为20-<,则该点在轴负半轴上,故选:D.变式2-3(2019·和平区期中)在平面直角坐标系中,已知点的坐标满足,则点P 在( )A .坐标轴上B .原点C .x 轴上D .y 轴上【答案】A 【详解】 解:因为点的坐标满足,所以m ,n 至少有一个为0, 所以点在坐标轴上.故选A .性质三 象限角的平分线上的点的坐标1.若点P (n m ,)在第一、三象限的角平分线上,则n m =,即横、纵坐标相等; 2.若点P (n m ,)在第二、四象限的角平分线上,则n m -=,即横、纵坐标互为相反数;在第一、三象限的角平分线上 在第二、四象限的角平分线上典例3(2019·西安市期中)已知点M (2x ﹣3,3﹣x ),在第一、三象限的角平分线上,则M 点的坐标为( ) A .(﹣1,﹣1). B .(﹣1,1) C .(1,1) D .(1,﹣1)【答案】C 【详解】解:∵点M (2x ﹣3,3﹣x ),在第一、三象限的角平分线上, ∴2x ﹣3=3﹣x , 解得:x =2,故2x ﹣3=1,3﹣x =1,XyPmnOyPmnOX则M点的坐标为:(1,1).故选:C.变式3-1(2019·龙岩市期中)在平面直角坐标系中,点在第一三象限角平分线上,则点P 的坐标为A .B.C.D.【答案】C【详解】第一三象限角平分线的解析式为,将点代入,可得:,解得:,故点P的坐标为,故选C.变式3-2(2019·南通市期末)若点A(a+1,a-2)在第二、四象限的角平分线上,则点B(-a,1-a)在()A.第一象限B.第二象限C.第三象跟D.第四象限【答案】B【详解】解:∵点A(a+1,a-2)在第二、四象限的角平分线上,∴a+1=-(a-2),解得a=.∴-a=-,1-a=1-=,∴点B(-a,1-a)在第二象限.故选B.变式3-3(2019·广西壮族自治区初一期中)在下列点中,与点A(-2,-4)的连线平行于y轴的是( ) A.(2,-4) B.(4,-2) C.(-2,4) D.(-4,2)【答案】C【详解】∵平行于y轴的直线上所有点的横坐标相等,已知点A(-2,-4)横坐标为-2,所以结合各选项所求点为(-2,4),故答案选C.性质四与坐标轴平行的直线上的点的坐标特征1.在与x轴平行的直线上,所有点的纵坐标相等;点A、B的纵坐标都等于m;2.在与y轴平行的直线上,所有点的横坐标相等;点C、D的横坐标都等于n;典例4(2019·济宁市期中)经过两点A(2,3),B(-4,3)作直线AB,则直线AB()A.平行于x轴B.平行于y轴C.经过原点D.无法确定【答案】A【详解】解:∵A(2,3),B(-4,3)的纵坐标都是3,∴直线AB平行于x轴.故选A.变式4-1(2020·河南省实验中学初二期中)如图,正方形ABCD的边长为4,点A的坐标为(-1,1),AB 平行于x轴,则点C的坐标为( )A.(3,1) B.(-1,1) C.(3,5) D.(-1,5)【答案】C【解析】解:∵正方形ABCD的边长为4,点A的坐标为(﹣1,1),AB平行于x轴,∴点B的横坐标为:﹣1+4=3,纵坐标为:1,∴点B的坐标为(3,1),∴点C的横坐标为:3,纵坐标为:1+4=5,∴点C的坐标为(3,XYA BmXYCDn5).故选C .性质五 点到坐标轴距离在平面直角坐标系中,已知点P ),(b a ,则 1.点P 到x 轴的距离为b ; 2.点P 到y 轴的距离为a ;3.点P 到原点O 的距离为PO = 22b a典例5(2020·山亭区期末)点的坐标为,且到两坐标轴的距离相等,则点的坐标为( )A .B .C .(D .或【答案】 D 【详解】∵点P 到两坐标轴的距离相等, ∴, 即:或,∴或,∴P 点坐标为:或故选:D.变式5-1(2019·滁州市期中)已知点在第二象限,且到轴的距离是,到轴的距离是,则点的坐标为( ) A .(2,3) B .(-2,3) C .(-3,2) D .(3,-2)【答案】C 【解析】点P 在第二象限,则横坐标为负数,纵坐标为正数,又因为到x 轴的距离是2,到y 轴的距离是3,所以点P 的坐标为(-3,2),故选C.变式5-2(2019·万州区期中)如图,点P 是平面坐标系中一点,则点P 到原点的距离是( )P (b a ,)abxyOA .3 B.C.D.【答案】A【解析】连接PO.∵点P的坐标是(),∴点P到原点的距离==3.故选A.性质六平面直角坐标系内平移变化典例6(2019·石景山区期中)在平面直角坐标系中,若将原图形上的每个点的横坐标都加上3,纵坐标保持不变,则所得图形的位置与原图形相比( )A.向上平移3个单位 B.向下平移3个单位 C.向右平移3个单位 D.向左平移3个单位【答案】C【详解】解:若将原图形上的每个点的横坐标都加上3,纵坐标保持不变, 则所得图形的位置与原图形相比向右平移3个单位, 故选C .变式6-1(2019·肇庆市期中)已知点A(﹣2,4),将点A 往上平移2个单位长度,再往左平移3个单位长度得到点A′,则点A′的坐标是( ) A .(﹣5,6) B .(1,2) C .(1,6) D .(﹣5,2)【答案】A 【解析】4+2=6,-2-3=-5,故点A′的坐标是(-5, 6),故选A变式6-2(2019·德州市期中)在平面直角坐标系中,线段A′B′是由线段AB 经过平移得到的,已知点A(﹣2,1)的对应点为A′(3,1),点B 的对应点为B′(4,0),则点B 的坐标为( ) A .(9,0) B .(﹣1,0) C .(3,﹣1) D .(﹣3,﹣1)【答案】B 【解析】横坐标从-2到3,说明是向右移动了3-(-2)="5," 纵坐标不变,求原来点的坐标,则为让新坐标的横坐标都减5,纵坐标不变.则点B 的坐标为(-1,0).变式6-3(2018·宿州市期末)将三角形三个顶点的横坐标都减2,纵坐标不变,则所得三角形与原三角形的关系是( )A .将原图向左平移两个单位B .关于原点对称C .将原图向右平移两个单位D .关于y 轴对称 【答案】A 【解析】解:∵将三角形三个顶点的横坐标都减2,纵坐标不变, ∴所得三角形与原三角形的关系是:将原图向左平移两个单位. 故选:A .性质七 对称点的坐标1. 点P ),(n m 关于x 轴的对称点为),(1n m P , 即横坐标不变,纵坐标互为相反数;2. 点P 关于轴的对称点为),(2n m P -, 即纵坐标不变,横坐标互为相反数;3.点P ),(n m 关于原点的对称点为),(3n m P --,即横、纵坐标都互为相反数;小结:典例7(2020·延安市期中)在平面直角坐标系中,点P(-3,m 2+4m +5)关于原点对称点在( )坐标轴上 点P (x ,y ) 连线平行于 坐标轴的点 点P (x ,y )在各象限 的坐标特点象限角平分线上 的点X 轴 Y 轴 原点 平行X 轴 平行Y 轴 第一象限 第二象限 第三象限 第四象限 第一、 三象限 第二、四象限 (x,0)(0,y )(0,0)纵坐标相同横坐标不同横坐标相同纵坐标不同x >0 y >0 x <0 y >0 x <0 y <0 x >0 y <0(m,m) (m,-m)XyPPmm -nOn -XyP2P mm -nOXyP1Pnn -mOA.第一象限B.第二象限 C.第三象限D.第四象限【答案】D【详解】∵m2+4m+5=(m+1)2+1>0,∴点P(-3,m2+1)在第二象限,∴点P(-3,m2+1)关于原点对称点在第四象限,故选D.变式7-1(2019·广西壮族自治区初二期末)在平面直角坐标系中,点P(﹣2,3)关于x轴的对称点在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】C【详解】解:点P(﹣2,3)关于x轴的对称点为(﹣2,﹣3),(﹣2,﹣3)在第三象限.故选C.变式7-2(2020·成都市期末)在平面直角坐标系中,点P(﹣,﹣2)关于原点对称的点在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【详解】∵P(﹣,﹣2)关于原点对称的点的坐标是(,2)∴点P(﹣,﹣2)关于原点对称的点在第一象限.故选:A.变式7-3(2018·大石桥市期中)点关于轴对称的点的坐标为()A.(-5,-7)B.(-7,-5)C.(5,7)D.(7,-5)【答案】C【详解】点关于轴对称的点的坐标为(5,7)故选:C巩固训练一、 选择题(共10小题)1.(2018·临泽县期末)P(x,y)在第三象限,且到y 轴距离为3,到x 轴距离为5,则P 点的坐标是( ) A .(-3,-5) B .(5,-3) C .(3,-5) D .(-3,5) 【答案】A 【解析】解:∵点P (x ,y )在第三象限,且点P 到y 轴的距离为3,到x 轴的距离为5,∴x =﹣3,y =﹣5,∴点P 的坐标是(﹣3,﹣5).故选A .2.(2019·阳谷县期末)已知平面内不同的两点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,则a 的值为( ) A .﹣3 B .﹣5C .1或﹣3D .1或﹣5【答案】A 【解析】详解:∵点A (a +2,4)和B (3,2a +2)到x 轴的距离相等, ∴4=|2a +2|,a +2≠3, 解得:a =−3, 故选A .3.(2020·东平县期末)如果()P m 3,2m 4++在y 轴上,那么点P 的坐标是()A .()2,0-B .()0,2-C .()1,0D .()0,1【答案】B 【详解】 解:∵()Pm 3,2m 4++在y 轴上,∴30m += 解得3m =-,()242342m +=⨯-+=-∴点P 的坐标是(0,-2). 故选B .4.(2020·徐州市期末)在平面直角坐标系中,将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,则点A′的坐标是()A.(﹣1,1)B.(﹣1,﹣2)C.(﹣1,2)D.(1,2)【答案】A【解析】已知将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,根据向左平移横坐标减,向上平移纵坐标加可得点A′的横坐标为1﹣2=﹣1,纵坐标为﹣2+3=1,即A′的坐标为(﹣1,1).故选A.5.(2018·滨州市期末)小莹和小博士下棋,小莹执圆子,小博士执方子.如图,棋盘中心方子的位置用(﹣1,0)表示,右下角方子的位置用(0,﹣1)表示.小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形.她放的位置是()A.(﹣2,1)B.(﹣1,1)C.(1,﹣2)D.(﹣1,﹣2)【答案】B【详解】解:棋盘中心方子的位置用(﹣1,0)表示,则这点所在的横线是x轴,右下角方子的位置用(0,﹣1),则这点所在的纵线是y轴,则当放的位置是(﹣1,1)时构成轴对称图形.故选B.6.(2018·张家口市期末)在平面直角坐标系中,点(4,﹣5)关于x轴对称点的坐标为()A.(4,5)B.(﹣4,﹣5)C.(﹣4,5)D.(5,4)【答案】A【解析】解:根据关于x轴对称点的坐标特点,可得点(4,﹣5)关于x轴对称点的坐标为(4,5).故选A.7.(2019·湖南省雅礼中学初二期中)若x轴上的点P到y轴的距离为3,则点P的坐标为()A.(3,0)B.(3,0)或(–3,0)C.(0,3)D.(0,3)或(0,–3)【答案】B【详解】由x轴上的点P,得P点的纵坐标为0,由点P到y轴的距离为3,得P点的横坐标为3或-3,∴点P的坐标为(3,0)或(-3,0),故选B.8.(2018·马鞍山市期末)若点A(x,y)在坐标轴上,则()A.x=0 B.y=0 C.xy=0 D.x+y=0【答案】C【详解】解:∵点A(x,y)在坐标轴上,∴x=0,或y=0,∴xy=0.故选:C.9.(2019·济南市期中)如图,码头在码头的正西方向,甲、乙两船分别从、同时出发,并以等速驶向某海域,甲的航向是北偏东,为避免行进中甲、乙相撞,则乙的航向不能是( )A .北偏东B.北偏西C.北偏东D.北偏西【答案】D【解析】因为甲乙两船航行的时间相等,速度相等,所以相遇时航行的路程相等,则相遇点与A,B构成一个等腰三角形,此时乙的航向是北偏西35°,故答案选D.10.(2018·临泽县期中)若将点A先向左平移1个单位,再向上平移4个单位,得到的B(-3,2),则点A 的坐标为()A.(-1,6)B.(-4,6)C.(-2,-2)D.(-4,-2)【答案】C【解析】设A(x,y),将点A先向左平移1个单位,再向上平移4个单位可得(x-1,y+4),∵得到的B(-3,2),∴x-1=-3,y+4=2,解得:x=-2,y=-2,∴A(-2,-2),故选C.二、填空题(共5小题)11.(2019·大名县期中)已知点A在x轴的下方,且到x轴的距离为5,到y轴的距离为3,则点A的坐标为_____.【答案】(3,﹣5)或(﹣3,﹣5)【详解】解:∵点A在x轴的下方,且到x轴的距离为5,到y轴的距离为3,∴点A的纵坐标为:﹣5,横坐标为:±3,故点A的坐标为:(3,﹣5)或(﹣3,﹣5).故答案为(3,﹣5)或(﹣3,﹣5).12.(2017·乌海市期末)A点坐标为(3,1),线段AB=4,且AB∥x轴,则B点坐标为________.【答案】(7,1)或(-1,1)【解析】由题意可设点B的坐标为(x,1),∵AB∥x轴,点A的坐标为(3,1),AB=4,∴x-3=4或3-x=4,解得x=7或x=-1,∴点B的坐标为(7,1)或(-1,1).13.(2019·平川区期中)在平面直角坐标系中,若第二象限内的P点到x轴的距离为2,到y轴的距离为3,则P点的坐标为_____.【答案】(-3,2)【详解】∵P点在第二象限内,∴P点的横坐标为负数,纵坐标为正数;∵P点到x轴的距离为2,到y轴的距离为3,∴点P的横坐标为-3,纵坐标为2,即点P的坐标为(-3,2).故答案为:(-3,2).14.(2019·莆田市期中)已知点P(x,y)在第四象限,且|x|=3,|y|=5,则点P的坐标是______.【答案】(3,-5)【解析】解:∵点P(x,y)在第四象限,∴x>0,y<0,又∵|x|=3,|y|=5,∴x=3,y=﹣5,∴点P的坐标是(3,﹣5).故答案填(3,﹣5).15.(2018·太谷县期末)已知点P(3a-6,1-a)在x轴上,则点P的坐标为____.【答案】(-3,0)【解析】因为点P(3a-6,1-a)在x轴上所以1-a=0解得a=1代入3a-6=-3∴P点的坐标为(-3,0).故答案为:(-3,0).三、解答题(共2小题)16.(2018·济宁市期中)已知平面直角坐标系中有一点.(1)点M到y轴的距离为1时,M的坐标?(2)点且MN//x轴时,M的坐标?【答案】(1) (﹣1,2)或(1,3)(2) (﹣7,﹣1)【解析】((1)∵点M(2m-3,m+1),点M到y轴的距离为1,∴|2m-3|=1,解得:m= 1或m=2,当m=1时,点M的坐标为(﹣1,2),当m=2时,点M的坐标为(1,3);综上所述:点M的坐标为(﹣1,2)或(1,3);(2)∵点M(2m-3,m+1),点N(5,﹣1)且MN∥x轴,∴m+1=﹣1,解得:m=﹣2,故点M的坐标为(﹣7,﹣1).17.(2018·石家庄市期末)已知平面直角坐标系中,点P的坐标为(1)当m为何值时,点P到x轴的距离为1?(2)当m为何值时,点P到y轴的距离为2?(3)点P可能在第一象限坐标轴夹角的平分线上吗?若可能,求出m的值;若不可能,请说明理由.【答案】(1),;(2),;(3)不可能,理由见解析.【解析】【分析】(1)根据点到轴的距离为,可求的值;(2)根据点到轴的距离为,可求的值;(3)根据角平分线上的点到角两边距离相等,可求的值,且点在第一象限,可求的范围,即可判断可能性.【详解】解:点P到x轴的距离为1,,点P到y轴的距离为2,,如果点P可能在第一象限坐标轴夹角的平分线上点P在第一象限,,不合题意点P不可能在第一象限坐标轴夹角的平分线上.。
专题10 图形与坐标(知识点串讲)(解析版)

专题10 图形与坐标 知识网络
重难突破 知识点一 确定位置的方法 1.用有序实数对确定物体的位置 2.用方向和距离确定物体的位置 【典例1】(2019春•冠县期末)下列说法中,能确定物体位置的是( ) A.天空中的一只小鸟 B.电影院中18座 C.东经120°,北纬30° D.北偏西35°方向 【点拨】确定一个物体的位置,要用一个有序数对,即用两个数据.找到一个数据的选项即为所求. 【解析】解:A、天空中的一只小鸟,不是有序数对,不能确定物体的位置,故本选项不合题意; B、电影院中18座,不是有序数对,不能确定物体的位置,故本选项不符合题意; C、东经118°北纬40°,是有序数对,能确定物体的位置,故本选项符合题意. D、北偏西35°方向,不是有序数对,不能确定物体的位置,故本选项不合题意; 故选:C. 【点睛】此题主要考查了坐标确定位置,要明确,一个有序数对才能确定一个点的位置. 【典例2】(2017秋•金华期末)某班级第4组第5排位置可以用数对(4,5)表示,则数对(2,3)表示的位置是( ) A.第3组第2排 B.第3组第1排 C.第2组第3排 D.第2组第2排 【点拨】依据有序数对可知,第一个数表示组数,第二个数表示排数,进而得到结果. 【解析】解:某班级第4组第5排位置可以用数对(4,5)表示,则数对(2,3)表示的位置是第2组第3排, 故选:C. 【点睛】本题主要考查了坐标确定位置,解决问题的关键是掌握坐标的概念.
【变式训练】 1.(2017•绍兴模拟)以下是甲、乙、丙三人看地图时对四个地标的描述: 甲:从学校向北直走500米,再向东直走100米可到图书馆; 乙:从学校向西直走300米,再向北直走200米可到博物馆; 丙:博物馆在体育馆正西方向200米处. 根据三人的描述,若从图书馆出发,其终点是体育馆,则下列描述正确的是( ) A.向南直走300米,再向西直走200米 B.向南直走300米,再向西直走600米 C.向南直走700米,再向西直走200米 D.向南直走700米,再向西直走600米 【点拨】以学校为坐标原点画出直角坐标系,1个单位长表示100m,描出图书馆、邮局、火车站的位置,然后根据图书馆和火车站的坐标进行判断. 【解析】解:如图,以学校为坐标原点画出直角坐标系,1个单位长表示100m, , 从图书馆出发,向南直走300米,再向西直走200米可到体育馆. 故选:A. 【点睛】本题考查了坐标确定位置:平面内的点与有序实数对一一对应,记住平面内特殊位置的点的坐标特征. 2.(2019秋•普宁市期中)根据下列表述,能确定具体目标位置的是( ) A.电影院1号厅第2排 B.普宁市大学路 C.东经118°,北纬68° D.南偏西45° 【点拨】根据坐标的定义,确定位置需要两个数据对各选项分析判断利用排除法求解. 【解析】解:A、电影院1号厅第2排,不能确定具体位置,故本选项不符合题意; B、普宁市大学路,不能确定具体位置,故本选项不符合题意; C、东经118°,北纬68°,能确定具体位置,故本选项符合题意; D、南偏西45°,不能确定具体位置,故本选项不符合题意. 故选:C. 【点睛】本题考查了坐标确定位置,理解确定坐标的两个数是解题的关键.
北师大版数学八年级上册第三章位置与坐标知识归纳(含练习)

2020年~2021年最新第三章 位置与坐标知识点1 坐标确定位置知识链接平面内特殊位置的点的坐标特征(1)各象限内点P (a ,b )的坐标特征:①第一象限:a >0,b >0; ②第二象限:a <0,b >0;③第三象限:a <0,b <0; ④第四象限:a >0,b <0.(2)坐标轴上点P (a ,b )的坐标特征:①x 轴上:a 为任意实数,b=0;②y 轴上:b 为任意实数,a=0;③坐标原点:a=0,b=0.(3)两坐标轴夹角平分线上点P (a ,b )的坐标特征:①一、三象限:b a =; ②二、四象限:b a -=.同步练习1.定义:直线l 1与l 2相交于点O ,对于平面内任意一点M ,点M 到直线l 1、l 2的距离分别为p 、q ,则称有序实数对(p ,q )是点M 的“距离坐标”,根据上述定义,“距离坐标”是(1,2)的点的个数是( ) A .2 B .3 C .4 D .5考点:点到直线的距离;坐标确定位置;平行线之间的距离.解答:如图,∵到直线l 1的距离是1的点在与直线l 1平行且与l 1的距离是1的两条平行线a 1、a 2上,到直线l 2的距离是2的点在与直线l 2平行且与l 2的距离是2的两条平行线b 1、b 2上, ∴“距离坐标”是(1,2)的点是M 1、M 2、M 3、M 4,一共4个.故选C .2.如图,是用围棋子摆出的图案(用棋子的位置用用有序数对表示,如A 点在(5,1)),如果再摆一黑一白两枚棋子,使9枚棋子组成的图案既是轴对称图形又是中心对称图形,则下列摆放正确的是( )A .黑(3,3),白(3,1)B .黑(3,1),白(3,3)C .黑(1,5),白(5,5)D .黑(3,2),白(3,3)考点:利用旋转设计图案;坐标确定位置;利用轴对称设计图案.解答:A、当摆放黑(3,3),白(3,1)时,此时是轴对称图形但不是中心对称图形,故此选项错误;B、当摆放黑(3,3),白(3,1)时,此时是轴对称图形也是中心对称图形,故此选项正确;C、当摆放黑(1,5),白(5,5)时,此时不是轴对称图形也不是中心对称图形,故此选项错误;D、当摆放黑(3,2),白(3,3)时,此时是轴对称图形不是中心对称图形,故此选项错误.故选:B.3.(2014•台湾)如图为小杰使用手机内的通讯软件跟小智对话的纪录.根据图中两人的对话纪录,若下列有一种走法能从邮局出发走到小杰家,则此走法为何?()A.向北直走700公尺,再向西直走100公尺B.向北直走100公尺,再向东直走700公尺C.向北直走300公尺,再向西直走400公尺D.向北直走400公尺,再向东直走300公尺考点:坐标确定位置.解答:依题意,OA=OC=400=AE,AB=CD=300,DE=400-300=100,所以邮局出发走到小杰家的路径为,向北直走AB+AE=700公尺,再向西直走DE=100公尺.故选:A.4.如图是我市几个旅游景点的大致位置示意图,如果用(0,0)表示新宁莨山的位置,用(1,5)表示隆回花瑶的位置,那么城市南山的位置可以表示为()A.(2,1)B.(0,1)C.(-2,-1)D.(-2,1)考点:坐标确定位置.解答:建立平面直角坐标系如图,城市南山的位置为(-2,-1).故选C.5.(2014•怀化模拟)小军从点O向东走了3千米后,再向西走了8千米,如果要使小军沿东西方向回到点O的位置,那么小明需要()A.向东走5千米B.向西走5千米C.向东走8千米D.向西走8千米考点:坐标确定位置.解答:小军从点O向东走了3千米,再向西走了8千米后在点O的西边5千米,所以,要回到点O的位置,小明需要向东走5千米.故选A.6.(2014•遵义二模)在一次寻宝游戏中,寻宝人找到了如图所示的两个标志点A(2,1)、B(4,-1),这两个标志点到“宝藏”点的距离都是10,则“宝藏”点的坐标是.考点:勾股定理的应用;坐标确定位置;线段垂直平分线的性质.解答:首先确定坐标轴,则“宝藏”点是C和D,坐标是:(5,2)和(1,-2).故答案是:(5,2)和(1,-2).7.(2014•曲靖模拟)在一次“寻宝”游戏中,“寻宝”人找到了如图所标示的两个标志点A(2,3),B(4,1),A,B两点到“宝藏”点的距离都相等,则“宝藏”点的可能坐标是.考点:坐标确定位置.解答:如图,“宝藏”的可能坐标是(0,-1),(1,0),(2,1),(3,2),(4,3),(5,4),(6,5).故答案为:(0,-1),(1,0),(2,1),(3,2),(4,3),(5,4),(6,5).8.(2014•赤峰)如图所示,在象棋盘上建立平面直角坐标系,使“马”位于点(2,2),“炮”位于点(-1,2),写出“兵”所在位置的坐标.考点:坐标确定位置.解答:建立平面直角坐标系如图,兵的坐标为(-2,3).故答案为:(-2,3).9.如图1,是由方向线一组同心、等距圆组成的点的位置记录图.包括8个方向:东、南、西、北、东南、东北、西南、西北,方向线交点为O,以O为圆心、等距的圆由内向外分别称作1、2、3、…n.将点所处的圆和方向称作点的位置,例如M(2,西北),N(5,南),则P点位置为.如图2,若将(1,东)标记为点A1,在圆1上按逆时针方向旋转交点依次标记为A2、A3、…、A8;到A8后进入圆2,将(2,东)标记为A9,继续在圆2上按逆时针方向旋转交点依次标记为A10、A11、…、A16;到A16后进入圆3,之后重复以上操作过程.则点A25的位置为,点A2013的位置为,点A16n+2(n为正整数)的位置为.考点:规律型:点的坐标;坐标确定位置.解答:由题意得出:P点在第3个圆上,且在东北方向,故P点位置为:(3,东北),由题意可得出每8个数A点向外移动一次,∵25÷8=3…1,故点A25所在位置与A1方向相同,故点A25的位置为(4,东),∵2013÷8=251…5,故点A2013所在位置与A5方向相同,故点A2013的位置为(252,西),∵(16n+2)÷8=2n…2,故点A16n+2所在位置与A2方向相同,故点A16n+2的位置为(2n+1,东北),故答案为:(3,东北),(4,东),(252,西),(2n+1,东北).10.有一张图纸被损坏,但上面有如图所示的两个标志点A(-3,1),B(-3,-3)可认,而主要建筑C(3,2)破损,请通过建立直角坐标系找到图中C点的位置.解:C点的位置如图.11.如图是某台阶的一部分,如果A点的坐标为(0,0),B点的坐标为(1,1).(1)请建立适当的直角坐标系,并写出其余各点的坐标;(2)说明B,C,D,E,F的坐标与点A的坐标比较有什么变化?(3)现要给台阶铺上地毯,单位长度为1,请你算算要多长的单位长度的地毯?解:以A点为原点,水平方向为x轴,建立平面直角坐标系,所以C,D,E,F各点的坐标分别为C(2,2),D(3,3),E(4,4),F(5,5);B,C,D,E,F的坐标与点A的坐标相比较,横坐标与纵坐标分别加1,2,3,4,5;现要给台阶铺上地毯,单位长度为1,要11个单位长度的地毯12.常用的确定物体位置的方法有两种.如图,在4×4个边长为1的正方形组成的方格中,标有A,B两点.请你用两种不同方法表述点B相对点A的位置.解:方法1,用有序实数对(a,b)表示,比如:以点A为原点,水平方向为x轴,建立直角坐标系,则B(3,3),方法2,用方向和距离表示,比如:B点位于A点的东北方向(北偏东45°等均可),距离A 3处.点2知识点2 平面直角坐标系知识链接1点的坐标(1)我们把有顺序的两个数a和b组成的数对,叫做有序数对,记作(a,b).(2)平面直角坐标系的相关概念①建立平面直角坐标系的方法:在同一平面内画两条有公共原点且垂直的数轴.②各部分名称:水平数轴叫x轴(横轴),竖直数轴叫y轴(纵轴),x轴一般取向右为正方向,y轴一般取象上为正方向,两轴交点叫坐标系的原点.它既属于x轴,又属于y轴.(3)坐标平面的划分建立了坐标系的平面叫做坐标平面,两轴把此平面分成四部分,分别叫第一象限,第二象限,第三象限,第四象限.坐标轴上的点不属于任何一个象限.(4)坐标平面内的点与有序实数对是一一对应的关系.2 两点间的距离公式:设有两点A(x1,y1),B(x2,y2),则这两点间的距离为AB=(x1-x2)2+(y1-y2)2.说明:求直角坐标系内任意两点间的距离可直接套用此公式.同步练习1.(2014•台湾)如图的坐标平面上有P 、Q 两点,其坐标分别为(5,a )、(b ,7).根据图中P 、Q 两点的位置,判断点(6-b ,a-10)落在第几象限?( )A .一B .二C .三D .四考点:点的坐标.解答:∵(5,a )、(b ,7),∴a <7,b <5,∴6-b >0,a-10<0,∴点(6-b ,a-10)在第四象限.故选D .2.(2014•萧山区模拟)已知点P (1-2m ,m-1),则不论m 取什么值,该P 点必不在( )A .第一象限B .第二象限C .第三象限D .第四象限考点:点的坐标.分析:分横坐标是正数和负数两种情况求出m 的值,再求出纵坐标的正负情况,然后根据各象限内点的坐标特征解答.解答:①1-2m >0时,m <21,m-1<0,所以,点P 在第四象限,一定不在第一象限; ②1-2m <0时,m >21,m-1既可以是正数,也可以是负数,点P 可以在第二、三象限, 综上所述,P 点必不在第一象限.故选A .3.(2014•闵行区二模)如果点P (a ,b )在第四象限,那么点Q (-a ,b-4)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限考点:点的坐标.分析:根据第四象限的点的坐标特征确定出a 、b 的正负情况,再确定出点Q 的横坐标与纵坐标的正负情况,然后根据各象限内点的坐标特征判断即可.解答:∵点P (a ,b )在第四象限,∴a >0,b <0,∴-a <0,b-4<0,∴点Q (-a ,b-4)在第三象限.故选C .点评:本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.(2014•北海)在平面直角坐标系中,点M (-2,1)在( )2秒3秒(2)当P点从点O出发10秒,可得到的整数点的个数是______个.(3)当P点从点O出发______秒时,可得到整数点(10,5)考点:点的坐标.分析:(1)在坐标系中全部标出即可;(2)由(1)可探索出规律,推出结果;(3)可将图向右移10各单位,用10秒;再向上移动5个单位用5秒.解答:(1)以1秒时达到的整数点为基准,向上或向右移动一格得到2秒时的可能的整数点;再以2秒时得到的整数点为基准,向上或向右移动一格,得到3秒时可能得到的整数点.P从O点出发时间可得到整数点的坐标可得到整数点的个数1秒(0,1)、(1,0) 22秒(0,2),(2,0),(1,1) 33秒(0,3),(3,0),(2,1),(1,2) 4(2)1秒时,达到2个整数点;2秒时,达到3个整数点;3秒时,达到4个整数点,那么10秒时,应达到11个整数点;(3)横坐标为10,需要从原点开始沿x轴向右移动10秒,纵坐标为5,需再向上移动5秒,所以需要的时间为15秒.知识点3 坐标与图形性质知识链接1、点到坐标轴的距离与这个点的坐标是有区别的,表现在两个方面:①到x 轴的距离与纵坐标有关,到y 轴的距离与横坐标有关;②距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.2、有图形中一些点的坐标求面积时,过已知点向坐标轴作垂线,然后求出相关的线段长,是解决这类问题的基本方法和规律.3、若坐标系内的四边形是非规则四边形,通常用平行于坐标轴的辅助线用“割、补”法去解决问题.同步练习1.如图,在平面直角坐标系中,点A ,B 的坐标分别为(-6,0)、(0,8).以点A 为圆心,以AB 长为半径画弧,交x 正半轴于点C ,则点C 的坐标为 .考点:勾股定理;坐标与图形性质.分析:首先利用勾股定理求出AB 的长,进而得到AC 的长,因为OC=AC-AO ,所以OC 求出,继而求出点C 的坐标.解答:∵点A ,B 的坐标分别为(-6,0)、(0,8),∴AO=6,BO=8,∴AB=22BO AO =10,∵以点A 为圆心,以AB 长为半径画弧,∴AB=AC=10,∴OC=AC-AO=4,∵交x 正半轴于点C ,∴点C 的坐标为(4,0),故答案为:(4,0).2.如图,正方形ABCD 的边长为4,点A 的坐标为(-1,1),AB 平行于x 轴,则点C 的坐标为 .解答:C (3,5)3.如图,Rt △OAB 的斜边AO 在x 轴的正半轴上,直角顶点B 在第四象限内,S △OAB =20,OB :AB=1:2,求A 、B 两点的坐标.解答:A (10,0),B (2,-4)4.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别以点M 、N 为圆心,大于21MN 的长为半径画弧,两弧在第二象限交于点P .若点P 的坐标为(2a ,b+1),则a 与b 的数量关系为( )A .a=bB .2a+b=-1C .2a-b=1D .2a+b=1 考点:作图—基本作图;坐标与图形性质;角平分线的性质.分析:根据作图过程可得P 在第二象限角平分线上,有角平分线的性质:角的平分线上的点到角的两边的距离相等可得|2a|=|b+1|,再根据P 点所在象限可得横纵坐标的和为0,进而得到a 与b 的数量关系.解答:根据作图方法可得点P 在第二象限角平分线上,则P 点横纵坐标的和为0,故2a+b+1=0,整理得:2a+b=-1,故选:B .5.如图,在平面直角坐标系中,有一矩形COAB ,其中三个顶点的坐标分别为C (0,3),O (0,0)和A (4,0),点B 在⊙O 上. (1)求点B 的坐标; (2)求⊙O 的面积.解答:(1) B (4,3) (2) 25π6.(2014•南平模拟)如图,在平面直角坐标系中,OABC 是正方形,点A 的坐标是(4,0),点P 在AB 边上,且∠CPB=60°,将△CPB 沿CP 折叠,使得点B 落在D 处,则D 的坐标为( )A .(2,32)B .(23 , 32-) C .(2,324-) D .(23,324-) 考点:翻折变换(折叠问题);坐标与图形性质.分析:作DE ⊥y 轴于E ,DF ⊥x 轴于F ,根据正方形的性质∴OC=BC=4,∠B=90°,由∠BPC=60°得∠1=30°,再根据折叠的性质得到∠1=∠2=30°,CD=CB=4,所以∠3=30°,在Rt △CDE 中,根据含30度的直角三角形三边的关系得到DE=21CD=2,CE=3DE=32,则OE=324-,所DF=324-,然后可写出D 点坐标.解答:作DE ⊥y 轴于E ,DF ⊥x 轴于F ,如图,∵四边形OABC 是正方形,点A 的坐标是(4,0), ∴OC=BC=4,∠B=90°, ∵∠BPC=60°, ∴∠1=30°,∵△CPB 沿CP 折叠,使得点B 落在D 处,∴∠1=∠2=30°,CD=CB=4, ∴∠3=30°, 在Rt △CDE 中,DE=21CD=2,CE=3DE=23, ∴OE=OC-CE=324-, ∴DF=OE=324-,∴D 点坐标为(2,324-).故选C .7.如图,在平面直角坐标系中,Rt △OAB 的顶点A 在x 轴的正半轴上.顶点B 的坐标为(3,3),点C 的坐标为(21,0),点P 为斜边OB 上的一个动点,则PA+PC 的最小值为 .考点:轴对称-最短路线问题;坐标与图形性质.分析:作A 关于OB 的对称点D ,连接CD 交OB 于P ,连接AP ,过D 作DN ⊥OA 于N ,则此时PA+PC 的值最小,求出AM ,求出AD ,求出DN 、CN ,根据勾股定理求出CD ,即可得出答案.解答:作A 关于OB 的对称点D ,连接CD 交OB 于P ,连接AP ,过D 作DN ⊥OA 于N , 则此时PA+PC 的值最小, ∵DP=PA ,∴PA+PC=PD+PC=CD , ∵B (3,3),∴AB=3,OA=3,∠B=60°,由勾股定理得:OB=32, 由三角形面积公式得:21×OA×AB=21×OB×AM ,∴AM=23, ∴AD=2×23=3,∵∠AMB=90°,∠B=60°, ∴∠BAM=30°, ∵∠BAO=90°, ∴∠OAM=60°, ∵DN ⊥OA , ∴∠NDA=30°,∴AN=21AD=23,由勾股定理得:DN=323, ∵C (21,0),∴CN=3-21-23=1,在Rt △DNC 中,由勾股定理得:DC==+22)323(1231, 即PA+PC 的最小值是231, 8.在直角坐标系中,有四个点A (-8,3)、B (-4,5)、C (0,n )、D (m ,0),当四边形ABCD 的周长最短时,nm的值为( ) A .73- B .23- C .27- D .23考点:轴对称-最短路线问题;坐标与图形性质.分析:若四边形的周长最短,由于AB 的值固定,则只要其余三边最短即可,根据对称性作出A 关于x 轴的对称点A′、B 关于y 轴的对称点B′,求出A′B′的解析式,利用解析式即可求出C 、D 坐标,得到nm .解答:根据题意,作出如图所示的图象:过点B 作B 关于y 轴的对称点B′、过点A 关于x 轴的对称点A′,连接A′B′,直线A′B′与坐标轴交点即为所求.解答:直线AB 方程为y=3x-9,直线OB 斜率为23-. 过O‘点平行于直线OB 的直线方程为:y=23-(x+1) . 联立两方程,解得交点B′的坐标为(35,-4).11.已知点D 与点A (8,0),B (0,6),C (a ,-a )是一平行四边形的四个顶点,则CD 长的最小值为 .考点:平行四边形的性质;坐标与图形性质.分析:①CD 是平行四边形的一条边,那么有AB=CD ;②CD 是平行四边形的一条对角线,过C 作CM ⊥AO 于M ,过D 作DF ⊥AO 于F ,交AC 于Q ,过B 作BN ⊥DF 于N ,证△DBN ≌△CAM ,推出DN=CM=a ,BN=AM=8-a ,得出D ((8-a ,6+a ),由勾股定理得:CD 2=(8-a-a )2+(6+a+a )2=8a 2-8a+100=8(a-21)2+98,求出即可.解答:有两种情况:①CD 是平行四边形的一条边,那么有AB=CD=2286+=10 ②CD 是平行四边形的一条对角线,*12.如图,△ABO 缩小后变为△A′B′O ,其中A 、B 的对应点分别为A′、B′点A 、B 、A′、B′均在图中在格点上.若线段AB 上有一点P (m ,n ),则点P 在A′B′上的对应点P′的坐标为( )A .(2m ,n ) B .(m ,n ) C .(m ,2n ) D .(2m ,2n ) 考点:位似变换;坐标与图形性质.分析:根据A ,B 两点坐标以及对应点A′,B′点的坐标得出坐标变化规律,进而得出P′的坐标.解答:∵△ABO 缩小后变为△A′B′O ,其中A 、B 的对应点分别为A′、B′点A 、B 、A′、B′均在图中在格点上,即A 点坐标为:(4,6),B 点坐标为:(6,2),A′点坐标为:(2,3),B′点坐标为:(3,1),∴线段AB 上有一点P (m ,n ),则点P 在A′B′上的对应点P′的坐标为:(2m ,2n). 故选D .*13.(2014•海港区一模)如图,在直角坐标系中,有16×16的正方形网格,△ABC 的顶点分别在网格的格点上.以原点O 为位似中心,放大△ABC 使放大后的△A′B′C′的顶点还在格点上,最大的△A′B′C′的面积是( ) A .8 B .16 C .32 D .64考点:位似变换;坐标与图形性质.分析:根据题意结合位似图形的性质与三角形最长边即为216,进而得出答案.解答:如图所示:△A′B′C′即为符合题意的图形, 最大的△A′B′C′的面积是:21×8×16=64.故选:D .知识点4 坐标与图形的变化知识链接1 坐标与图形变化---对称 (1)关于x 轴对称横坐标相等,纵坐标互为相反数.即点P (x ,y )关于x 轴的对称点P′的坐标是(x ,-y ). (2)关于y 轴对称 纵坐标相等,横坐标互为相反数.即点P (x ,y )关于y 轴的对称点P′的坐标是(-x ,y ). (3)关于直线对称①关于直线x=m 对称,P (a ,b )⇒P (2m-a ,b ) ②关于直线y=n 对称,P (a ,b )⇒P (a ,2n-b ) 2 坐标与图形变化---平移 (1)平移变换与坐标变化向右平移a 个单位,坐标P (x ,y )⇒P (x+a ,y ) 向左平移a 个单位,坐标P (x ,y )⇒P (x-a ,y ) 向上平移b 个单位,坐标P (x ,y )⇒P (x ,y+b ) 向下平移b 个单位,坐标P (x ,y )⇒P (x ,y-b )(2)在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a ,相应的新图形就是把原图形向右(或向左)平移a 个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a ,相应的新图形就是把原图形向上(或向下)平移a 个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.) 3 坐标与图形变化---旋转(1)关于原点对称的点的坐标.即点P (x ,y )关于原点O 的对称点是P′(-x ,-y ). (2)旋转图形的坐标图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.同步练习1.(2014•大连)在平面直角坐标系中,将点(2,3)向上平移1个单位,所得到的点的坐标是()A.(1,3)B.(2,2)C.(2,4)D.(3,3)考点:坐标与图形变化-平移.分析:根据向上平移,横坐标不变,纵坐标加解答.解答:∵点(2,3)向上平移1个单位,∴所得到的点的坐标是(2,4).故选:C.2.(2014•呼伦贝尔)将点A(-2,-3)向右平移3个单位长度得到点B,则点B所处的象限是()A.第一象限B.第二象限C.第三象限D.第四象限考点:坐标与图形变化-平移.分析:先利用平移中点的变化规律(横坐标右移加,左移减;纵坐标上移加,下移减) ,,求出点B的坐标,再根据各象限内点的坐标特点即可判断点B所处的象限.解答:点A(-2,-3)向右平移3个单位长度,得到点B的坐标为为(1,-3),故点在第四象限.故选D.3.(2014•牡丹江)如图,把ABC经过一定的变换得到△A′B′C′,如果△ABC上点P的坐标为(x,y),那么这个点在△A′B′C′中的对应点P′的坐标为()A.(-x,y-2)B.(-x,y+2)C.(-x+2,-y)D.(-x+2,y+2)考点:坐标与图形变化-平移.分析:先观察△ABC和△A′B′C′得到把△ABC向上平移2个单位,再关于y轴对称可得到△A′B′C′,然后把点P(x,y)向上平移2个单位,再关于y轴对称得到点的坐标为(-x,y+2),即为P′点的坐标.解答:∵把△ABC向上平移2个单位,再关于y轴对称可得到△A′B′C′,∴点P(x,y)的对应点P′的坐标为(-x,y+2).故选:B.4.(2014•潍坊)如图,已知正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).规定“把正方形ABCD先沿x轴翻折,再向左平移1个单位”为一次变换,如此这样,连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为()A.(-2012,2)B.(-2012,-2)C.(-2013,-2)D.(-2013,2)考点:翻折变换(折叠问题);正方形的性质;坐标与图形变化-对称、平移.专题:规律型.分析:首先由正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1),然后根据题意求得第1次、2次、3次变换后的对角线交点M的对应点的坐标,即可得规律:第n次变换后的点M的对应点的为:当n为奇数时为(2-n,-2),当n为偶数时为(2-n,2),继而求得把正方形ABCD连续经过2014次这样的变换得到正方形ABCD的对角线交点M的坐标.解答:∵正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).∴对角线交点M的坐标为(2,2),根据题意得:第1次变换后的点M的对应点的坐标为(2-1,-2),即(1,-2),第2次变换后的点M的对应点的坐标为:(2-2,2),即(0,2),第3次变换后的点M的对应点的坐标为(2-3,-2),即(-1,-2),第n次变换后的点M的对应点的为:当n为奇数时为(2-n,-2),当n为偶数时为(2-n,2),∴连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为(-2012,2).故选:A.点评:此题考查了对称与平移的性质.此题难度较大,属于规律性题目,注意得到规律:第n次变换后的对角线交点M的对应点的坐标为:当n为奇数时为(2-n,-2),当n为偶数时为(2-n,2)是解此题的关键.5.(2014•昆明)如图,在平面直角坐标系中,点A坐标为(1,3),将线段OA向左平移2个单位长度,得到线段O′A′,则点A的对应点A′的坐标为.考点:坐标与图形变化-平移.分析:根据点向左平移a个单位,坐标P(x,y)⇒P(x-a,y)进行计算即可.解答:∵点A坐标为(1,3),∴线段OA向左平移2个单位长度,点A的对应点A′的坐标为(1-2,3),即(-1,3),故答案为:(-1,3).6.(2014•宜宾)在平面直角坐标系中,将点A(-1,2)向右平移3个单位长度得到点B,则点B关于x轴的对称点C的坐标是.考点:坐标与图形变化-平移;关于x轴、y轴对称的点的坐标.分析:首先根据横坐标右移加,左移减可得B点坐标,然后再关于x轴对称点的坐标特点:横坐标不变,纵坐标符号改变可得答案.解答:点A(-1,2)向右平移3个单位长度得到的B的坐标为(-1+3,2),即(2,2),则点B关于x轴的对称点C的坐标是(2,-2),故答案为:(2,-2).7.(2014•厦门)在平面直角坐标系中,已知点O(0,0),A(1,3),将线段OA向右平移3个单位,得到线段O1A1,则点O1的坐标是,A1的坐标是.考点:坐标与图形变化-平移.分析:根据向右平移,横坐标加,纵坐标不变解答.解答:∵点O(0,0),A(1,3),线段OA向右平移3个单位,∴点O 1的坐标是(3,0),A 1的坐标是(4,3).故答案为:(3,0),(4,3).*8.(2014•巴中)如图,直线y=−34x+4与x 轴、y 轴分别交于A 、B 两点,把△A0B 绕点A 顺时针旋转90°后得到△AO′B′,则点B′的坐标是 .考点:坐标与图形变化-旋转.分析:首先根据直线AB 来求出点A 和点B 的坐标,B′的横坐标等于OA+OB ,而纵坐标等于OA ,进而得出B′的坐标.解答:直线y=-34x+4与x 轴,y 轴分别交于A (3,0),B (0,4)两点, ∵旋转前后三角形全等,∠O′AO=90°,∠B′O′A=90°∴OA=O′A ,OB=O′B′,O′B′∥x 轴,∴点B′的纵坐标为OA 长,即为3,横坐标为OA+OB=OA+O′B′=3+4=7,故点B′的坐标是(7,3),故答案为:(7,3).点评:本题主要考查了对于图形翻转的理解,其中要考虑到点B 和点B′位置的特殊性,以及点B′的坐标与OA 和OB 的关系.9.(2013•梅州)如图,在平面直角坐标系中,A (-2,2),B (-3,-2)(1)若点C 与点A 关于原点O 对称,则点C 的坐标为______;(2)将点A 向右平移5个单位得到点D ,则点D 的坐标为______;(3)由点A ,B ,C ,D 组成的四边形ABCD 内(不包括边界)任取一个横、纵坐标均为整数的点,求所取的点横、纵坐标之和恰好为零的概率.考点:关于原点对称的点的坐标;坐标与图形变化-平移;概率公式.分析:(1)根据关于原点的对称点,横纵坐标都互为相反数求解即可;(2)把点A 的横坐标加5,纵坐标不变即可得到对应点D 的坐标;(3)先找出在平行四边形内的所有整数点,再根据概率公式求解即可.解答:(1)∵点C 与点A (-2,2)关于原点O 对称,∴点C 的坐标为(2,-2);(2)∵将点A 向右平移5个单位得到点D ,∴点D 的坐标为(3,2);(3)由图可知:A (-2,2),B (-3,-2),C (2,-2),D (3,2),∵在平行四边形ABCD 内横、纵坐标均为整数的点有15个,其中横、纵坐标和为零的点有3个,即(-1,1),(0,0),(1,-1),∴P=153=51. 点评:本题考查了关于原点对称的点的坐标,坐标与图形变化-平移,概率公式.难度适中,掌握规律是解题的关键.10.(黄冈)在平面直角坐标系中,△ABC 的三个顶点的坐标是A (-2,3),B (-4,-1),C (2,0),将△ABC 平移至△A 1B 1C 1的位置,点A 、B 、C 的对应点分别是A 1、B 1、C 1,若点A 1的坐标为(3,1).则点C 1的坐标为______.考点:坐标与图形变化-平移.分析:首先根据A 点平移后的坐标变化,确定三角形的平移方法,点A 横坐标加5,纵坐标减2,那么让点C 的横坐标加5,纵坐标-2即为点C 1的坐标.解答:由A (-2,3)平移后点A 1的坐标为(3,1),可得A 点横坐标加5,纵坐标减2, 则点C 的坐标变化与A 点的变化相同,故C 1(2+5,0-2),即(7,-2).故答案为:(7,-2).点评:本题主要考查图形的平移变换,解决本题的关键是根据已知对应点找到所求对应点之间的变化规律.11.(北京)操作与探究:(1)对数轴上的点P 进行如下操作:先把点P 表示的数乘以31,再把所得数对应的点向右平移1个单位,得到点P 的对应点P′.点A ,B 在数轴上,对线段AB 上的每个点进行上述操作后得到线段A′B′,其中点A ,B 的对应点分别为A′,B′.如图1,若点A 表示的数是-3,则点A′表示的数是______;若点B′表示的数是2,则点B 表示的数是______;已知线段AB 上的点E 经过上述操作后得到的对应点E′与点E 重合,则点E 表示的数是______.(2)如图2,在平面直角坐标系xOy 中,对正方形ABCD 及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一个实数a ,将得到的点先向右平移m 个单位,再向上平移n 个单位(m >0,n >0),得到正方形A′B′C′D′及其内部的点,其中点A ,B 的对应点分别为A′,B′.已知正方形ABCD 内部的一个点F 经过上述操作后得到的对应点F′与点F 重合,求点F 的坐标.考点:坐标与图形变化-平移;数轴;正方形的性质;平移的性质.分析:(1)根据题目规定,以及数轴上的数向右平移用加计算即可求出点A′,设点B 表示的数为a ,根据题意列出方程求解即可得到点B 表示的数,设点E 表示的数为b ,根据题意列出方程计算即可得解;(2)先根据向上平移横坐标不变,纵坐标加,向右平移横坐标加,纵坐标不变求出平移规律,然后设点F 的坐标为(x ,y ),根据平移规律列出方程组求解即可.解答:(1)点A′:-3×31+1=-1+1=0,设点B 表示的数为a ,则31a+1=2, 解得a=3,设点E 表示的数为b ,则31b+1=b , 解得b=23;。
(完整版):平面直角坐标系经典例题解析

【平面直角坐标系重点考点例析】考点一:平面直角坐标系中点的特征例1 在平面直角坐标系中,点P(m,m-2)在第一象限内,则m的取值范围是.思路分析:根据第一象限的点的坐标,横坐标为正,纵坐标为正,可得出m的范围.解:由第一象限点的坐标的特点可得:20 mm>⎧⎨->⎩,解得:m>2.故答案为:m>2.点评:此题考查了点的坐标的知识,属于基础题,解答本题的关键是掌握第一象限的点的坐标,横坐标为正,纵坐标为正.例1 如果m是任意实数,则点P(m-4,m+1)一定不在()A.第一象限B.第二象限C.第三象限D.第四象限思路分析:求出点P的纵坐标一定大于横坐标,然后根据各象限的点的坐标特征解答.解:∵(m+1)-(m-4)=m+1-m+4=5,∴点P的纵坐标一定大于横坐标,∵第四象限的点的横坐标是正数,纵坐标是负数,∴第四象限的点的横坐标一定大于纵坐标,∴点P一定不在第四象限.故选D.点评:本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(—,+);第三象限(-,—);第四象限(+,-).例2 如图,矩形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A(2,0)同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2012次相遇地点的坐标是()A.(2,0) B.(﹣1,1)C.(﹣2,1)D.(﹣1,﹣1)分析:利用行程问题中的相遇问题,由于矩形的边长为4和2,物体乙是物体甲的速度的2倍,求得每一次相遇的地点,找出规律即可解答.解答:解:矩形的边长为4和2,因为物体乙是物体甲的速度的2倍,时间相同,物体甲与物体乙的路程比为1:2,由题意知:①第一次相遇物体甲与物体乙行的路程和为12×1,物体甲行的路程为12×=4,物体乙行的路程为12×=8,在BC边相遇;②第二次相遇物体甲与物体乙行的路程和为12×2,物体甲行的路程为12×2×=8,物体乙行的路程为12×2×=16,在DE边相遇;③第三次相遇物体甲与物体乙行的路程和为12×3,物体甲行的路程为12×3×=12,物体乙行的路程为12×3×=24,在A点相遇;…此时甲乙回到原出发点,则每相遇三次,两点回到出发点,∵2012÷3=670…2,故两个物体运动后的第2012次相遇地点的是:第二次相遇地点,即物体甲行的路程为12×2×=8,物体乙行的路程为12×2×=16,在DE边相遇;此时相遇点的坐标为:(﹣1,﹣1),故选:D.点评:此题主要考查了行程问题中的相遇问题及按比例分配的运用,通过计算发现规律就可以解决问题.例2 如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2013次碰到矩形的边时,点P的坐标为()A.(1,4) B.(5,0)C.(6,4) D.(8,3)思路分析:根据反射角与入射角的定义作出图形,可知每6次反弹为一个循环组依次循环,用2013除以6,根据商和余数的情况确定所对应的点的坐标即可.解:如图,经过6次反弹后动点回到出发点(0,3),∵2013÷6=335…3,∴当点P第2013次碰到矩形的边时为第336个循环组的第3次反弹,点P的坐标为(8,3).故选D.点评:本题是对点的坐标的规律变化的考查了,作出图形,观察出每6次反弹为一个循环组依次循环是解题的关键,也是本题的难点.对应训练2.如图,在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2).把一条长为2012个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C﹣D﹣A﹣…的规律紧绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是()A .(1,﹣1)B . (﹣1,1)C . (﹣1,﹣2)D . (1,﹣2)分析: 根据点的坐标求出四边形ABCD 的周长,然后求出另一端是绕第几圈后的第几个单位长度,从而确定答案.解答: 解:∵A(1,1),B (﹣1,1),C (﹣1,﹣2),D (1,﹣2),∴AB=1﹣(﹣1)=2,BC=1﹣(﹣2)=3,CD=1﹣(﹣1)=2,DA=1﹣(﹣2)=3, ∴绕四边形ABCD 一周的细线长度为2+3+2+3=10, 2012÷10=201…2,∴细线另一端在绕四边形第202圈的第2个单位长度的位置, 即点B 的位置,点的坐标为(﹣1,1). 故选B .点评: 本题利用点的坐标考查了数字变化规律,根据点的坐标求出四边形ABCD 一周的长度,从而确定2012个单位长度的细线的另一端落在第几圈第几个单位长度的位置是解题的关键.例2 如图,在平面直角坐标系xOy 中,点P (-3,5)关于y 轴的对称点的坐标为( ) A .(—3,—5) B .(3,5) C .(3.—5) D .(5,—3) 答:B考点二:函数的概念及函数自变量的取值范围 例3 在函数1x y x+=中,自变量x 的取值范围是 . 思路分析:本题主要考查自变量的取值范围,函数关系中主要有二次根式和分式两部分.根据二次根式的意义,被开方数x+1≥0,根据分式有意义的条件,x≠0.就可以求出自变量x 的取值范围. 解:根据题意得:x+1≥0且x≠0 解得:x≥-1且x≠0. 例3 函数y=31x x +-中自变量x 的取值范围是( ) 思路分析:根据被开方数大于等于0,分母不等于0列式计算即可得解. 解:根据题意得,x+3≥0且x —1≠0, 解得x≥—3且x≠1. 故选D .点评:本题考查了函数自变量的范围,一般从三个方面考虑: (1)当函数表达式是整式时,自变量可取全体实数; (2)当函数表达式是分式时,考虑分式的分母不能为0; (3)当函数表达式是二次根式时,被开方数非负. 对应训练 3.函数2y x =+中自变量x 的取值范围是( )A .x >—2B .x≥2 C.x≠—2 D .x≥-2 3.A考点三:函数图象的运用例4 一天晚饭后,小明陪妈妈从家里出去散步,如图描述了他们散步过程中离家的距离S (米)与散步时间t (分)之间的函数关系,下面的描述符合他们散步情景的是( )A .从家出发,到了一家书店,看了一会儿书就回家了B .从家出发,到了一家书店,看了一会儿书,继续向前走了一段,然后回家了C .从家出发,一直散步(没有停留),然后回家了D .从家出发,散了一会儿步,到了一家书店,看了一会儿书,继续向前走了一段,18分钟后开始返回思路分析:根据图象可知,有一段时间内时间在增加,而路程没有增加,意味着有停留,与x 轴平行后的函数图象表现为随时间的增多路程又在增加,由此即可作出判断.解:A 、从家出发,到了一家书店,看了一会儿书就回家了,图象为梯形,错误;B 、从家出发,到了一家书店,看了一会儿书,继续向前走了一段,然后回家了,描述不准确,错误;C 、从家出发,一直散步(没有停留),然后回家了,图形为上升和下降的两条折线,错误;D 、从家出发,散了一会儿步,到了一家书店,看了一会儿书,继续向前走了一段,18分钟后开始返回从家出发,符合图象的特点,正确. 故选D .点评:考查了函数的图象,读懂图象是解决本题的关键.首先应理解函数图象的横轴和纵轴表示的量,再根据函数图象用排除法判断.例5 如图,ABCD 的边长为8,面积为32,四个全等的小平行四边形对称中心分别在ABCD 的顶点上,它们的各边与ABCD 的各边分别平行,且与ABCD 相似.若小平行四边形的一边长为x ,且0<x≤8,阴影部分的面积的和为y ,则y 与x 之间的函数关系的大致图象是( )A .B .C .D .思路分析:根据平行四边形的中心对称性可知四块阴影部分的面正好等于一个小平行四边形的面积,再根据相似多边形面积的比等于相似比的平方列式求出y 与x 之间的函数关系式,然后根据二次函数图象解答. 解:∵四个全等的小平行四边形对称中心分别在ABCD 的顶点上,∴阴影部分的面积等于一个小平行四边形的面积, ∵小平行四边形与ABCD 相似,∴2()328y x =, 整理得212y x =,又0<x≤8,纵观各选项,只有D 选项图象符合y 与x 之间的函数关系的大致图象. 故选D .点评:本题考查了动点问题的函数图象,根据平行四边形的对称性与相似多边形的面积的比等于相似比的平方求出y与x的函数关系是解题的关键.例8已知一个矩形纸片OACB,将该纸片放置在平面直角坐标洗中,点A(11,0),点B(0,6),点P为BC 边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,得点B′和折痕OP.设BP=t.(Ⅰ)如图①,当∠BOP=30°时,求点P的坐标;(Ⅱ)如图②,经过点P再次折叠纸片,使点C落在直线PB′上,得点C′和折痕PQ,若AQ=m,试用含有t 的式子表示m;(Ⅲ)在(Ⅱ)的条件下,当点C′恰好落在边OA上时,求点P的坐标(直接写出结果即可).考点:翻折变换(折叠问题);坐标与图形性质;全等三角形的判定与性质;勾股定理;相似三角形的判定与性质.分析:(Ⅰ)根据题意得,∠OBP=90°,OB=6,在Rt△OBP中,由∠BOP=30°,BP=t,得OP=2t,然后利用勾股定理,即可得方程,解此方程即可求得答案;(Ⅱ)由△OB′P、△QC′P分别是由△OBP、△QCP折叠得到的,可知△OB′P≌△OBP,△QC′P≌△QCP,易证得△OBP∽△PCQ,然后由相似三角形的对应边成比例,即可求得答案;(Ⅲ)首先过点P作PE⊥OA于E,易证得△PC′E∽△C′QA,由勾股定理可求得C′Q的长,然后利用相似三角形的对应边成比例与m= 16t2-116t+6,即可求得t的值.点评:此题考查了折叠的性质、矩形的性质以及相似三角形的判定与性质等知识.此题难度较大,注意掌握折叠前后图形的对应关系,注意数形结合思想与方程思想的应用.对应训练4.甲、乙两队举行了一年一度的赛龙舟比赛,两队在比赛时的路程s(米)与时间t(分钟)之间的函数关系图象如图所示,请你根据图象判断,下列说法正确的是()A.甲队率先到达终点B.甲队比乙队多走了200米路程C.乙队比甲队少用0。
图形与坐标知识点

第六章图形与坐标一、确定位置的方法:确定物体在平面上的位置有两种常用的方法:1、有序数对法:用一对有序实数确定物体的位置。
这种确定方法要注意有序,要规定将什么写在前,什么写在后。
2、方向、距离法:用方向和距离确定物体的位置(或称方位)。
这种确定方法要注意参照物的选择,语言表达要准确、清楚。
二、平面直角坐标系概念:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系,水平的数轴叫x轴或横轴;铅垂的数轴叫y轴或纵轴,两数轴的交点O称为原点。
三、点的坐标:在平面内一点P,过P向x轴、y轴分别作垂线,垂足在x轴、y轴上对应的数a、b分别叫P点的横坐标和纵坐标,则有序实数对(a、b)叫做P点的坐标。
四、在直角坐标系中如何根据点的坐标:找出这个点,方法是由P(a、b),在x 轴上找到坐标为a的点A,过A作x轴的垂线,再在y轴上找到坐标为b的点B,过B 作y轴的垂线,两垂线的交点即为所找的P点。
五、如何根据已知条件建立适当的直角坐标系?根据已知条件建立坐标系的要求是尽量使计算方便,一般地没有明确的方法,但有以下几条常用的方法:1、以某已知点为原点,使它坐标为(0,0);2、以图形中某线段所在直线为x轴(或y轴);3、以已知线段中点为原点;4、以两直线交点为原点;5、利用图形的轴对称性以对称轴为y轴等。
六、各象限上及x轴,y轴上点的坐标的特点:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)x轴上的点纵坐标为0,表示为(x,0);y轴上的点横坐标为0,表示为(0,y)七、图形“纵横向伸缩”的变化规律:1、将图形上各个点的坐标的纵坐标不变,而横坐标分别变成原来的n倍时,所得的图形比原来的图形在横向:①当n>1时,伸长为原来的n倍;②当0<n<1时,压缩为原来的n倍。
2、将图形上各个点的坐标的横坐标不变,而纵坐标分别变成原来的n倍时,所得的图形比原来的图形在纵向:①当n>1时,伸长为原来的n倍;②当0<n<1时,压缩为原来的n倍。
专题01 平面直角坐标系的有关概念和性质(专题强化-基础)解析版

专题01 平面直角坐标系的有关概念和性质(专题强化-基础)一、单选题(共40分)1.(2020·广东省)若点(,4)P a a -在x 轴上,则点P 的坐标是( ) A .(0,4) B .(4,0)C .(4,0)-D .(0,4)-【答案】B【解析】根据点P 在x 轴上,得出a 40-=,求出a ,即可得到答案. 【详解】解:∵点(,4)P a a -在x 轴上, ∴a 40-=, ∴a 4=,∴点P 坐标是(4,0). 故选择:B.【点睛】本题考查了坐标轴上点的特点,解题的关键是熟记x 轴上的点,y=0.2.(2020·北京清华附中)如图是小数在4×4的小正方形组成的网格中画的一张脸的示意图,如果用(0,4)和(2,4)表示眼睛,那么嘴的位置可以表示成( )A .(2,1)B .(1,1)C .(1,﹣2)D .(1,2)【答案】D【解析】根据左右的眼睛的坐标画出直角坐标系,然后写出嘴的位置对应的点的坐标. 【详解】解:建立平面直角坐标系如图,嘴的坐标为(1,2).故选:D.【点睛】本题考查了坐标确定位置:平面直角坐标系中点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.5,6-在第几象限()3.(2018·浙江省)点()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】根据第四象限内点的横坐标大于零,纵坐标小于零,可得答案.【详解】∵点A的横坐标为正数、纵坐标为负数,∴点A(5,−6)在第四象限,故选:D.【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).4.(2019·重庆南开中学)如图,在平面直角坐标系中,点P的坐标为()A.(-1,2)B.(-1,-2)C.(2,-1)D.(1,2)【答案】A【解析】根据坐标系知识直接写出坐标即可.【详解】由图知P点坐标为(-1,2),故选A.【点睛】本题是对坐标系知识的考查,熟练掌握坐标系知识是解决本题的关键,难度较小.5.(2019·吉林省)在平面直角坐标系中,点(-1,m2+1)一定在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】本题主要考查平面直角坐标系中各象限内点的坐标的符号.应先判断出点的横纵坐标的符号,进而判断点所在的象限.解:因为点(-1,m 2+1)横坐标<0,纵坐标m 2+1一定>0,所以满足点在第二象限的条件. 故选B .6.(2020·北京)如图是某动物园的平面示意图,若以大门为原点,向右的方向为x 轴正方向,向上的方向为y 轴正方向建立平面直角坐标系,则驼峰所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】D【解析】首先以大门为坐标原点,建立平面直角坐标系,然后再根据驼峰的位置确定象限. 【详解】解:如图所示,熊猫馆、猴山、百草园都在第一象限,横、纵坐标都为正数; 驼峰在第四象限,横坐标为正数,纵坐标为负数, 故选D .【点睛】此题主要考查了坐标确定位置,关键是正确建立坐标系,掌握四个象限内点的坐标符号. 7.(2020·a a =3b b =,点A 的坐标为(a ,b ),则点A 的坐标不可能是( )A .(0,1)B .(1,﹣1)C .(0,0)D .(﹣1,0)【答案】D 【解析】a a =可以得到0a =或1a = 3b b =得到0b =或1b =±,依次判断A 点的坐标即可;【详解】a a =,3b b =,∴0a =或1a =,0b =或1b =±∴点,A a b ()的坐标不可能是()1,0-故选:D .【点睛】本题主要考查算术平方根和立方根的性质,熟练根据算术平方根和立方根的性质得到a 和b 的取值是解决本题的关键.8.(2020·湖北省)已知点P(a+5,a-1)在第四象限,且到x 轴的距离为2,则点P 的坐标为( ) A .(4,-2) B .(-4,2)C .(-2,4)D .(2,-4)【答案】A【解析】【详解】解:由点P 在第四象限,且到x 轴的距离为2,则点P 的纵坐标为-2, 即12a -=-解得1a =-54a ∴+=则点P 的坐标为(4,-2). 故选A .【点睛】本题考查点的坐标.9.(2020·武钢实验学校)如图,在平面直角坐标系中,矩形OABC 的顶点O 在坐标原点,边OA 在x 轴上,OC 在y 轴上,如果矩形'''OA B C 与矩形OABC 关于点O 位似,且矩形'''OA B C 的面积等于矩形OABC 面积的14,那么点'B 的坐标是( )A .(3,2)B .(2,3)--C .(2,3)或(2,3)--D .(3,2)或(3,2)--【答案】D【解析】根据面积比等于相似比的平方得到位似比为12,由图形得到点B 的坐标,根据注意在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标比等于±k 解答即可. 【详解】∵矩形OA′B′C′与矩形OABC 关于点O 位似,矩形OA′B′C′的面积等于矩形OABC 面积的14, ∴矩形OA′B′C′与矩形OABC 的位似比是12, ∵点B 的坐标是(6,4),∴点B′的坐标是(3,2)或(−3,−2), 故选:D.【点睛】此题考查位似变换,坐标与图形性质,解题关键在于得到位似比为12.10.(2019·鄱阳县第二中学)如图所示,A1(1,3),A2(32,3),A3(2,3),A4(3,0).作折线A1A2A3A4关于点A4的中心对称图形,再做出新的折线关于与x轴的下一个交点的中心对称图形……以此类推,得到一个大的折线.现有一动点P从原点O出发,沿着折线一每秒1个单位的速度移动,设运动时间为t.当t=2020时,点P的坐标为()A.(10103B.(20203C.(2016,0)D.(10103【答案】A【解析】把点P从O运动到A8作为一个循环,寻找规律解决问题即可.【详解】由题意OA1=A3A4=A4A5=A7A8=2,A1A2=A2A3=A5A6=A6A7=1,∴点P从O运动到A8的路程=2+1+1+2+2+1+1+2=12,∴t=12,把点P从O运动到A8作为一个循环,∵2020÷12=168余数为4,∴把点A3向右平移168×3个单位,可得t=2020时,点P的坐标,∵A3(23),168×6=1008,1008+2=1010,∴t=2020时,点P的坐标(10103,故选:A.【点睛】本题考查坐标与图形变化,规律型问题等知识,解题的关键是学会探究规律的方法.二、填空题(共20分)11.(2020·浙江省)若P(x,y)的坐标满足xy>0,且x+y<0,则点P在第________象限 .【答案】三【解析】先根据xy>0,且x+y<0,判断出x和y的取值范围,然后根据平面直角坐标系中点的符号特征判断点P所在的象限.【详解】∵xy >0,且x +y <0, ∴x <0,y <0, ∴点P 在第三象限. 故答案为三.【点睛】题考查了平面直角坐标系中点的坐标特征.第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x 轴上的点纵坐标为0,y 轴上的点横坐标为0.12.(本题5分)(2020·广东省中山中学)若点()31,3m --在第三象限,则m 的取值范围是_________. 【答案】13m <【解析】根据第三象限内点的横纵坐标是负数,列不等式求解即可.【详解】∵点(3m-1,-3)在第三象限,310m -< ,解得13m <.故答案是:13m <. 【点睛】本题考查一元一次不等式和象限,解题的关键是知道点在各个象限的特征. 13.(2017·山东省)若点P (2x +6,33x -)在y 轴上,则点P 的坐标为___________. 【答案】(0,-12) 【解析】分析:根据y 轴上的点的横坐标为0得出2x +6=0,求出x 的值即可得出点P 的坐标. 详解:∵点P (2x +6,3x -3)在y 轴上, ∴2x +6=0, 解得:x =-3,∴点P 的坐标为(0,-12). 故答案为:(0,-12).点睛:本题考查了坐标轴上点的坐标特征:x 轴上点的纵坐标为0,y 轴上点的横坐标为0.14.(2018·河南省)如图,以正六边形ABCDEF 的中心O 为原点建立平面直角坐标系,过点A 作AP 1⊥OB 于点P 1,再过P 1作P 1P 2⊥OC 于点P 2,再过P 2作P 2P 3⊥OD 于点P 3,依次进行……若正六边形的边长为1,则点P 2019的横坐标为_____.【答案】【解析】由题意得出,推出OP n=,得出OP2019=,推出OP2019在第三象限,由点P2019的横坐标的长为:OP2019即可得出结果.【详解】解:∵正六边形ABCDEF的中心O为原点建立平面直角坐标系,AP1⊥OB,P1P2⊥OC,P2P3⊥OD,∴△OAB为等边三角形,∠OAP1=30°,∴OP1=,同理:∠P2P1O=30°,∴OP2=,∠P3P2O=30°,∴OP3=,即OP n=,∴OP2019=,∵2019÷6=336…3,∴OP2019在第三象限,点P2019的横坐标的长为:=,∴点P2019的横坐标为﹣;故答案为:﹣.【点睛】本题考查了正六边形的性质、等边三角形的性质、含30°角的直角三角形的性质以及规律型;熟练掌握正六边形的性质,找出规律是解题的关键.三、解答题(共90分)15.如图所示,在平面直角坐标系中,已知()2,2A 、20()3)( 1B C --,、,.(1)在平面直角坐标系中画出ABC ; (2)ABC 的面积为 .【答案】(1)见解析;(2)5【解析】(1)在平面直角坐标系中画出△ABC 即可;(2)直接利用△ABC 所在矩形面积减去周围三角形面积进而得出答案. 【详解】(1)所作△ABC 如图所示 (2)△ABC 的面积是:111434231315222⨯-⨯⨯-⨯⨯-⨯⨯=. 【点睛】本题主要考查了坐标与图形,三角形面积求法,利用△ABC 所在矩形面积减去周围三角形面积是常用的方法.16.(本题8分)(2019·辽宁省)如图所示,在平面真角坐标系中,点A .B 的坐标分别为A (a ,0),B (b ,0),且a ,b 满足|a+1|+5-b =0,点C 的坐标为(0,3). (1)求a ,b 的值及S △ABC ; (2)若点M 在x 轴上,且S △ACM =13S △ABC ,试求点M 的坐标.【答案】(1)a =﹣1,b =5,S △ABC =9;(2)M 的坐标为(1,0)或(﹣3,0)【解析】(1)由5-b =0结合绝对值、算术平方根的非负性即可得出a 、b 的值,再结合三角形的面积公式即可求出S △ABC 的值;(2)设出点M 的坐标,找出线段AM 的长度,根据三角形的面积公式结合S △ACM =13S △ABC ,即可得出点M 的坐标.【详解】解:(1)由5-b 0,|a+1|≥05-b 0 ∴a+1=0,b ﹣5=0, ∴a =﹣1,b =5,∴点A (﹣1,0),点B (5,0). 又∵点C (0,3),∴AB =|﹣1﹣5|=6,CO =3, ∴S △ABC =12AB •CO =12×6×3=9. (2)设点M 的坐标为(x ,0),则AM =|x ﹣(﹣1)|=|x+1|,又∵S △ACM =13S △ABC , ∴12AM •OC =13×9, ∴12|x+1|×3=3, ∴|x+1|=2, 即x+1=±2, 解得:x =1或﹣3,故点M 的坐标为(1,0)或(﹣3,0).【点睛】此题考查的是非负性的应用、求点的坐标和根据点的坐标求面积,掌握绝对值和算术平方根的非负性和点的坐标与各线段长的关系是解决此题的关键.17.(2020·广东省铁一中学)如图,()23A -,,()43B ,,()13C --,.(1)点C 到x 轴的距离为:______;(2)ABC ∆的三边长为:AB =______,AC =______,BC =______; (3)当点P 在y 轴上,且ABP ∆的面积为6时,点P 的坐标为:______. 【答案】(1)3;(2)63761;(3)0,1,0,5 【解析】(1)点C 的纵坐标的绝对值就是点C 到x 轴的距离解答; (2)利用A ,C ,B 的坐标分别得出各边长即可;(3)设点P 的坐标为(0,y ),根据△ABP 的面积为6,A (−2,3)、B (4,3),所以12×6×|x−3|=6,即|x−3|=2,所以x =5或x =1,即可解答. 【详解】(1)∵C (−1,−3), ∴|−3|=3,∴点C 到x 轴的距离为3;(2)∵A (−2,3)、B (4,3)、C (−1,−3), ∴AB =4−(−2)=6,AC 221637+BC 225661+ (3)(3)设点P 的坐标为(0,y ),∵△ABP 的面积为6,A (−2,3)、B (4,3), ∴12。
第3章 图形与坐标1(解析版)初中数学

《阳光测评》2020-2021学年下学期八年级数学单元基础卷【湘教版】第3章图形与坐标(基础卷)姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分120分,考试时间90分钟,试题共23题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下列所给出的点中,在第二象限的是()A.(3,2)B.(3,﹣2)C.(﹣3,﹣2)D.(﹣3,2)【答案】D【解答】解:A、(3,2)在第一象限,故本选项不合题意;B、(3,﹣2)在第四象限,故本选项不合题意;C、(﹣3,﹣2)在第三象限,故本选项不合题意;D、(﹣3,2)在第二象限,故本选项符合题意.故选:D.【知识点】点的坐标2.过点A(﹣3,2)和B(﹣3,5)作直线,则直线AB()A.与x轴平行B.与y轴平行C.与y轴相交D.与x轴,y轴均相交【答案】B【解答】解:∵A(﹣3,2)、B(﹣3,5),∴横坐标相等,纵坐标不相等,则过A,B两点所在直线平行于y轴,故选:B.【知识点】坐标与图形性质3.若点A(m,﹣2)与点B(3,n)关于原点对称,则m+n=()A.﹣1B.1C.﹣5D.5【答案】A【解答】解:∵点A(m,﹣2)与点B(3,n)关于原点对称,∴m=﹣3,n=2,∴m+n=﹣3+2=﹣1,故选:A.【知识点】关于原点对称的点的坐标4.已知点P(2021,﹣2021),则点P关于x轴对称的点的坐标是()A.(﹣2021,2021)B.(﹣2021,﹣2021)C.(2021,2021)D.(2021,﹣2021)【答案】C【解答】解:∵点P(2021,﹣2021),∴点P关于x轴对称的点的坐标是(2021,2021).故选:C.【知识点】关于x轴、y轴对称的点的坐标5.将点P(﹣6,﹣9)向右平移1个单位,再向下平移2个单位后得到P′,则P′坐标为()A.(﹣6,﹣8)B.(﹣6,﹣11)C.(﹣5,﹣9)D.(﹣5,﹣11)【答案】D【解答】解:点P(﹣6,﹣9)向右平移1个单位,再向下平移2个单位后得到P′,则P′坐标为(﹣6+1,﹣9﹣2),即(﹣5,﹣11),故选:D.【知识点】坐标与图形变化-平移6.点A(4,3)经过某种图形变化后得到点B(﹣3,4),这种图形变化可以是()A.关于x轴对称B.关于y轴对称C.绕原点逆时针旋转90°D.绕原点顺时针旋转90°【答案】C【解答】解:因为点A(4,3)经过某种图形变化后得到点B(﹣3,4),所以点A绕原点逆时针旋转90°得到点B,故选:C.【知识点】坐标与图形变化-旋转、关于x轴、y轴对称的点的坐标7.已知点A(4,3)和点B是坐标平面内的两个点,且它们关于直线x=﹣3对称,则平面内点B的坐标为()A.(0,﹣3)B.(4,﹣9)C.(4,0)D.(﹣10,3)【答案】D【解答】解:设点B的横坐标为x,∵点A(4,3)与点B关于直线x=﹣3对称,∴=﹣3,解得x=﹣10,∵点A、B关于直线x=﹣3对称,∴点A、B的纵坐标相等,∴点B(﹣10,3).故选:D.【知识点】坐标与图形变化-对称8.2020年9月16日,云南省瑞丽市共诊断2例新冠肺炎确诊病例,均为缅甸输入.下列表述,能确定瑞丽位置的是()A.云南西部B.云南与缅甸交界处C.东经97.85°D.东经97.85°,北纬24.01°【答案】D【解答】解:A、云南西部,位置不确定,故本选项错误;B、云南与缅甸交界处,位置不确定,故本选项错误;C、东经97.85°,位置不明确,故本选项错误;D、东经97.85°,北纬24.01°,有序数对,位置明确,故本选项正确.故选:D.【知识点】坐标确定位置9.下列说法中:①点(1,a)一定在第四象限;②坐标轴上的点不属于任一象限;③横坐标为零的点在y轴上,纵坐标为零的点在x轴上;④直角坐标系中,在y轴上的点到原点的距离为5的点的坐标是(0,5),正确的有()A.1个B.2个C.3个D.4个【答案】B【解答】解:①中,a>0时点就不在第四象限,故说法错误;②坐标轴上的点不属于任一象限,说法正确;③横坐标为零的点在y轴上,纵坐标为零的点在x轴上,说法正确;④在y轴上的点到原点的距离为5的点的坐标是(0,5)也可以是(0,﹣5),所以说法错误.②③两种说法正确.故选:B.【知识点】两点间的距离公式10.如图,在平面直角坐标系中,△A1A2A3,△A3A4A5,△A5A6A7,△A7A8A9,…,都是等腰直角三角形,且点A1,A3,A5,A7,A9的坐标分别为A1(3,0),A3(1,0),A5(4,0),A7(0.0),A9(5.0),依据图形所反映的规律,则A102的坐标为()A.(2,25)B.(2,26)C.(,﹣)D.(,﹣)【答案】B【解答】解:根据题意可得,A2的坐标(2,1),A6的坐标(2,2),A10的坐标(2,3),…,∵102=25×4+2,∴A102的纵坐标为(102+2)÷4=26∴A102的坐标(2,26).故选:B.【知识点】规律型:点的坐标二、填空题(本大题共6小题,每小题3分,共18分.不需写出解答过程,请把答案直接填写在横线上)11.已知点A(﹣3,1),点B在y轴正半轴上,且AB=5,则点B的坐标为:.【答案】(0,5)【解答】解:∵点B在y轴正半轴上,设点B的坐标为(0,x),AB=5,∴=5,解得x=5或﹣3,∵点B在y轴正半轴上,∴x=5.故答案为(0,5).【知识点】两点间的距离公式12.若点P(2x,x﹣3)到两坐标轴的距离之和为5,则x的值为.【解答】解:当点P在第一象限,x﹣3>0,解得:x>3,且2x+x﹣3=5,解得:x=<3,不合题意;当点P在第二象限,,不等式组无解,不合题意;当点P在第三象限,,不等式组的解集为:x<0,则﹣2x﹣x+3=5,解得:x=﹣;当点P在第四象限,则,不等式组的解集为:0<x<3,故2x﹣(x﹣3)=5,解得:x=2,当点P在x轴上,则x﹣3=0,解得:x=3,此时2x=6,不合题意;当点P在y轴上,则2x=0,解得:x=0,此时|x﹣3|=3,不合题意;综上所述:x=﹣或x=2.【知识点】点的坐标13.在平面直角坐标系中,点A1(1,0),A2(2,3),A3(3,2),A4(4,5)…用你发现的规律,确定点A2013的坐标为.【答案】(2013,2012)【解答】解:设A n(x,y),∵当n=1时,A1(1,0),即x=n=1,y=1﹣1=0,当n=2时,A2(2,3),即x=n=2,y=2+1=3;当n=3时,A3(3,2),即x=n=3,y=3﹣1=2;当n=4时,A4(4,5),即x=n=4,y=4+1=5;…∴当点的位置在奇数位置横坐标与下标相等,纵坐标减1,当点的位置在偶数位置横坐标与下标相等,纵坐标加1,∴A2013(x,y)的坐标是(n,n﹣1)∴点A2013的坐标为(2013,2012).故答案为:(2013,2012).【知识点】规律型:点的坐标14.已知A、E两点的坐标分别是(2,﹣3)和(2,3),则下面结论:(1)A、E两点关于x轴对称;(2)A、E两点关于y轴对称;(3)A、E两点关于原点对称,其中正确的是(填序号)【答案】(1)【解答】解:由A、E两点的坐标分别是(2,﹣3)和(2,3),得A、E两点关于x轴对称,故答案为:(1).【知识点】关于原点对称的点的坐标、关于x轴、y轴对称的点的坐标15.如图,菱形ABCD在平面直角坐标系中,若点D的坐标为(1,),则点C的坐标为.【解答】解:∵点D的坐标为(1,),∴AD==2,∵四边形ABCD为菱形,∴CD=AD=2,CD∥AB,∴C点坐标为(3,).故答案为(3,).【知识点】坐标与图形性质、菱形的性质16.如图,△ABC的顶点坐标分别为A(3,6),B(1,3),C(4,2).如果将△ABC绕C点顺时针旋转90°,得到△A′B′C′,那么点A的对应点A′的坐标为.【答案】(8,3)【解答】解:由图知A点的坐标为(3,6),根据旋转中心C,旋转方向顺时针,旋转角度90°,画图,从而得A′的坐标为(8,3).【知识点】坐标与图形变化-旋转三、解答题(本大题共7小题,共72分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.已知点P(8﹣2m,m﹣1).(1)若点P在x轴上,求m的值.(2)若点P在第一象限,且到两坐标轴的距离相等,求P点的坐标.【解答】解:(1)∵点P(8﹣2m,m﹣1)在x轴上,∴m﹣1=0,解得:m=1;(2)∵点P在第一象限,且到两坐标轴的距离相等,∴8﹣2m=m﹣1,解得:m=3,∴P(2,2).【知识点】点的坐标18.(1)A(1,﹣2)、B(﹣2,2)两点间的距离为;(2)C(﹣5,0)、D(3,0)两点间的距离为;(3)E(0,3)、F(0,9)两点间的距离为.【答案】【第1空】5【第2空】8【第3空】6【解答】解:(1)AB==5.故答案是:5;(2)CD=|﹣5﹣3|=8;故答案是:8;(3)EF=|3﹣9|=6.故答案是:6.【知识点】两点间的距离公式19.已知点A(2,m),B(n,﹣5),根据下列条件求m,n的值.(1)A,B两点关于y轴对称;(2)AB∥y轴.【解答】解:(1)根据轴对称的性质,得m=﹣5,n=﹣2;(2)根据平行线的性质,得m≠﹣5,n=2.【知识点】关于x轴、y轴对称的点的坐标20.已知四边形ABCD各顶点的坐标分别是A(0,0)、B(1,2)、C(5,4)、D(7,0).(1)建立平面直角坐标系,并画出四边形ABCD;(2)求四边形ABCD的面积.【解答】解:(1)如图所示,四边形ABCD即为所求;(2)如图所示,过B作BE⊥AD于E,作CF⊥AD于F,则四边形ABCD的面积=×1×2+×(2+4)×4+×2×4=17.【知识点】坐标与图形性质21.在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如图所示.(1)填写下列各点的坐标:A1(,),A3(,),A12(,);(2)写出点A4n的坐标(n是正整数);(3)指出蚂蚁从点A100到点A101的移动方向.【答案】【第1空】0【第2空】1【第3空】1【第4空】0【第5空】6【第6空】0【解答】解:(1)由图可知,∴A1(0,1),A3(1,0),A12(6,0);故答案为:0,1;1,0;6,0;(2)∵n是4的倍数,∴根据(1)OA n=n÷2=,∴点A n的坐标(,0),∴A n﹣1(﹣1,0),A n+1(,0),A n+2(+1,1);(3)∵100÷4=25,∴100是4的倍数,∴A100(50,0),∵101÷4=25…1,∴A101与A100横坐标相同,∴A101(50,1),∴从点A100到点A101的移动方向与从点O到A1的方向一致,为从下向上.【知识点】规律型:点的坐标22.如图,将三角形向右平移2个单位长度,再向上平移3个单位长度,求平移后三个顶点的坐标.【解答】解:由题意可知此题平移规律是:(x+2,y+3),照此规律计算可知原三个顶点(﹣1,4),(﹣4,﹣1),(1,1)平移后三个顶点的坐标是(1,7),(﹣2,2),(3,4).【知识点】坐标与图形变化-平移23.如图,△DEF是△ABC经过某种变换得到的图形,点A与点D,点B与点E,点C与点F分别是对应点,观察点与点的坐标之间的关系,解答下列问题:(1)分别写出点A与点D,点B与点E,点C与点F的坐标,并说说对应点的坐标有哪些特征;(2)请你具体说明△DEF是△ABC经过如何变换得到的图形;(3)若点P(2a﹣12,﹣3a)与点Q(3b,2b+5)也是通过上述变换得到的一对对应点,求a、b的值.【解答】解:(1)A(2,3),D(﹣2,﹣3);B(1,2),E(﹣1,﹣2);C(3,1),F(﹣3,﹣1),这三组对应点的横纵坐标都互为相反数;(2)△DEF是由△ABC绕原点O旋转180°得到;(3)根据题意得2a﹣12+3b=0,﹣3a+2b+5=0,解得a=3,b=2.【知识点】坐标与图形变化-旋转。
空间图形的坐标和表示

06
空间图形在计算机图形学中的应用
三维建模技术
建模方法:多边 形建模、曲面建 模、实体建模等
建模工具:3D Max、Maya、 Blender等
建模流程:创建 模型、贴图、渲 染等
应用领域:游戏 、影视、建筑、 工业设计等
计算机动画制作
添加标题
空间图形在计算机 动画中的应用:空 间图形是计算机动 画制作的基础,通 过控制空间图形的 位置、大小、形状 等参数,可以实现
空间图形的渲染 技术:光线追踪、 纹理映射、阴影 处理
感谢观看
汇报人:XXX
向量表示法
向量表示法的优点:简洁明 了,易于理解和计算
向量表示法的定义:将空间 图形表示为向量的形式
向量表示法的应用:在计算 机图形学、机器人技术等领
域有广泛应用
向量表示法的局限性:对于 复杂的空间图形,向量表示
法可能不够直观和准确
矩阵表示法
矩阵表示法是一 种常用的空间图 形表示方法
矩阵中的元素表 示空间图形中的 点、线、面等元 素
球面坐标系 广泛应用于 地理、天文、 航海等领域
柱面坐标系
柱面坐标系的定 义:柱面坐标系 是一种三维坐标 系,由两个角度 参数和一个径向 参数组成。
柱面坐标系的应 用:柱面坐标系 常用于描述旋转 物体的运动和形 状,如天体运动、 流体力学等。
柱面坐标系的表 示:柱面坐标系 通常用(r, θ, φ) 表示,其中r表 示径向参数,θ 表示方位角,φ 表示仰角。
单击此处添加副标题
空间图形的坐标和表示
汇报人:XXX
目录
01 02 03 04 05 06
添加目录项标题 空间图形的坐标系 空间图形的表示方法
空间图形的变换 空间图形的性质和分类 空间图形在计算机图形学中的应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识点165 坐标与图形性质(解答) 1. (2010•内江)阅读理解: 我们知道,任意两点关于它们所连线段的中点成中心对称,在平面直角坐标系中,任意两点P(x1,y1)、Q(x2,y2)的对称中心的坐标为(x1+x2/2,y1+y2/2). 观察应用: (1)如图,在平面直角坐标系中,若点P1(0,-1)、P2(2,3)的对称中心是点A,则点A的坐标为(1,1); (2)另取两点B(-1.6,2.1)、C(-1,0).有一电子青蛙从点P1处开始依次关于点A、B、C作循环对称跳动,即第一次跳到点P1关于点A的对称点P2处,接着跳到点P2关于点B的对称点P3处,第三次再跳到点P3关于点C的对称点P4处,第四次再跳到点P4关于点A的对称点P5处,…则点P3、P8的坐标分别为(-5.2,1.2)、(2,3). 拓展延伸: (3)求出点P2012的坐标,并直接写出在x轴上与点P2012、点C构成等腰三角形的点的坐标. 考点:坐标与图形性质;中心对称.专题:阅读型.分析:(1)直接利用题目所给公式即可求出点A的坐标; (2)首先利用题目所给公式求出P2的坐标,然后利用公式求出对称点P3的坐标,依此类推即可求出P8的坐标; (3)由于P1(0,-1)→P2(2,3)→P3(-5.2,1.2)→P4(3.2,-1.2)→P5(-1.2,3.2)→P6(-2,1)→P7(0,-1)→P8(2,3),由此得到P7的坐标和P1的坐标相同,P8的坐标和P2的坐标相同,即坐标以6为周期循环,利用这个规律即可求出点P2012的坐标,也可以根据图形求出在x轴上与点P2012、点C构成等腰三角形的点的坐标.
解答:解:(1)(1,1); (2)P3、P8的坐标分别为(-5.2,1.2),(2,3); (3)∵P1(0,-1)→P2(2,3)→P3(-5.2,1.2)→P4(3.2,-1.2)→P5(-1.2,3.2)→P6(-2,1)→P7(0,-1)→P8(2,3); ∴P7的坐标和P1的坐标相同,P8的坐标和P2的坐标相同,即坐标以6为周期循环. ∵2012÷6=335…2. ∴P2012的坐标与P2的坐标相同,为P2012(2,3);
在x轴上与点P2012、点C构成等腰三角形的点的坐标为(-32-1,0),(2,0),(32-1,0),(5,0). 点评:此题是一个阅读材料的题目,读懂题目,利用题目所给公式是解题的关键,利用公式可以解决后面的所有问题. 2. (2010•常州)小明在研究苏教版《有趣的坐标系》后,得到启发,针对正六边形OABCDE, 自己设计了一个坐标系如图,该坐标系以O为原点,直线OA为x轴,直线OE为y轴,以正六边形OABCDE的边长为一个单位长.坐标系中的任意一点P用一有序实数对(a,b)来表示,我们称这个有序实数对(a,b)为点P的坐标.坐标系中点的坐标的确定方法如下: (ⅰ)x轴上点M的坐标为(m,0),其中m为M点在x轴上表示的实数; (ⅱ)y轴上点N的坐标为(0,n),其中n为N点在y轴上表示的实数; (ⅲ)不在x、y轴上的点Q的坐标为(a,b),其中a为过点Q且与y轴平行的直线与x轴的交点在x轴上表示的实数,b为过点Q且与x轴平行的直线与y轴的交点在y轴上表示的实数. 则:(1)分别写出点A、B、C的坐标; (2)标出点M(2,3)的位置; (3)若点K(x,y)为射线OD上任一点,求x与y所满足的关系式.
考点:坐标与图形性质. 分析:本题要充分考虑题中所给的提示,注意“不在x、y轴上的点Q的坐标为(a,b),其中a为过点Q且与y轴平行的直线与x轴的交点在x轴上表示的实数,b为过点Q且与x轴平行的直线与y轴的交点在y轴上表示的实数.”这和我们以往所认识平面直角坐标系不同,因此我们要理解好题意,由题意可得A、B、C坐标分别为A(1,0),B(2,1),C(2,2);再去标注M位置即可. 解答:解:(1)由图示可知各点的坐标为:A(1,0),B(2,1),C(2,2); (2)如图:
(3)设射线OD上点K的横、纵坐标满足的关系式为y=kx; 由图知:D(1,2),则:k=2, 即x与y所满足的关系式为:y=2x. 点评:本题考查了对平面直角坐标系的理解,在做题过程中要开放思维,弄清题意. 3. (2009•佳木斯)如图,A、B、C为一个平行四边形的三个顶点,且A、B、C三点的坐标分别为(3,3)、(6,4)、(4,6). (1)请直接写出这个平行四边形第四个顶点的坐标; (2)求这个平行四边形的面积. 考点:坐标与图形性质;平行四边形的性质. 分析:(1)本题应从BC为对角线、AC为对角线、AB为对角线三种情况入手讨论,即可得出第四个点的坐标. (2)解本题时应将三角形进行分化,化为几个直角三角形的和,解出面积和,乘以2即为平行四边形的面积. 解答:解:(1)BC为对角线时,第四个点坐标为(7,7);AB为对角线时,第四个点为(5,1);当AC为对角线时,第四个点坐标为(1,5). (2)图中△ABC面积=3×3-1/2(1×3+1×3+2×2)=4,所以平行四边形面积=2×△ABC面积=8.
点评:此题主要考查了平行四边形的性质和判定,难易程度适中. 4. (2008•岳阳)如图,四边形ABCD是一正方形,已知A(1,2),B(5,2) (1)求点C,D的坐标; (2)若一次函数y=kx-2(k≠0)的图象过C点,求k的值. (3)若y=kx-2的直线与x轴、y轴分别交于M,N两点,且△OMN的面积等于2,求k的值. 考点:坐标与图形性质;待定系数法求一次函数解析式;正方形的性质.专题:代数几何综合题.
分析:根据正方形的定义得到正方形的边长是4,C,D的坐标容易求出; 把C点坐标代入一次函数y=kx-2(k≠0)的解析式,就可以求出k的值; 根据△OMN的面积等于2,就可以求出k的值.解答:解:(1)∵ABCD为正方形,又A(1,2),B(5,2) 则AB=4,∴C(5,6),D(1,6)(2分) (2)∵y=kx-2经过C点,∴6=5k-2,∴k=1.6 (4分) (3)y=kx-2与x轴的交点为M y=0时,kx-2=0,x=2/k,M(2/k,0),N(0,-2) 又S△OMA=12|OM|•|ON|=1/2×|-2|•|2/k|=2 ∴|K|=1,k=±1 故k=±1时,△OMN的面积为2个单位(少一个k值扣1分)(6分). 点评:本题结合坐标考查了函数的性质,注意结合图形是解决本题的关键. 5. (2007•陕西)在下列直角坐标系中, (1)请写出在平行四边形ABCD内(不包括边界)横、纵坐标均为整数的点,且和为零的点的坐标; (2)在平行四边形ABCD内(不包括边界)任取一个横、纵坐标均为整数的点,求该点的横、纵坐标之和为零的概率. 考点:坐标与图形性质;平行四边形的性质;概率公式.
分析:(1)横、纵坐标均为整数,且和为零的点的坐标应在一三象限坐标轴角平分线上; (2)应找完在平行四边形内的所有整数点. 解答:解:(1)看图可知A(-2,2),B(-3,-2),C(2,-2)D(3,2),在其内部横、纵坐标均为整数,且和为零的点的坐标有(-1,1),(0,0),(1,-1).(3分) (2)由图可知: ∵在平行四边形ABCD内横、纵坐标均为整数的点有15个,其中横、纵坐标和为零的点有3个.(6分) ∴P=3/15=1/5.(8分) 点评:解决本题的关键是理解横、纵坐标均为整数,且和为零的点的坐标在一三象限坐标轴角平分线上,范围是平行四边形内.用到的知识点为:概率=所求情况数与总情况数之比. 6. (2006•锦州)如图,我们称每个小正方形的顶点为“格点”,以格点为顶点的三角形叫做“格点三角形”.根据图形解答下列问题: (1)图中的格点△DEF是由格点△ABC通过怎样的变换得到的?(写出变换过程) (2)在图中建立适当的直角坐标系,写出△DEF各顶点的坐标. 考点:坐标与图形性质;平移的性质;旋转的性质.专题:网格型.分析:(1)对应点是C、F,△ABC应先向右平移到F,BC转到EF位置,可看出是逆时针旋转90°, (2)可任意建立平面直角坐标系,得到相应三点的坐标.解答:解:(1)答案不唯一,只要合理即可得(2分).如: 将△ABC向右平移3个格得到△A1B1C1,再将△A1B1C1以点C1为旋转中心,按逆时针方向旋转90°就得到了△DEF; (2)答案不唯一,只要正确建立直角坐标系并正确写出各点坐标,即可得(3分).如: 方法一:如图①建立直角坐标系,则点D(0,0)、E(2,-1)、F(2,3); 方法二:如图②建立直角坐标系,则点D(-2,0)、E(0,-1)、F(0,3); 方法三:如图③建立直角坐标系,则点D(-2,-3)、E(0,-4)、F(0,0); 方法四:如图④建立直角坐标系,则点D(-2,1)、E(0,0)、F(0,4). 点评:图形的转换应找到关键点,关键线段的变化,原点位置不同,得到点的坐标也不同. 7. (2005•绍兴)如图,在平面直角坐标系中,已知点A(-2,0),B(2,0). (1)画出等腰三角形ABC(画一个即可); (2)写出(1)中画出的三角形ABC的顶点C的坐标. 考点:坐标与图形性质;等腰三角形的性质.分析:(1)由题意可得,AB的中垂线是y轴,则在y轴上任取一点即可; (2)根据所画情况而定,如(0,3)
解答:解:(1)如图; (2)C(0,3)或(0,5)都可以(答案不唯一). 本题综合考查了图形的性质和坐标的性质及等腰三角形的性质;发现并利用AB的中垂线是y轴是正确解答本题的关键 8. (2005•杭州)在平面直角坐标系内,已知点A(2,1),O为坐标原点.请你在坐标轴上确定点P,使得△AOP成为等腰三角形.在给出的坐标系中把所有这样的点P都找出来,画上实心点,并在旁边标上P1,P2,…,PK的坐标(有k个就标到PK为止,不必写出画法).