中考数学专题复习《全等三角形》

合集下载

2024年中考数学复习 全等三角形的六种模型全梳理(原卷+答案解析)

2024年中考数学复习 全等三角形的六种模型全梳理(原卷+答案解析)

全等三角形的六种模型全梳理几何探究类问题一直属于考试压轴题范围,在三角形这一章,压轴题主要考查是证明三角形各种模型,或证明线段数量关系等,接来下我们针对其做出详细分析与梳理。

类型一、倍长中线模型目的:①构造出一组全等三角形;②构造出一组平行线。

将分散的条件集中到一个三角形中。

1【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC中,若AB=8,AC=6,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:如图2,延长AD到点E,使DE=AD,连接BE.请根据小明的方法思考:(1)如图2,由已知和作图能得到△ADC≌△EDB的理由是.A.SSSB.SASC.AASD.ASA(2)如图2,AD长的取值范围是.A.6<AD<8B.6≤AD≤8C.1<AD<7D.1≤AD≤7【感悟】解题时,条件中若出现“中点”、“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论转化到同一个三角形中.【问题解决】(3)如图3,AD是△ABC的中线,BE交AC于点E,交AD于F,且AE=EF.求证:AC=BF.2(培优)已知△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,连接AD,BE,点F为BE中点.AD;(1)如图1,求证:BF=12(2)将△DCE绕C点旋转到如图2所示的位置,连接AE,BD,过C点作CM⊥AD于M点.①探究AE和BD的关系,并说明理由;②连接FC,求证:F,C,M三点共线.1.如图,△ABC中,BD=DC=AC,E是DC的中点,求证:AB=2AE.2.(1)如图1,已知△ABC中,AD是中线,求证:AB+AC>2AD;(2)如图2,在△ABC中,D,E是BC的三等分点,求证:AB+AC>AD+AE;(3)如图3,在△ABC中,D,E在边BC上,且BD=CE.求证:AB+AC>AD+AE.3.(1)阅读理解:如图①,在△ABC中,若AB=8,AC=5,求BC边上的中线AD的取值范围.可以用如下方法:将△ACD绕着点D逆时针旋转180°得到△EBD,在△ABE中,利用三角形三边的关系即可判断中线AD的取值范围是;(2)问题解决:如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;(3)问题拓展:如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=100°,以C为顶点作一个50°的角,角的两边分别交AB、AD于E、F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并说明理由.类型二、截长补短模型截长补短法使用范围:线段和差的证明(往往需证2次全等)3如图,在五边形ABCDE中,AB=AE,CA平分∠BCD,∠CAD=12∠BAE.(1)求证:CD=BC+DE;(2)若∠B=75°,求∠E的度数.4(培优)在△ABC中,BE,CD为△ABC的角平分线,BE,CD交于点F.(1)求证:∠BFC=90°+12∠A;(2)已知∠A=60°.①如图1,若BD=4,BC=6.5,求CE的长;②如图2,若BF=AC,求∠AEB的大小.1.如图,△ABC为等边三角形,若∠DBC=∠DAC=α0°<α<60°,则∠BCD=(用含α的式子表示).2.如图,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,点E、F分别在直线BC、CD上,且∠BAD.∠EAF=12(1)当点E、F分别在边BC、CD上时(如图1),请说明EF=BE+FD的理由.(2)当点E、F分别在边BC、CD延长线上时(如图2),(1)中的结论是否仍然成立?若成立,请说明理由;若不成立,请写出EF、BE、FD之间的数量关系,并说明理由.3.阅读下面材料:【原题呈现】如图1,在△ABC中,∠A=2∠B,CD平分∠ACB,AD=2.2,AC=3.6,求BC的长.【思考引导】因为CD平分∠ACB,所以可在BC边上取点E,使EC=AC,连接DE.这样很容易得到△DEC≌△DAC,经过推理能使问题得到解决(如图2).【问题解答】(1)参考提示的方法,解答原题呈现中的问题;(2)拓展提升:如图3,已知△ABC中,AB=AC,∠A=20°,BD平分∠ABC,BD=2.3,BC=2.求AD 的长.类型三、一线三等角模型应用:①通过证明全等实现边角关系的转化,便于解决对应的几何问题;②与函数综合应用中有利于点的坐标的求解。

专题19 全等三角形-2021年中考数学一轮复习精讲+热考题型(解析版)

专题19 全等三角形-2021年中考数学一轮复习精讲+热考题型(解析版)

专题19 全等三角形【知识要点】知识点1 全等三角形及其性质全等图形概念:能完全重合的图形叫做全等图形.特征:①形状相同。

②大小相等。

③对应边相等、对应角相等。

全等三角形概念:两个能完全重合的三角形叫做全等三角形.小结:把两个全等三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角.表示方法:全等用符号“≌”,读作“全等于”。

书写三角形全等时,要注意对应顶点字母要写在对应位置上。

全等变换定义:只改变图形的位置,而不改变图形的形状和大小的变换。

变换方式(常见):平移、翻折、旋转。

全等三角形的性质:对应边相等,对应角相等。

知识点2:全等三角形的判定(重点)注:①判定两个三角形全等必须有一组边对应相等;②全等三角形周长、面积相等.证题的思路(重点):知识点3 角平分线角平分线的性质定理:角平分线上的点到角两边的距离相等;判定定理:到角两边距离相等的点在角的平分线上.三角形中角平分线的性质:三角形的三条角平分线相交于一点,并且这点到三条边距离相等。

【考查题型】考查题型一全等三角形的性质典例1.如图,若△ABC≌△ADE,则下列结论中一定成立的是()A.AC=DE B.∠BAD=∠CAEC.AB=AE D.∠ABC=∠AED【答案】B【详解】根据全等三角形的性质即可得到结论.【解答】解:∵△ABC≌△ADE,∴AC=AE,AB=AD,∠ABC=∠ADE,∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE.故A,C,D选项错误,B选项正确,故选:B.变式1-1.三个全等三角形按如图的形式摆放,则∠1+∠2+∠3的度数是()A.90B.120C.135D.180【答案】D【分析】根据全等三角形的性质和三角形的内角和定理和三角形的外角可得∠1+∠2+∠3+∠4+∠5+∠6=360〬,∠5+∠7+∠8=180°,即∠1+∠2+∠3=360°-180°.【详解】∵图中是三个全等三角形,∴∠4=∠8, ∠6=∠7,又∵三角形ABC的外角和=∠1+∠2+∠3+∠4+∠5+∠6=360〬,又∠5+∠7+∠8=180°,∴∠1+∠2+∠3=360°-180°=180°.故选D变式1-2.如图所示,△ABD≌△CDB,下面四个结论中,不正确的是()A.△ABD和△CDB的面积相等B.△ABD和△CDB的周长相等C.∠A+∠ABD=∠C+∠CBD D.AD∥BC,且AD=BC【答案】C【分析】通过全等三角形的性质进行逐一判断即可.【详解】A、∵△ABD≌△CDB,∴△ABD和△CDB的面积相等,故本选项错误;B、∵△ABD≌△CDB,∴△ABD和△CDB的周长相等,故本选项错误;C、∵△ABD≌△CDB,∴∠A=∠C,∠ABD=∠CDB,∴∠A+∠ABD=∠C+∠CDB≠∠C+∠CBD,故本选项正确;D、∵△ABD≌△CDB,∴AD=BC,∠ADB=∠CBD,∴AD∥BC,故本选项错误;故选:C.考查题型二全等三角形的判定-SSS∆≅∆的依据是典例2.用直尺和圆规作一个角的角平分线的示意图如图所示,其中说明COE DOE()A.SSS B.SAS C.ASA D.AAS【答案】A【分析】根据角平分线的作法可知CO=DO,EO=EO,EC=ED,符合三角形全等的判定方法中的SSS,可∆≅∆.证COE DOE【详解】解:由作法知CO=DO,EO=EO,EC=ED,∆≅∆(SSS),∴COE DOE故选:A.变式2-1.在平面直角坐标系xOy中,点A(﹣3,0),B(2,0),C(﹣1,2),E(4,2),如果△ABC与△EFB全等,那么点F的坐标可以是()A.(6,0)B.(4,0)C.(4.﹣2)D.(4,﹣3)【答案】D【分析】画出平面直角坐标系,利用全等三角形的性质以及坐标与图形的性质得出符合题意的答案.【详解】解:如图所示:△ABC 与△EFB 全等,点F 的坐标可以是:(4,﹣3).故选:D .变式2-2.如图,在四边形ABCD 中,90B D ∠=∠=︒,点E ,F 分别在AB ,AD 上,AE AF =,CE CF =,求证:CB CD =.【答案】见解析【分析】连接AC ,证明△ACE ≌△ACF ,得到∠CAE=∠CAF ,再利用角平分线的性质定理得到CB=CD .【详解】解:连接AC ,∵AE=AF ,CE=CF ,AC=AC ,∴△ACE ≌△ACF (SSS ),∴∠CAE=∠CAF ,∵∠B=∠D=90°,∴CB=CD .变式2-3.人教版初中数学教科书八年级上册第48页告诉我们一种作已知角的平分线的方法:已知:AOB∠求作:AOB∠的平分线做法:(1)以O为圆心,适当长为半径画弧,交OA于点M,交OB于点N,(2)分别以点M,N为圆心,大于12MN的长为半径画弧,两弧在AOB∠的内部相交于点C(3)画射线OC,射线OC即为所求.请你根据提供的材料完成下面问题:(1)这种作已知角平分线的方法的依据是__________________(填序号).①SSS②SAS③AAS④ASA(2)请你证明OC为AOB∠的平分线.【答案】(1)①;(2)证明见解析【分析】(1)根据作图的过程知道:OM=ON,OC=OC,CM=CM,由“SSS”可以证得△EOC≌△DOC;(2)根据作图的过程知道:OM=ON,OC=OC,CM=CM,由全等三角形的判定定理SSS可以证得△EOC ≌△DOC,从而得到OC为AOB∠的平分线.【详解】(1)根据作图的过程知道:OM=ON,OC=OC,CM=CM,所以由全等三角形的判定定理SSS可以证得△EOC≌△DOC,从而得到OC为AOB∠的平分线;故答案为:①;(2)如图,连接MC 、NC .根据作图的过程知,在△MOC 与△NOC 中,OM ON OC OC CM CN ⎧⎪⎨⎪⎩===,∴△MOC ≌△NOC (SSS ),∠AOC=∠BOC ,∴OC 为AOB ∠的平分线.考查题型三 全等三角形的判定-SAS典例3.如图,已知,AB DC ABC DCB =∠=∠.能直接判断ABC DCB △≌△的方法是( )A .SASB .AASC .SSSD .ASA【答案】A 【分析】根据三角形全等的判定定理解答.【详解】在△ABC 和△DCB 中,AB DC ABC DCB BC CB =⎧⎪∠=∠⎨⎪=⎩,∴ABC DCB △≌△(SAS),故选:A.变式3-1.如图所示,将两根钢条AA’、BB’的中点O 连在一起,使AA’、BB’可以绕着点O自由旋转,就做成了一个测量工件,则A’B’的长等于内槽宽AB ,那么判定△OAB ≌△OA’B’的理由是( )A .边角边B .角边角C .边边边D .角角边【答案】A 【分析】根据线段中点的定义可得,AO A O BO B O ''==,进一步即可根据SAS 证明△OAB ≌△OA B '',于是可得答案.【详解】解:∵点O 是AA '和BB '的中点,∴,AO A O BO B O ''==,在△OAB 和△OA B ''中,∵,,AO A O AOB A OB BO B O ''''=∠=∠=,∴△OAB ≌△OA B ''(SAS ).故选:A .变式3-2.如图,已知//AB CD ,AB CD =,BE CF =.求证:(1)ABF DCE ∆≅∆;(2)//AF DE .【答案】(1)证明见详解;(2)证明见解析.【分析】(1)先由平行线的性质得∠B=∠C ,从而利用SAS 判定△ABF ≌△DCE ;(2)根据全等三角形的性质得∠AFB=∠DEC ,由等角的补角相等可得∠AFE=∠DEF ,再由平行线的判定可得结论.【详解】证明:(1)∵AB ∥CD ,∴∠B=∠C ,∵BE=CF ,∴BE-EF=CF-EF ,即BF=CE ,在△ABF 和△DCE 中,==AB CD B C BF CE =⎧⎪∠∠⎨⎪⎩∴△ABF ≌△DCE (SAS );(2)∵△ABF ≌△DCE ,∴∠AFB=∠DEC ,∴∠AFE=∠DEF ,∴AF ∥DE .变式3-3.已知:如图,点A 、B 、C 、D 在一条直线上,//,,EA FB EA FB AB CD ==.(1)求证:E F ∠=∠;(2)若40,80A D ∠=︒∠=︒,求E ∠的度数.【答案】(1)见解析;(2)60°【分析】(1)根据已知条件证明△ACE ≌△BDF ,即可得到结论;(2)根据全等三角形的性质得到∠D=∠ACE=80°,再利用三角形内角和定理求出结果.【详解】解:(1)∵AE ∥BF ,∴∠A=∠DBF ,∵AB=CD ,∴AB+BC=CD+BC ,即AC=BD ,又∵AE=BF ,∴△ACE ≌△BDF (SAS ),∴∠E=∠F ;(2)∵△ACE ≌△BDF ,∴∠D=∠ACE=80°,∵∠A=40°,∴∠E=180°-∠A-∠ACE=60°.考查题型四 全等三角形的判定-AAS典例4.如图,AB CD ⊥,且AB CD =.E 、F 是AD 上两点,CE AD ⊥,BF AD ⊥.若CE a =,BF b =,EF c =,则AD 的长为( )A .a c +B .b c +C .a b c -+D .a b c +-【答案】D【解析】如图,∵AB ⊥CD,CE ⊥AD,∴∠1=∠2,又∵∠3=∠4,∴180°-∠1-∠4=180°-∠2-∠3,即∠A=∠C.∵BF ⊥AD,∴∠CED=∠BFD=90°,∵AB=CD,∴△ABF ≌△CDE,∴AF=CE=a,ED=BF=b,又∵EF=c,∴AD=a+b-c.故选:D.变式4-1.如图,D 是AB 上一点,DF 交AC 于点E ,DE FE =,//FC AB ,若4AB =,3CF =,则BD 的长是( )A .0.5B .1C .1.5D .2【答案】B 【分析】根据平行线的性质,得出A FCE ∠=∠,ADE F ∠=∠,根据全等三角形的判定,得出ADE CFE ∆≅∆,根据全等三角形的性质,得出AD CF =,根据4AB =,3CF =,即可求线段DB 的长.【详解】∵//CF AB ,∴A FCE ∠=∠,ADE F ∠=∠,在ADE ∆和FCE ∆中A FCE ADE F DE FE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()ADE CFE AAS ∆≅∆,∴3AD CF ==,∵4AB =,∴431DB AB AD =-=-=.故选B .变式4-2.△BDE 和△FGH 是两个全等的等边三角形,将它们按如图的方式放置在等边三角形ABC内.若求五边形DECHF的周长,则只需知道()A.△ABC的周长B.△AFH的周长C.四边形FBGH的周长D.四边形ADEC的周长【答案】A【分析】由等边三角形的性质和三角形的内角和定理可得:FH=GH,∠ACB=∠A=60°,∠AHF=∠HGC,进而可根据AAS证明△AFH≌△CHG,可得AF=CH,然后根据等量代换和线段间的和差关系即可推出五边形DECHF的周长=AB+BC,从而可得结论.【详解】解:∵△GFH为等边三角形,∴FH=GH,∠FHG=60°,∴∠AHF+∠GHC=120°,∵△ABC为等边三角形,∴AB=BC=AC,∠ACB=∠A=60°,∴∠GHC+∠HGC=120°,∴∠AHF=∠HGC,∴△AFH≌△CHG(AAS),∴AF=CH.∵△BDE和△FGH是两个全等的等边三角形,∴BE=FH,∴五边形DECHF的周长=DE+CE+CH+FH+DF=BD+CE+AF+BE+DF=(BD+DF+AF)+(CE+BE),=AB+BC.∴只需知道△ABC的周长即可.故选:A.变式4-3.如图,AC是∠BAE的平分线,点D是线段AC上的一点,∠C=∠E,AB=AD.求证:BC=DE.【答案】见解析【分析】根据角平分线的性质证明△BAC≌△DAE,即可得到结果;【详解】证明:∵AC是∠BAE的平分线,∴∠BAC=∠DAE,∵∠C=∠E,AB=AD.∴△BAC≌△DAE(AAS),∴BC=DE.变式4-4.如图,在△ABC中,AB=AC,点D、E分别是线段BC、AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:△BDE≌△F AE;(2)求证:四边形ADCF为矩形.【答案】(1)见解析;(2)见解析【分析】(1)首先根据平行线的性质得到∠AFE =∠DBE ,再根据线段中点的定义得到AE =DE ,根据全等三角形的判定定理即可得到结论;(2)根据全等三角形的性质得到AF =BD ,推出四边形ADCF 是平行四边形,根据等腰三角形的性质得到∠ADC =90°,于是得到结论.【详解】(1)证明:∵AF ∥BC ,∴∠AFE =∠DBE ,∵E 是线段AD 的中点,∴AE =DE ,∵∠AEF =∠DEB ,∴BDE FAE ≅△△(AAS );(2)证明:∵BDE FAE ≅△△,∴AF =BD ,∵D 是线段BC 的中点,∴BD =CD ,∴AF =CD ,∵AF ∥CD ,∴四边形ADCF 是平行四边形,∵AB =AC ,∴AD BC ⊥,∴∠ADC =90°,∴四边形ADCF 为矩形.考查题型五 全等三角形的判定-ASA典例5.如图,EF 过▱ABCD 对角线的交点O ,交AD 于E ,交BC 于F ,若▱ABCD 的周长为18,1.5OE =,则四边形EFCD 的周长为( )A .14B .13C .12D .10【答案】C 【详解】∵平行四边形ABCD ,∴AD ∥BC ,AD =BC ,AO =CO ,∴∠EAO =∠FCO ,∵在△AEO 和△CFO 中,AEO CFO AO COAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AEO ≌△CFO ,∴AE =CF ,EO =FO =1.5,∵C 四边形ABCD =18,∴CD +AD =9,∴C 四边形CDEF =CD +DE +EF +FC =CD +DE +EF +AE =CD +AD +EF =9+3=12.故选C.变式5-1.如图,在四边形ABCD 中,//AD BC ,90D ∠=,8AD =,6BC =,分别以点A ,C 为圆心,大于12AC 长为半径作弧,两弧交于点E ,作射线BE 交AD 于点F ,交AC 于点O .若点O 是AC 的中点,则CD 的长为( )A.B .6 C.D .8【答案】A【分析】连接FC ,根据基本作图,可得OE 垂直平分AC ,由垂直平分线的性质得出AF =FC .再根据ASA 证明△FOA ≌△BOC ,那么AF =BC =3,等量代换得到FC =AF =3,利用线段的和差关系求出FD =AD -AF =1.然后在直角△FDC 中利用勾股定理求出CD 的长.【详解】解:如图,连接FC ,∵点O 是AC 的中点,由作法可知,OE 垂直平分AC ,∴AF =FC .∵AD ∥BC ,∴∠F AO =∠BCO .在△FOA 与△BOC 中,FAO BCO OA OCAOF COB ∠∠⎧⎪⎨⎪∠∠⎩=== , ∴△FOA ≌△BOC (ASA ),∴AF =BC =6,∴FC =AF =6,FD =AD -AF =8-6=2.在△FDC 中,∵∠D =90°,∴CD 2+DF 2=FC 2,∴CD 2+22=62,∴CD=故选:A .变式5-2.如图,AB =AC ,AB ⊥AC ,AD ⊥AE ,且∠ABD =∠ACE .求证:BD =CE .【答案】见解析.【分析】先求出∠CAE =∠BAD 再利用ASA 证明△ABD ≌△ACE ,即可解答【详解】∵AB ⊥AC ,AD ⊥AE ,∴∠BAE +∠CAE =90°,∠BAE +∠BAD =90°,∴∠CAE =∠BAD .又AB =AC ,∠ABD =∠ACE ,∴△ABD ≌△ACE (ASA).∴BD =CE .变式5-2.如图,点C 在线段BD 上,且AB ⊥BD ,DE ⊥BD ,AC ⊥CE ,BC=DE ,求证:AB=CD .【答案】详见解析【分析】根据AB ⊥BD ,DE ⊥BD ,AC ⊥CE ,可以得到90ABC CDE ACB ︒∠=∠=∠=,90ACB ECD ︒∠+∠=,90ECD CED ︒∠+∠=,从而有ACB CED ∠=∠,可以验证ABC ∆和CDE ∆全等,从而得到AB =CD .【详解】证明:∵AB BD ⊥,DE BD ⊥,AC CE ⊥∴90ABC CDE ACB ︒∠=∠=∠=∴90ACB ECD ︒∠+∠=,90ECD CED ︒∠+∠=∴ACB CED ∠=∠在ABC ∆和CDE ∆中ACB CED BC DEABC CDE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴ABC ∆≌CDE ∆故AB CD =.考查题型六 全等三角形的判定-HL典例6.如图,∠B =∠E ,BF =EC ,AC ∥DF .求证:△ABC ≌△DEF .【答案】证明见解析【分析】首先利用平行线的性质得出∠ACB =∠DFE ,进而利用全等三角形的判定定理ASA ,进而得出答案.【详解】证明:∵AC ∥DF ,∴∠ACB =∠DFE ,∵BF =CE ,∴BC =EF ,在△ABC 和△DEF 中,B E BC EFACB DFE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABC ≌△DEF (ASA ).变式6-1.已知:如图,AB=CD ,DE ⊥AC ,BF ⊥AC ,E ,F 是垂足,AE=CF .求证:△ABF ≌△CDE【答案】见解析.【分析】根据HL 即可判定Rt △ABF ≌Rt △CDE .【详解】证明:∵DE ⊥AC ,BF ⊥AC ,∴∠AFB =∠CED =90°,∵AE=CF ,∴AF=CE ,在Rt △ABF 和Rt △CDE 中,AB CD AF CE=⎧⎨=⎩ ∴Rt △ABF ≌Rt △CDE (HL ).考查题型七 判定三角形全等的的条件典例7.如图,点E 在菱形ABCD 的AB 边上,点F 在BC 边的延长线上,连接CE ,DF ,对于下列条件:①BE CF =;②,CE AB DF BC ⊥⊥;③CE DF =;④BCE CDF ∠=∠,只选其中一个添加,不能确定BCE CDF ∆≅∆的是( )A .①B .②C .③D .④【答案】C 【分析】根据菱形的性质和全等三角形的判定定理即可得到结论. 【详解】解:四边形ABCD 是菱形,BC CD ∴=,//AB CD ,B DCF ∴∠=∠, ①添加BE CF =,()BCE CDF SAS ∴∆≅∆, ②添加CE AB ⊥,DF BC ⊥,90CEB F ∴∠=∠=︒,()BCE CDF AAS ∴∆≅∆, ③添加CE DF =,不能确定BCE CDF ∆≅∆; ④添加BCE CDF ∠=∠,()BCE CDF ASA ∴∆≅∆,故选:C .变式7-1.如图,等腰△ABC 中,点D ,E 分别在腰AB ,AC 上,添加下列条件,不能判定ABE △≌ACD △的是( )A .AD AE =B .BE CD =C .ADC AEB ∠=∠D .DCB EBC ∠=∠【答案】B【分析】根据全等三角形的判定方法逐项判断即得答案.【详解】解: A 、若添加AD AE =,由于AB =AC ,∠A 是公共角,则可根据SAS 判定ABE △≌ACD △,故本选项不符合题意;B 、若添加BE CD =,不能判定ABE △≌ACD △,故本选项符合题意;C 、若添加ADC AEB ∠=∠,由于AB =AC ,∠A 是公共角,则可根据AAS 判定ABE △≌ACD △,故本选项不符合题意;D 、若添加DCB EBC ∠=∠,∵AB =AC ,∴∠ABC =∠ACB ,∴∠ABE =∠ACD ,由于∠A 是公共角,则可根据ASA 判定ABE △≌ACD △,故本选项不符合题意.故选:B .变式7-2.如图,四边形ABCD 是菱形,E 、F 分别是BC 、CD 两边上的点,不能保证....ABE △和ADF 一定全等的条件是( )A .BAF DAE ∠=∠B .EC FC =C .AE AF =D .BE DF =【答案】C 【分析】根据菱形的性质结合全等三角形的判定方法,对各选项分别判断即可得解.【详解】∵四边形ABCD 是菱形,∴AB=BC=CD=DA ,BAD C ∠=∠,B D ∠=∠,如果BAF DAE ∠=∠,∴BAF EAF DAE EAF ∠∠∠∠-=-,即BAE DAF ∠=∠,∵BAE DAF AB DA B D ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴ABE △≅ADF (ASA ),故A 正确;如果EC=FC ,∴BC-EC=CD-FC ,即BE=DF ,∵AB DA B D BE DF =⎧⎪∠=∠⎨⎪=⎩,∴ABE △≅ADF (SAS ),故B 正确;如果AE=AF ,∵AB=DA ,B D ∠=∠,是SSA ,则不能判定ABE △和ADF 全等,故C 错误;如果BE DF =,则AB DA B D BE DF =⎧⎪∠=∠⎨⎪=⎩,∴ABE △≅ADF (SAS ),故D 正确;故选:C.考查题型八全等三角形综合问题典例8.如图AB=AC,CD⊥AB于D,BE⊥AC于E,BE与CD相交于点O.(1)求证AD=AE;(2)连接OA,BC,试判断直线OA,BC的关系并说明理由.【答案】(1)证明见解析;(2)互相垂直,证明见解析【分析】(1)根据AAS推出△ACD≌△ABE,根据全等三角形的性质得出即可;(2)证Rt△ADO≌Rt△AEO,推出∠DAO=∠EAO,根据等腰三角形的性质推出即可.【详解】(1)证明:∵CD⊥AB,BE⊥AC,∴∠ADC=∠AEB=90°,△ACD和△ABE中,∵ADC AEBCAD BAE AB AC∠∠⎧⎪∠∠⎨⎪⎩===∴△ACD≌△ABE(AAS),∴AD=AE.(2)猜想:OA⊥BC.证明:连接OA、BC,∵CD ⊥AB ,BE ⊥AC ,∴∠ADC=∠AEB=90°.在Rt △ADO 和Rt △AEO 中,∵OA OA AD AE ⎧⎨⎩== ∴Rt △ADO ≌Rt △AEO (HL ).∴∠DAO=∠EAO ,又∵AB=AC ,∴OA ⊥BC .变式8-1.如图,AC BC ⊥,DC EC ⊥,AC BC =.DC EC =,AE 与BD 交于点F .(1)求证:AE BD =;(2)求AFD ∠的度数.【答案】(1)见解析(2)90°【分析】(1)根据题意证明△ACE ≌△BCD 即可求解;(2)根据三角形的内角和及全等三角形的性质即可得到AFD ∠的度数.【详解】(1)∵AC BC ⊥,DC EC ⊥,∴∠ACB=∠ECD=90°∴∠ACB+∠BCE=∠ECD+∠BCE即∠ACE=∠BCD又AC BC =.DC EC =∴△ACE ≌△BCD∴AE BD =(2)∵△ACE ≌△BCD∴∠A=∠B设AE 与BC 交于O 点,∴∠AOC=∠BOF∴∠A+∠AOC+∠ACO=∠B+∠BOF+∠BFO=180°∴∠BFO=∠ACO=90°故AFD ∠=180°-∠BFO=90°.变式8-2.如图,在△ABC 和△DCE 中,AC =DE ,∠B =∠DCE =90°,点A ,C ,D 依次在同一直线上,且AB ∥DE .(1)求证:△ABC ≌△DCE ;(2)连结AE ,当BC =5,AC =12时,求AE 的长.【答案】(1)见解析;(2)13【分析】根据题意可知,本题考查平行的性质,全等三角形的判定和勾股定理,根据判定定理,运用两直线平行内错角相等再通过AAS 以及勾股定理进行求解.【详解】解:(1)∵//AB DE∴BAC CDE ∠=∠在△ABC 和△DCE 中B DCE BAC CDE AC DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△DCE(2)由(1)可得BC =CE =5在直角三角形ACE 中13AE ===变式8-3.如图,AC 是四边形ABCD 的对角线,∠1=∠B ,点E 、F 分别在AB 、BC 上,BE =CD ,BF =CA ,连接EF .(1)求证:∠D =∠2;(2)若EF ∥AC ,∠D =78°,求∠BAC 的度数.【答案】(1)证明见解析;(2)78°.【分析】(1)由“SAS ”可证△BEF ≌△CDA ,可得∠D =∠2;(2)由(1)可得∠D =∠2=78°,由平行线的性质可得∠2=∠BAC =78°.【详解】证明:(1)在△BEF 和△CDA 中,1BE CD B BF CA =⎧⎪∠=∠⎨⎪=⎩,∴△BEF ≌△CDA (SAS ),∴∠D =∠2;(2)∵∠D =∠2,∠D =78°,∴∠D =∠2=78°,∵EF ∥AC ,∴∠2=∠BAC =78°.变式8-4.如图,在三角形ABC 中,点D 是BC 上的中点,连接AD 并延长到点E ,使DE AD =,连接CE .(1)求证:ABD ECD ∆≅∆(2)若ABD ∆的面积为5,求ACE ∆的面积.【答案】(1)详见解析;(2)10.【分析】(1)根据中点定义、对顶角相等以及已知条件运用SAS 即可证明;(2)先根据三角形中点的性质和全等三角形的性质得到ABD ACD S S =、ABD ECD S S =,再结合5ABD S =以及ACE ACD ECD S S S =+解答即可.【详解】证明:(1)∵D 是BC 的中点,∴BD=CD在△ABD 和△CED 中,BD CD ADB CED AD ED =⎧⎪∠=∠⎨⎪=⎩所以ABD ECD ∆≅∆;(2)∵在△ABC 中,D 是BC 的中点∴ABD ACD S S =ABD ECD ∆≅∆ABD ECD S S ∴=∵5ABD S =5510ACE ACD ECD S S S ∴=+=+=.答:三角形ACE 的面积为10.考查题型九 角平分线的性质定理典例9.如图,已知在△ABC 中,CD 是AB 边上的高线,BE 平分∠ABC ,交CD 于点E ,BC=5,DE=2,则△BCE 的面积等于( )A .10B .7C .5D .4【答案】C 【解析】试题分析:如图,过点E 作EF ⊥BC 交BC 于点F,根据角平分线的性质可得DE=EF=2,所以△BCE 的面积等于1152522BC EF ⨯⨯=⨯⨯=,故答案选C .变式9-1.如图,AB ∥CD ,AD 平分∠BAC ,若∠BAD=70°,则∠ACD 的度数为( )A .40°B .35°C .50°D .45°【答案】A 【解析】试题分析:已知AD 平分∠BAC ,∠BAD=70°,根据角平分线定义求出∠BAC=2∠BAD=140°,再由AB ∥CD ,所以∠ACD=180°﹣∠BAC=40°,故选A .变式9-2.如图,在△ABC 中,∠C =90°,以点B 为圆心,以适当长为半径画弧交AB 、BC 于P 、Q 两点,再分别以点P ,Q 为圆心,大于12PQ 的长为半径画弧,两弧相交于点N ,射线BN 交AC 于点D .若AB =10,AC =8,则CD 的长是( )A .2B .2.4C .3D .4【答案】C 【分析】作DE ⊥AB 于E ,根据角平分线的性质得到DE DC =,设DE DC x == ,根据ABD ∆的面积公式列方程计算即可.【详解】解:如图所示,作DE ⊥AB 于E ,∵10890AB AC C ∠︒=,=,= ,∴6BC = ,由基本尺规作图可知,BD 是△ABC 的角平分线,∵∠C =90°,DE ⊥AB ,∴可设DE DC x == , ∴1122ABD SAB DE AD BC =⨯⨯=⨯⨯, 即11108622x x ⨯⨯=⨯⨯(﹣), 解得3x = ,即3CD = ,故选C .变式9-3.三条公路将A 、B 、C 三个村庄连成一个如图的三角形区域,如果在这个区域内修建一个公园,要使公园到三条公路的距离相等,那么这个公园应建的位置是( )A.三条高线的交点B.三条中线的交点C.三条角平分线的交点D.三边垂直平分线的交点【答案】C【分析】根据角平分线上的点到角的两边的距离相等解答即可.【详解】在这个区域内修建一个公园,要使公园到三条公路的距离相等,根据角平分线的性质,公园应建在∠A、∠B、∠C的角平分线的交点处.故选C.考查题型十角平分线的判定定理典例10.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为()A.3B.4C.5D.6【答案】A【详解】作DE⊥AB于E,∵AB=10,S△ABD =15,∴DE=3,∵AD平分∠BAC,∠C=90°,DE⊥AB,∴DE=CD=3,故选A.变式10-1.如图,PA 、PB 分别切⊙O 于A 、B ,60APB ∠=,⊙O 半径为2,则PA 的长为( )A .3B .4C .D .【答案】C 【分析】连接PO 、AO 、BO ,由角平分线的判定定理得,PO 平分∠APB ,则∠APO=30°,得到PO=4,由勾股定理,即可求出PA.【详解】解:连接PO 、AO 、BO ,如图:∵PA 、PB 分别切⊙O 于A 、B ,∴PA AO ⊥,PB BO ⊥,AO=BO ,∴PO 平分∠APB ,∴∠APO=116022APB ∠=⨯︒=30°, ∵AO=2,∠PAO=90°,∴PO=2AO=4,由勾股定理,则PA ==故选:C.变式10-2.如图,已知P 是∠AOB 的平分线上的一点,∠AOB =60°,PD ⊥OA ,M 是OP 的中点,点C 是OB 上的一个动点,若PC 的最小值为3 cm ,则MD 的长度为( )A .3cmB .C .2cmD .【答案】A 【分析】根据垂线段最短、角平分线的性质求出PD ,根据直角三角形的性质解答.【详解】作PC ⊥OB 于C ,则此时PC 最小,∵P 是∠AOB 的角平分线上的一点,PD ⊥OA ,PC ⊥OB ,∴PD=PC=3,∠AOP=30°,∴OP=2PD=6,∵PD ⊥OA ,M 是OP 的中点,∴DM=12OP=3, 故选A .变式10-3.如图,已知ABC 和ADE 都是等腰三角形,90BAC DAE ∠=∠=︒,,BD CE 交于点F ,连接AF ,下列结论:①BD CE =;②BF CF ⊥;③AF 平分CAD ∠;④45AFE ∠=︒.其中正确结论的个数有( )A .1个B .2个C .3个D .4个【答案】C 【分析】①证明△BAD ≌△CAE,再利用全等三角形的性质即可判断;②由△BAD ≌△CAE 可得∠ABF=∠ACF ,再由∠ABF+∠BGA=90°、∠BGA=∠CGF 证得∠BFC=90°即可判定;③分别过A 作AM ⊥BD 、AN ⊥CE,根据全等三角形面积相等和BD=CE ,证得AM=AN,即AF 平分∠BFE,即可判定;④由AF 平分∠BFE结合BF CF⊥即可判定.【详解】解:∵∠BAC=∠EAD∴∠BAC+∠CAD=∠EAD+∠CAD,即∠BAD=∠CAE 在△BAD和△CAE中AB=AC, ∠BAD=∠CAE,AD=AE∴△BAD≌△CAE∴BD=CE故①正确;∵△BAD≌△CAE∴∠ABF=∠ACF∵∠ABF+∠BGA=90°、∠BGA=∠CGF∴∠ACF+∠BGA=90°,∴∠BFC=90°故②正确;分别过A作AM⊥BD、AN⊥CE垂足分别为M、N ∵△BAD≌△CAE∴S△BAD=S△CAE,∴1122BD AM CE AN ⋅=⋅∵BD=CE∴AM=AN∴AF平分∠BFE,无法证明AF平分∠CAD.故③错误;∵AF 平分∠BFE ,BF CF ⊥ ∴45AFE ∠=︒故④正确.故答案为C .。

初中数学全等三角形

初中数学全等三角形

初中数学全等三角形
目录
1. 几何基础知识
1.1 点、线、面的概念
1.2 角的概念
1.3 直线、射线、线段的区别
2. 三角形的性质
2.1 三角形的定义
2.2 三角形的内角和为180°
2.3 等边三角形、等腰三角形、直角三角形的特点
3. 三角形的分类
3.1 依据边长分类
3.2 依据角度分类
4. 三角形的全等性质
4.1 全等三角形的定义
4.2 全等三角形的性质
4.3 证明全等三角形的方法
5. 三角形全等定理
5.1 SSS全等定理
5.2 SAS全等定理
5.3 ASA全等定理
6. 全等三角形的应用
6.1 利用全等三角形证明几何定理
6.2 利用全等三角形解决实际问题
7. 总结与拓展
7.1 总结全等三角形的重要性
7.2 拓展全等三角形的相关知识
以上是目录,接下来将根据目录内容展开写作。

专题16 全等三角形的核心知识点精讲(讲义)-备战2024年中考数学一轮复习考点帮

专题16 全等三角形的核心知识点精讲(讲义)-备战2024年中考数学一轮复习考点帮

专题16 全等三角形的核心知识点精讲1.熟悉全等三角形常考5种模型2.掌握全等三角形性质,并运用全等三角形性质解答。

考点1:全等三角形的概念及性质考点2:全等三角形的判定模型一:平移型模型分析:此模型特征是有一组边共线或部分重合,另两组边分别平行,常要在移动的方向上加(减)公共线段,构造线段相等,或利用平行线性质找到对应角相等.模型示例概念两个能完全重合的三角形叫做全等三角形.性质1.两全等三角形的对应边相等,对应角相等.2.全等三角形的对应边上的高相等,对应边上的中线相等,对应角的平分线相等.3.全等三角形的周长、面积相等.模型二:轴对称模型模型分析:所给图形可沿某一直线折叠,直线两旁的部分能完全重合,重合的顶点就是全等三角形的对应顶点,解题时要注意隐含条件,即公共边或公共角相等.模型三:旋转型模型解读:将三角形绕着公共顶点旋转一定角度后,两个三角形能够完全重合,则称这两个三角形为旋转型三角形.旋转后的图形与原图形存在两种情况:①无重叠:两个三角形有公共顶点,无重叠部分,一般有一对隐含的等角②有重叠:两个三角形含有一部分公共角,运用角的和差可得到等角.模型四:一线三垂直型模型解读:一线:经过直角顶点的直线;三垂直:直角两边互相垂直,过直角的两边向直线作垂直,利用“同角的余角相等”转化找等角【题型1:平移型】【典例1】(2023•广州)如图,B是AD的中点,BC∥DE,BC=DE.求证:∠C=∠E.1.(2022•淮安)已知:如图,点A、D、C、F在一条直线上,且AD=CF,AB=DE,∠BAC=∠EDF.求证:∠B=∠E.2.(2022•柳州)如图,点A,D,C,F在同一条直线上,AB=DE,BC=EF.有下列三个条件:①AC=D F,②∠ABC=∠DEF,③∠ACB=∠DFE.(1)请在上述三个条件中选取一个条件,使得△ABC≌△DEF.你选取的条件为(填写序号)(只需选一个条件,多选不得分),你判定△ABC≌△DEF的依据是(填“SSS”或“SAS”或“ASA”或“AAS”);(2)利用(1)的结论△ABC≌△DEF.求证:AB∥DE.【题型2:对称型】【典例2】(2023•福建)如图,OA=OC,OB=OD,∠AOD=∠COB.求证:AB=CD.1.(2023•长沙)如图,AB=AC,CD⊥AB,BE⊥AC,垂足分别为D,E.(1)求证:△ABE≌△ACD;(2)若AE=6,CD=8,求BD的长.2.(2022•西藏)如图,已知AD平分∠BAC,AB=AC.求证:△ABD≌△ACD.【题型3:旋转型】【典例3】(2023•大连)如图,AC=AE,BC=DE,BC的延长线与DE相交于点F,∠ACF+∠AED=180°.求证:AB=AD.1.(2023•乐山)如图,已知AB与CD相交于点O,AC∥BD,AO=BO,求证:AC=BD.2.(2023•泸州)如图,点B在线段AC上,BD∥CE,AB=EC,DB=BC.求证:AD=EB.3.(2023•西藏)如图,已知AB=DE,AC=DC,CE=CB.求证:∠1=∠2.【题型4:一线三等角】【典例4】(2023•陕西)如图,在△ABC中,∠B=90°,作CD⊥AC,且使CD=AC,作DE⊥BC,交BC 的延长线于点E.求证:CE=AB.1.(2021•南充)如图,∠BAC=90°,AD是∠BAC内部一条射线,若AB=AC,BE⊥AD于点E,CF⊥A D于点F.求证:AF=BE.一.选择题(共8小题)1.下列各组图案中,不是全等形的是()A.B.C.D.2.已知图中的两个三角形全等,则∠1等于()A.50°B.58°C.60°D.72°3.如图,△ABC≌△DEC,点E在AB边上,∠B=70°,则∠ACD的度数为()A.30°B.40°C.45°D.50°4.如图,△ABD≌△ACE,若AB=6,AE=4,则CD的长度为()A.10B.6C.4D.25.如图,点B、F、C、E在一条直线上,∠A=∠D=90°,AB=DE,添加下列选项中的条件,能用HL 判定△ABC≌△DEF的是()A.AC=DF B.∠B=∠E C.∠ACB=∠DFE D.BC=EF6.如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.BE=CD C.BD=CE D.AD=AE7.如图,BE⊥AC于点E,CF⊥AB于点F,若BE=CF,则Rt△BCF≌Rt△CBE的理由是()A.AAS B.HL C.SAS D.ASA8.如图所示,已知在△ABC中,∠C=90°,AD=AC,DE⊥AB交BC于点E,若∠B=28°,则∠AEC =()A.28°B.59°C.60°D.62°二.填空题(共4小题)9.如图是两个全等三角形,图中的字母表示三角形的边长,那么∠1的度数为.10.已知:如图,△ABC和△BAD中,∠C=∠D=90°,再添加一个条件就可以判断△ABC ≌△BAD.11.请仔细观察用直尺和圆规作一个角∠A'O'B'等于已知角∠AOB的示意图.请你根据所学的三角形全等的有关知识,说明画出∠A'O'B'=∠AOB的依据是.12.如图,若AC平分∠BCD,∠B+∠D=180°,AE⊥BC于点E,BC=13cm,CD=7cm,则BE=.三.解答题(共4小题)13.如图,点B、E、C、F在一条直线上,AB=DE,AC=DF,BE=CF.(1)求证:△ABC≌△DEF;(2)若∠D=45°,求∠EGC的大小.14.如图,∠ACB=90°,∠BAC=45°,AD⊥CE,BE⊥CE,垂足分别是D,E,BE=0.8,DE=1.7,求AD的长.15.如图,点A,B,C在一条直线上,△ABD、△BCE均为等边三角形,连接AE和CD,AE分别交CD,BD于点M,P,CD交BE于点Q.(1)求证:△ABE≌△DBC;(2)求∠DMA的度数.16.如图,AC=DC,E为AB上一点,EC=BC,并且∠1=∠2.(1)求证:△ABC≌△DEC;(2)若∠B=75°,求∠3的度数.一.选择题(共7小题)1.如图,任意画一个∠A=60°的△ABC,再分别作△ABC的两条角平分线BE和CD,BE和CD相交于点P,连接AP,有以下结论:①∠BPC=120°;②AP平分∠BAC;③AP=PC;④BD+CE=BC;⑤S△PBA:S△PCA=AB:AC,其中正确的个数是()个.A.5B.4C.3D.22.如图,在△ABC中,∠BAC=60°,BE、CD为△ABC的角平分线.BE与CD相交于点F,FG平分∠BFC,有下列四个结论:①∠BFC=120°;②BD=CE;③BC=BD+CE;④若BE⊥AC,△BDF≌△CE F.其中正确的是()A.①③B.②③④C.①③④D.①②③④3.如图,已知△ABC和△ADE都是等腰直角三角形,∠BAC=∠EAD=90°,BD,CE交于点F,连接A F,下列结论:①BD=CE②∠AEF=∠ADF③BD⊥CE④AF平分∠CAD⑤∠AFE=45°其中结论正确的序号是()A.①②③④B.①②④⑤C.①③④⑤D.①②③⑤4.如图,在Rt△AEB和Rt△AFC中,∠E=∠F=90°,BE=CF,BE与AC相交于点M,与CF相交于点D,AB与CF相交于点N,∠EAC=∠F AB.有下列结论:①∠B=∠C;②ED=FD;③AC=BE;④△ACN≌△ABM.其中正确结论的个数是()A.1个B.2个C.3个D.4个5.在直线l上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别为1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+2S2+2S3+S4=()A.6B.8C.10D.126.如图,△ABC和△CDE都是等边三角形,B,C,D三点在一条直线上,AD与BE相交于点P,AC、B E相交于点M,AD、CE相交于点N,则下列四个结论:①AD=BE;②∠BMC=∠ANC;③∠APM=60°;④CP平分∠MCN.其中,一定正确的结论的个数是()A.1B.2C.3D.47.如图,△ABC中,∠BAC=60°,∠BAC的平分线AD与边BC的垂直平分线MD相交于D,DE⊥AB 交AB的延长线于点E,DF⊥AC于点F,现有下列结论:①DE=DF;②DE+DF=AD;③MD平分∠E DF;④若AE=3,则AB+AC=6.其中正确的个数为()A.1个B.2个C.3个D.4个二.填空题(共5小题)8.如图,以△ABC的每一条边为边,在边AB的同侧作三个正三角形△ABD、△BCE和△ACF.已知这三个正三角形构成的图形中,甲、乙阴影部分的面积和等于丙、丁阴影部分的面积和.则∠FCE=°.9.如图,在△ACB中,∠ACB=90°,AC=BC,点C的坐标为(﹣2,0),点A的坐标为(﹣8,3),点B的坐标是.10.如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,则下列结论中,正确的是(填序号).①∠AED=90°;②∠ADE=∠CDE;③DE=BE;④AD=AB+CD.11.如图,已知等腰△ABC中,AB=AC,∠BAC=120°,AD⊥BC于点D,点P是BA延长线上一点,点O是线段AD上一点,OP=OC,下面的结论:①∠APO+∠DCO=30°;②△OPC是等边三角形;③A C=AO+AP;④S△ABC=S四边形AOCP,其中正确的是.(填序号)12.如图,在等腰直角三角形ABC中,∠ACB=90°,AC=BC=4,点D是AB的中点,E、F在射线AC 与射线CB上运动,且满足AE=CF,则在运动过程中△DEF面积的最小值为.三.解答题(共4小题)13.如图,△ACB和△DCE均为等腰三角形,点A,D,E在同一直线上,连接BE.(1)如图1,若∠CAB=∠CBA=∠CDE=∠CED=50°,求证:AD=BE;(2)如图2,若∠ACB=∠DCE=90°,CF为△DCE中DE边上的高,试猜想AE,CF,BE之间的关系,并证明你的结论.14.如图所示,等边△ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.(1)求证:AP=AQ;(2)试判断△APQ是什么形状的三角形?并说明你的理由.15.(1)【模型启迪】如图1,在△ABC中,D为BC边的中点,连接AD并延长至点H,使DH=AD,连接BH,则AC与BH的数量关系为,位置关系为.(2)【模型探索】如图2,在△ABC中,D为BC边的中点,连接AD,E为AC边上一点,连接BE交A D于点F,且BF=AC.求证:AE=EF.16.如图1,AC=BC,CD=CE,∠ACB=∠DCE=α,AD、BE相交于点M,连接CM.(1)求证:BE=AD;(2)用含α的式子表示∠AMB的度数(直接写出结果);(3)当α=90°时,取AD,BE的中点分别为点P、Q,连接CP,CQ,PQ,如图2,判断△CPQ的形状,并加以证明.1.(2023•甘孜州)如图,AB与CD相交于点O,AC∥BD,只添加一个条件,能判定△AOC≌△BOD的是()A.∠A=∠D B.AO=BO C.AC=BO D.AB=CD2.(2023•北京)如图,点A,B,C在同一条直线上,点B在点A,C之间,点D,E在直线AC同侧,AB <BC,∠A=∠C=90°,△EAB≌△BCD,连接DE.设AB=a,BC=b,DE=c,给出下面三个结论:①a+b<c;②a+b>;③(a+b)>c.上述结论中,所有正确结论的序号是()A.①②B.①③C.②③D.①②③3.(2022•黑龙江)如图,在四边形ABCD中,对角线AC,BD相交于点O,OA=OC,请你添加一个条件,使△AOB≌△COD.4.(2023•成都)如图,已知△ABC≌△DEF,点B,E,C,F依次在同一条直线上.若BC=8,CE=5,则CF的长为.5.(2023•重庆)如图,在Rt△ABC中,∠BAC=90°,AB=AC,点D为BC上一点,连接AD.过点B 作BE⊥AD于点E,过点C作CF⊥AD交AD的延长线于点F.若BE=4,CF=1,则EF的长度为3.6.(2023•南通)如图,四边形ABCD的两条对角线AC,BD互相垂直,AC=4,BD=6,则AD+BC的最小值是.7.(2023•淮安)已知:如图,点D为线段BC上一点,BD=AC,∠E=∠ABC,DE∥AC.求证:DE=B C.8.(2023•吉林)如图,点C在线段BD上,△ABC和△DEC中,∠A=∠D,AB=DE,∠B=∠E.求证:AC=DC.9.(2022•兰州)如图1是小军制作的燕子风筝,燕子风筝的骨架图如图2所示,AB=AE,AC=AD,∠B AD=∠EAC,∠C=50°,求∠D的大小.10.(2022•安顺)如图,在Rt△ABC中,∠BAC=90°,AB=AC=1,D是BC边上的一点,以AD为直角边作等腰Rt△ADE,其中∠DAE=90°,连接CE.(1)求证:△ABD≌△ACE;(2)若∠BAD=22.5°时,求BD的长.。

中考数学复习《全等三角形》专题训练-附带参考答案

中考数学复习《全等三角形》专题训练-附带参考答案

中考数学复习《全等三角形》专题训练-附带参考答案一、选择题1.下列选项中表示两个全等的图形的是()A.形状相同的两个图形B.周长相等的两个图形C.面积相等的两个图形D.能够完全重合的两个图形2.如图,点D、E分别在线段AB、AC上,BE、CD相交于点O,AE=AD,则不一定能使△ABE≌△ACD的条件是()A.AB=AC B.∠B=∠CC.∠AEB=∠ADC D.CD=BE3.如图是用直尺和圆规作已知角的平分线的示意图,则说明∠CAD=∠DAB的依据是()A.SAS B.ASA C.AAS D.SSS4.如图△ABC≌△DEC,点A和点D是对应顶点,点B和点E是对应顶点,过点A作AF⊥CD,垂足为点F,若∠BCE=65°,则∠CAF的度数为()A.25°B.30°C.35°D.65°5.如图EF=CF,BF=DF则下列结论不一定正确的是()A.△BEF≌△DCF B.△ABC≌△ADEC.DC=AC D.AB=AD6.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=3,则PQ的最小值为()A.2 B.3 C.4 D.57.如图,CD⊥AB,BE⊥AC,垂足分别为点D,点E,BE、CD相交于点O.∠1=∠2,则图中全等三角形共有()A.2对B.3对C.4对D.5对8.如图,AD 是△ABC中∠BAC的平分线,DE⊥AB于点E,△ABC的面积为12,DE =2,AB = 7,则 AC 的长是()A.3 B.4 C.5 D.6二、填空题9.如图,∠ACD=∠BCE,BC=EC,要使△ABC≌△DEC,则可以添加的一个条件是.10.如图所示,在△ABC中,∠C=90°,AB=8,AD是△ABC的一条角平分线.若CD=2,则△ABD的面积为.11.如图,在Rt△ABC中,∠BAC=90°,分别过点B,C作过点A的直线的垂线BD,若BD=4cm,CE=3cm则DE= cm.12.如图,把两根钢条AB,CD的中点连在一起做成卡钳,已知AC的长度是6cm,则工件内槽的宽BD是cm.13.如图,△ABC为等腰直角三角形AC=BC,若A(−3,0),C(0,2),则点B的坐标为.三、解答题14.如图所示,线段AC的垂直平分线交线段AB于点D,∠A=50°(1)求证:△ADE≌△CDE.(2)求∠BDC度数.15.如图,已知,EC=AC,∠BCE=∠DCA,∠A=∠E.(1)求证:BC=DC;(2)若∠A =25°,∠D =15°,求∠ACB 的度数.16.如图,AB =AC ,AD =AE ,∠BAC =∠DAE.(1)求证:△ABD ≌△ACE ;(2)若∠1=25°,∠2=30°,求∠3的度数.17.如图,在ABC 中90C ∠=︒,BD 是ABC ∠的平分线,DE AB ⊥于点E ,点F 在BC 上,连接DF ,且AD DF =. (1)求证:CF AE =;(2)若3AE =,BF=4,求AB 的长.18.如图,∠BAD =∠CAE =90°,AB =AD ,AE =AC ,AF ⊥CB ,垂足为F .(1)求证:△ABC ≌△ADE ;(2)求∠FAE 的度数;(3)求证:CD =2BF+DE .1.D2.D3.D4.A5.C6.B7.C8.C9.AC =DC (答案不唯一)10.811.712.613.(2,-1)14.(1)证明:∵DE 是线段AC 的垂直平分线 ∴DA=DC ,AE=CE在△ADE 与△CDE 中:DA=DCAE=CEDE=DE∴△ADE ≌△CDE (SSS );(2)解:∵△ADE ≌△CDE .∴∠DCA=∠A=50°∴∠BDC=∠DCA+∠A=100°15.(1)证明:∵∠BCE =∠DCA∴∠BCE +∠ACE =∠DCA +∠ECA即∠BCA =∠DCE .在△BCA 和△DCE 中{∠BCA =∠DCE AC =EC ∠A =∠E∴△BCA ≌△DCE (ASA )(2)解:∵△BCA ≌△DCE∴∠B =∠D =15°.∵∠A =25°∴∠ACB =180°−∠A −∠B =140°.16.(1)证明:∵∠BAC =∠DAE∴∠BAC ﹣∠DAC =∠DAE ﹣∠DAC∴∠1=∠EAC在△ABD 和△ACE 中{AB =AC ∠1=∠EAC AD =AE∴△ABD ≌△ACE (SAS )(2)解:∵△ABD ≌△ACE∴∠ABD =∠2=30°∵∠1=25°∴∠3=∠1+∠ABD =25°+30°=55°.17.(1)证明:(1)∵90C ∠=︒∴DC BC ⊥又∵BD 是ABC ∠的平分线DE AB ⊥∴DE DC = 90AED ∠=︒在Rt AED △和Rt FCD △中∵AD DFDE DC =⎧⎨=⎩∴()Rt Rt AED FCD HL ≌△△∴CF AE =.(2)解:由(1)可得3CF AE ==∴437BC BF CF =+=+=∵DE AB ⊥∴90DEB ∠=︒∴DEB C ∠=∠∵BD 是ABC ∠的平分线∴ABD CBD ∠=∠在BED 和BCD △中∵DEB C EBD CBD BD BD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()BED BCD AAS ≌△△ ∴7BE BC ==∴7310AB BE AE =+=+=∴AB 的长为10.18.(1)证明:∵90BAD CAE ∠=∠=︒∴90BAC CAD ∠+∠=︒ 90CAD DAE ∠+∠=︒ ∴BAC DAE ∠=∠在△BAC 和△DAE 中∵AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩∴()BAC DAE SAS ≌△△;(2)解:∵90CAE ∠=︒,AC=AE∴45E ∠=︒由(1)知BAC DAE ≌△△∴45BCA E ∠=∠=︒∵AF BC ⊥∴90CFA ∠=︒∴45CAF ∠=︒∴4590135FAE FAC CAE ∠=∠+∠=︒+︒=︒;(3)证明:延长BF 到G ,使得FG FB = ∵AF BG ⊥∴90AFG AFB ∠=∠=︒在△AFB 和△AFG 中∴BF GF AFB AFG AF AF =⎧⎪∠=∠⎨⎪=⎩∴()AFB AFG SAS ≌△△∴AB AG = ABF G ∠=∠∵BAC DAE ≌△△∴AB AD = CBA EDA ∠=∠ CB=ED ∴AG AD = ABF CDA ∠=∠∴CGA CDA ∠=∠∵45GCA DCA ∠=∠=︒∴在△CGA 和△CDA 中GCA DCA CGA CDA AG AD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()CGA CDA AAS ≌△△∴CG CD =∵22CG CB BF FG CB BF DE BF =++=+=+ ∴2CD BF DE =+.。

2025年中考数学总复习+微专题7 全等三角形之六大模型++++课件

2025年中考数学总复习+微专题7 全等三角形之六大模型++++课件

39
【解析】(1)∵△ADB与△ADF关于直线AD对称,∴AB=AF,∠BAD=∠FAD,
∵AB=AC,
∴AF=AC,
∵∠FAD+∠FAE=∠DAE=45°,∠BAD+∠CAE=∠CAB-∠DAE=45°,
∴∠FAE=∠CAE,
在△AEF与△AEC中,
=
∠ = ∠ ,
=
∠AOB的平分线,请说明此做法的理由;
拓展实践:(3)小明将研究应用于实践.如图4,校园的两条小路AB和AC,汇聚形成了一个岔路口A,
现在学校要在两条小路之间安装一盏路灯E,使得路灯照亮两条小路(两条小路一样亮),并且路
灯E到岔路口A的距离和休息椅D到岔路口A的距离相等,试问路灯应该安装在哪个位置?请用
4.(2024·淄博沂 源县二 模 ) 如图 , 点E 在△ABC的 外 部,点 D 在BC 上,DE 交 AC 于点
F,∠1=∠2=∠3,AB=AD.
求证:△ABC≌△ADE.
14
【证明】∵∠1=∠2=∠3,∠AFE=∠CFD,
∴∠1+∠DAF=∠2+∠DAF,∠C=180°-∠3-∠DFC,∠E=180°-∠2-∠AFE,
∴AE=ED,
∴∠EAD=∠EDA.
30
(2)∵∠AED=∠C=60°,AE=ED,
∴△AED为等边三角形,
∴AE=AD=ED=4,
过A点作AF⊥ED于F,

∴EF= ED=2,

∴AF= − = − =2 ,


∴S△AED= ED·AF= ×4×2


=4 .
∴AP= AM,
∴AB+AN= AM.

中考数学专题复习全等三角形(公共角模型)

中考数学专题复习全等三角形(公共角模型)

中考数学专题复习全等三角形(公共角模型)学校:___________姓名:___________班级:___________考号:___________评卷人得分 一、解答题1.在ABC 中,∠BAC =90°,AB AC =,点D 为直线BC 上一动点(点D 不与B ,C 重合),以AD 为直角边在AD 右侧作等腰直角三角形ADE (90DAE ∠=︒,AD AE =),连接CE . (1)如图1,当点D 在线段BC 上时,猜想:BC 与CE 的位置关系,并说明理由; (2)如图2,当点D 在线段CB 的延长线上时,(1)题的结论是否仍然成立?说明理由;(3)如图3,当点D 在线段BC 的延长线上时,结论(1)题的结论是否仍然成立?不需要说明理由.2.在四边形ABCD 中,∠DAB +∠DCB =180°,AC 平分∠DAB .(1)如图1,求证:BC =CD ;(2)如图2,连接BD 交AC 于点E ,若∠ADB =90°,AE =2DE ,求∠ABD 的度数; (3)如图3,在(2)的条件下,过点C 作CH ∠AB 于点H ,∠BCH 沿BC 翻折,点H 的对应点为点F ,点G 在线段AB 上,连接FG ,若∠CGF =30°,S △CHG =9,求线段CG 的长.3.如图1,在等腰直角三角形ABC中,AB=AC,∠BAC=90°,点E,F分别为AB,AC的中点,H为线段EF上一动点(不与点E,F重合),过点A作AG∠AH且AG=AH,连接GC,HB.(1)证明:AHB∠AGC;(2)如图2,连接GF,HG,HG交AF于点Q.∠证明:在点H的运动过程中,总有∠HFG=90°;∠当AQG为等腰三角形时,求∠AHE的度数.4.如图,我们把对角线互相垂直的四边形叫做“垂美四边形”.(1)性质探究:如图1.己知四边形ABCD中,AC∠BD.垂足为O,求证:AB2+CD2=AD2+BC2;(2)解决问题:已知AB=52.BC=42,分别以∠ABC的边BC和AB向外作等腰Rt∠BCE和等腰Rt∠ABD;∠如图2,当∠ACB=90°,连接DE,求DE的长;∠如图3.当∠ACB≠90°,点G、H分别是AD、AC中点,连接GH.若GH=26,则S△ABC=.5.已知,∠ABC是边长为4cm的等边三角形,点P,Q分别从顶点A,B同时出发,沿线段AB,BC运动,且它们的速度均为1cm/s.当点P到达点B时,P、Q两点停止运动.设点P的运动时间为t(s).(1)如图1,连接AQ、CP,相交于点M,则点P,Q在运动的过程中,∠CMQ会变化吗?若变化,则说明理由;若不变,请求出它的度数.(2)如图2,当t为何值时,∠PBQ是直角三角形?(3)如图3,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP 交点为M,请直接写出∠CMQ度数.6.(1)如图(1)点P是正方形ABCD的边CD上一点(点P与点C,D不重合),点E在BC的延长线上,且CE=CP,连接BP,DE.求证:∠BCP∠∠DCE;(2)直线EP交AD于F,连接BF,FC.点G是FC与BP的交点.∠若CD=2PC时,求证:BP∠CF;∠若CD=n•PC(n是大于1的实数)时,记∠BPF的面积为S1,∠DPE的面积为S2.求证:S1=(n+1)S2.参考答案:1.(1)BC ∠CE ,见解析;(2)成立,见解析;(3)成立【解析】【分析】(1)先证∠2=∠3,再证∠ABD ∠∠ACE (SAS ),得出∠4=∠5,求出∠4=∠6=45°,∠5=45°即可;(2)先证∠2=∠3,再证∠ABD ∠∠ACE (SAS ),得出∠ABD =∠ACE ,求出∠ABC =∠ACB =45°,得出∠ABD =∠ACE =135°即可;(3)先证∠BAD =∠CAE ,再证∠ABD ∠∠ACE (SAS ),得出∠ABD =∠ACE ,再求∠ABC =∠ACB =45°,得出∠ABD =∠ACE =45°.【详解】解:(1)BC 与CE 的位置关系是BC ∠CE ,理由是:∠∠BAC =∠DAE =90°,∠∠BAC -∠1=∠DAE -∠1,即∠2=∠3,在△ABD 和△ACE 中,23AB AC AD AE =⎧⎪∠=∠⎨⎪=⎩,∠△ABD ∠△ACE (SAS ),∠∠4=∠5,∠∠BAC =90°,AB =AC ,∠∠4=∠6=45°,∠∠5=45°,∠∠BCE =∠5+∠6=45°+45°=90°,即BC ∠CE ;(2)成立.理由是:∠∠BAC =∠DAE =90°,∠∠BAC-∠1=∠DAE-∠1,即∠2=∠3,在△ABD 和△ACE 中,23AB AC AD AE =⎧⎪∠=∠⎨⎪=⎩,∠△ABD ∠△ACE (SAS ),∠∠ABD =∠ACE ,∠∠BAC =90°,AB =AC ,∠∠ABC =∠ACB =45°,∠∠ABD =∠ACE =135°,∠∠BCE =∠ACE -∠ACB =135°-45°=90°,即BC ∠CE ;(3)成立∠∠BAC =∠DAE =90°,∠∠BAC +∠CAD =∠DAE +∠CAD ,即∠BAD=∠CAE,在△ABD和△ACE中,AB ACBAD CAEAD AE=⎧⎪∠=∠⎨⎪=⎩,∠∠ABD∠∠ACE(SAS),∠∠ABD=∠ACE,∠∠BAC=90°,AB=AC,∠∠ABC=∠ACB=45°,∠∠ABD=∠ACE=45°,∠∠BCE=∠ACE+∠ACB=45°+45°=90°.【点睛】本题考查图形变换中结论问题,等腰直角三角形性质,三角形全等判定与性质,角的和差运用,直线位置关系,掌握等腰直角三角形性质,三角形全等判定与性质,角的和差运用,直线位置关系垂直的证法是解题关键.2.(1)证明见解析;(2)30ABD∠=;(3)CG=6【解析】【分析】(1)过点C作CP∠AB于点P,作CQ∠AD的延长线于点Q,证明∠CQD∠∠CPB,即可得到答案;(2)延长ED,让MD=ED,∠AME是等边三角形,然后利用等边三角形的性质和角平分线的定义即可求得答案;(3)延长GC,过点F作FK∠GC的延长线于点K,过点H作HL∠GF于点L,连接HF,通过证明∠CFK∠∠HFL,得到FK=FL,又有直角三角形中30所对的直角边是斜边的一半,求得FK=12GF,根据等腰三角形的三线合一,进一步求得∠FGH=15,从求得到∠GCH=45,然后在直角三角形中利用勾股定理求解即可得答案.【详解】解:(1)过点C作CP∠AB于点P,作CQ∠AD的延长线于点Q,如下图:∠AC平分∠DAB,CP∠AB,CQ∠AD∠CQ=CP在四边形APCQ中,∠APC=∠AQC=90∠∠QAP+∠PCQ=180又∠∠DAB+∠DCB=180°∠∠PCQ=∠DCB∠∠QCD+∠DCP=∠DCP+∠PCB∠∠QCD=∠PCB又∠∠CQD=∠CPB=90∠∠CQD∠∠CPB(ASA)∠CD=CB(2)延长ED,让MD=ED,如下图:∠∠ADB=90°∠AD∠ME又∠MD=ED∠AM=AE,ME=2DE又∠AE=2DE∠ME=AE=AM∠∠AME是等边三角形∠60AED∠=又∠∠ADE=90°∠30DAE∠=∠AC平分∠DAB∠30EAB DAE∠=∠=又∠AED EAB ABD∠=∠+∠∠30ABD∠=(3)延长GC,过点F作FK∠GC的延长线于点K,过点H作HL∠GF于点L,连接HF,如下图:∠在Rt CHB中,90,60CHB CBH ABD CBD∠=∠=∠+∠=∠∠HCB=30又∠折叠∠CH=CF, ∠HCB=∠FCB=30∠∠HCF=60∠∠CHF是等边三角形∠∠CFH=∠CHF=60,CF=HF又∠在Rt GFK△中,∠CGF=30,∠GKF=90∠∠GFK=60∠∠CFH=∠GFK∠∠CFK +∠CFG =∠CFG +∠HFL ∠∠CFK =∠HFL又∠∠CKF =∠LHF =90,CF =HF∠∠CFK ∠∠HFL∠FK =FL又∠在Rt GFK △中,∠CGF =30∠FK =12GF∠FL =12GF∠GL =FL又∠HL ∠GF∠HG =HF∠∠FGH =∠GFH又∠∠CHF =60,∠CHB =90∠∠FHB =∠CHB -∠CHF =30∠∠FGH =15∠∠CGH =∠CGF +∠FGH =45又∠∠CHG =90∠∠GCH =45∠GH =CH ,∠GCH 是等腰直角三角形又∠9CHG S =△∠192GH CH ⋅= ∠2218GH CH ==在Rt CHG 中,由勾股定理得:22236CG GH CH =+=∠CG >0∠CG =6【点睛】本题考查全等三角形的性质和判定,含30︒的直角三角形性质,等边三角形的性质和判定,直角三角形的勾股定理等知识点,能够熟练利用化归的思想和数形结合的思想去解题,是本题的重点.3.(1)见解析;(2)∠见解析;∠当∠AQG为等腰三角形时,∠AHE的度数为67.5°或90°.【解析】【分析】(1)根据SAS可证明∠AHB∠∠AGC;(2)∠证明∠AEH∠∠AFG(SAS),可得∠AFG=∠AEH=45°,从而根据两角的和可得结论;∠分两种情况:i)如图3,AQ=QG时,ii)如图4,当AG=QG时,分别根据等腰三角形的性质可得结论.【详解】(1)证明:如图1,由旋转得:AH=AG,∠HAG=90°,∠∠BAC=90°,∠∠BAH=∠CAG,∠AB=AC,∠∠ABH∠∠ACG(SAS);(2)∠证明:如图2,在等腰直角三角形ABC中,∠BAC=90°,∠∠ABC=∠ACB=45°,∠点E,F分别为AB,AC的中点,∠EF是∠ABC的中位线,∠EF∠BC,AE=12AB,AF=12AC,∠AE=AF,∠AEF=∠ABC=45°,∠AFE=∠ACB=45°,∠∠EAH=∠F AG,AH=AG,∠∠AEH∠∠AFG(SAS),∠∠AFG=∠AEH=45°,∠∠HFG=45°+45°=90°;∠分两种情况:i)如图3,AQ=QG时,∠AQ=QG,∠∠QAG=∠AGQ,∠AG∠AH且AG=AH,∠∠AHG=∠AGH=45°,∠∠AHG=∠AGH=∠HAQ=∠QAG=45°,∠∠EAH=∠F AH=45°,∠AE=AF,AH=AH,∠∠AEH∠∠AFH(SAS),∠∠AHE=∠AHF,∠∠AHE+∠AHF=180°,∠∠AHE=∠AHF=90°;ii)如图4,当AG=QG时,∠GAQ=∠AQG,∠∠AEH=∠AGQ=45°,∠∠GAQ=∠AQG=180452︒-︒=67.5°,∠∠EAQ=∠HAG=90°,∠∠EAH=∠GAQ=67.5°,∠∠AHE=∠AQG=67.5°;∠H为线段EF上一动点(不与点E,F重合),∠不存在AG=AQ的情况.综上,当∠AQG为等腰三角形时,∠AHE的度数为67.5°或90°.【点睛】本题是三角形的综合题,考查了旋转的性质,等腰直角三角形的性质和判定,等腰三角形的性质和判定,也考查了全等三角形的判定与性质,第二问要注意分类讨论,不要丢解.4.(1)见解析;(2)∠146;∠7 2【解析】【分析】(1)根据AC∠BD可以得到,AOB =∠COD=90°即可得到AB²=AO²+OB²,CD²=DO²+OC²即AB²+CD²=AO²+OB²+DO²+OC² 同理可以得到AD²+BC²=AO²+OB²+DO²+OC² 即可得到答案;(2)连DC、AE相交于点F,先证明∠ABE ∠∠DBC得到∠CDB=∠BAE 从而证得AE∠CD 再利用勾股定理和(1)中的结论求解即可得到答案;(3)连DC、AE相交于点F,作CP∠BD交DB延长线于点P,BP²+CP²=BC²=(42)²=32,DP²+PC²=DC²=(46)²=96,(DP²+PC²)-(BP²+CP²)=96-32=64,DP²-BP²=64从而求出BP=7210,再证明AB∠PC则S△ABC=12AB×BP.【详解】解:(1)证明:∠AC∠BD∠,AOB=90°在Rt∠AOB中AB²=AO²+OB²∠,COD=90°在Rt∠COD中CD² =DO²+OC²∠AB²+CD²=AO²+OB²+DO²+OC²同理AD²+BC²=AO²+OB²+DO²+OC² ∠ AB2+CD2=AD2+BC ²(2)∠解:连DC、AE相交于点F ∠Rt∠BCE和Rt∠ABD是等腰三角形∠BE=BC AB=BD∠CBE=∠ABD=90°∠∠ABE=∠DBC=90°+∠ABC∠∠ABE ∠∠DBC∠∠CDB=∠BAE∠∠ABD=90°∠∠CDB+∠CDA+∠DAB=90°∠∠BAE+∠CDA+∠DAB=90°∠∠AFD=90°∠AE∠CD∠AB=52,BC=42∠ACB=90° ∠AC=2232AB BC-=∠AB=52,BD=52∠ABD=90°∠AD=2210AB BD+=∠BC=42,BE=42∠CBE=90°∠CE=228BC BE+=由(1)中结论AD²+EC²=AC²+DE²∠(10)²+(8)²=(32)²+DE²∠DE=146∠连DC、AE相交于点F∠点G、H分别是AD、AC中点,GH=26∠ DC=2GH =46作CP∠BD交DB延长线于点PBP²+CP²=BC²=(42)²=32DP²+PC²=DC²=(46)²=96∠(DP²+PC²)-(BP²+CP²)=96-32=64∠DP²-BP²=64∠(BD+BP)²-BP²=64∠(52+BP)²-BP²=64∠BP=7210∠∠PBA=90°,∠P=90°,∠∠PBA+∠P=90°+90°=180°则S △ABC =12AB ×BP =12×52×772=102【点睛】本题主要考查了四边形的综合问题,等腰直角三角形的性质,全等三角形的性质与判定,勾股定理,垂直的定义,解题的关键在于能够熟练掌握相关知识进行求解.5.(1)不变,60°;(2)43或83;(3)120°. 【解析】【分析】(1)通过证∠ABQ ∠∠CAP 得到∠BAQ =∠ACP ,所以由三角形外角定理得到∠CMQ =∠ACP +∠CAM =∠BAQ +∠CAM =∠BAC =60°;(2)需要分类讨论:分∠PQB =90°和∠BPQ =90°两种情况;(3)通过证∠ABQ ∠∠CAP 得到∠BAQ =∠ACP ,所以由三角形外角定理得到∠CMQ =∠BAQ +∠APC =∠ACP +∠APC =180°-∠BAC =120°.【详解】(1)不变.在∠ABQ 与∠CAP 中,∠60AB AC B CAP AP BQ =⎧⎪∠=∠=︒⎨⎪=⎩,∠∠ABQ ∠∠CAP (SAS ),∠∠BAQ =∠ACP ,∠∠CMQ =∠ACP +∠CAM =∠BAQ +∠CAM =∠BAC =60°;(2)设时间为t ,则AP =BQ =t ,PB =4-t ,∠当∠PQB =90°时,∠∠B =60°,∠4-t =2t ,43t =; ∠当∠BPQ =90°时,∠∠B =60°,∠BQ =2BP ,∠ t =2(4-t ),t =83; ∠当第43秒或第83秒时,∠PBQ 为直角三角形; (3)在∠ABQ 与∠CAP 中,∠60AB AC B CAP AP BQ =⎧⎪∠=∠=︒⎨⎪=⎩,∠∠ABQ ∠∠CAP (SAS ),∠∠BAQ =∠ACP ,∠∠CMQ =∠BAQ +∠APC =∠ACP +∠APC =180°-∠BAC =120°.【点睛】本题考查了等边三角形的性质,全等三角形的判定与性质,掌握全等三角形的判定与性质是解题的关键.6.(1)证明见解析;(2)∠证明见解析;∠证明见解析.【解析】【分析】(1)由SAS 即可证明∠BCP ∠∠DCE .(2)∠在(1)的基础上,再证明∠BCP ∠∠CDF ,进而得到∠FCD +∠BPC =90°,从而证明BP ⊥CF ;∠设CP =CE =1,则BC =CD =n ,DP =CD -CP =n -1,分别求出S 1与S 2的值,得()()11112S n n =+-,()2112S n =-,所以S 1=(n +1)S 2结论成立. 【详解】证明:(1)∠在∠BCP 与∠DCE 中,90BC CD BCP DCE CP CE =⎧⎪∠=∠=︒⎨⎪=⎩∠∠BCP ∠∠DCE (SAS ).(2)∠∠CP =CE ,∠PCE =90°,∠∠CPE =45°,∠∠FPD =∠CPE =45°,∠∠PFD =45°,∠FD =DP .∠CD =2PC ,∠DP =CP ,∠FD =CP .∠在∠BCP 与∠CDF 中,90BC CD BCP CDF CP FD =⎧⎪∠=∠=︒⎨⎪=⎩∠∠BCP ∠∠CDF (SAS ),∠∠FCD =∠CBP .∠∠CBP +∠BPC =90°,∠∠FCD +∠BPC =90°,∠∠PGC =90°,即BP ⊥CF .∠设CP =CE =1,则BC =CD =n ,DP =CD -CP =n -1 易知∠FDP 为等腰直角三角形,∠FD =DP =n -1.∠()1111222BCDF BCP FDP S S S S BC FD CD BC CP FD DP ∆∆=--=+⋅-⋅-⋅梯形 ()()()()()221111111111122222n n n n n n n n =+-⋅-⋅--=-=+- ()()2111111222S DP CE n n =⋅=-⋅=- ∠S 1=(n +1)S 2.【点睛】本题是几何综合题,考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形、图形的面积等知识点,试题的综合性强,难度较大.。

最新九年级中考数学专题复习:全等三角形

最新九年级中考数学专题复习:全等三角形

在△EDM和△FDN中,源自∠EDM ∠FDNDM
DN
,
∠DME ∠DNF
∴△EDM≌△FDN(ASA),
∴DE=DF.
两边及其夹角对 三边对应相等的两
应相等的两个三 个三角形全等.
角形全等.
两角及其夹边对应 相等的两个三角形 全等.
两角及其中一个角 的对边对应相等的 两个三角形全等.
斜边和一条直角边对应相 等的两个直角三角形全等.
模型一、平移模型
知识点3:全等模型
模型展 示
模型特 沿同一直线(BC)平移可得两三角形重合(BE=CF)
证明:∵AD∥BC,∠A=90°,∠1=∠2, ∴∠A=∠B=90°,DE=CE. 在Rt△ADE和Rt△BEC中,
AD DE
BE EC
,
∴Rt△ADE≌Rt△BEC(HL);
模型四、一线三等角模型
知识点3:全等模型
一般通过一线三等角找等角或进行角度转换,证三角形全等时必须还有一组边相等这个条件. 常见基本图形如 下: 1.两个三角形在直线同侧,点P在线段AB上,已知:∠1=∠2=∠3,AP=BD.
模型应用
2. 如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折 叠,使点B落在点E处,AE交CD于点F,连接DE.若矩形ABCD的周 长为18,则△EFC的周长为___9_____.
模型三、一线三垂直模型
知识点3:全等模型
常用三个垂直作条件进行角度等量代换,即同(等)角的余角相等,相等的角就是 对应角,证三角形全等时必须还有一组边相等. 基本图形1 如图①,已知:AB⊥BC,DE⊥CE,AC⊥CD,AB=CE.
锐角一线三等角
钝角一线三等角
结论:△CAP≌△PBD.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

复习测评——不练不讲:
(课堂小练习,满分100分)
一、选择题(每小题10分,共30分) 1、不能推出两个三角形全等的条件是( ) A、有两边和夹角对应相等 B、有两角和夹边对应相等 C、有两角和一边对应相等 D、有两边和一角对应相等 2、如图所示,亮亮书上的三角形被墨迹污染了一部分,很快 他就根据所学知识画出一个与书上完全一样的三角形,那么 这两个三角形完全一样的依据是( ) A. SSS B. SAS C. AAS D. ASA
3.如图, ∠AOB是一个任意角,在边OA,OB 上分别取OM=ON,移动角尺,使角尺两边相同 的刻度分别与M,N重合,过角尺顶点C的射线 OC便是∠AOB的平分线OC,做法用得到三 角形全等的判定定方法是( ) A.SAS B.SSS C.ASA D.HL
二、填空题(10分) 4、如图,线段AC、BD相交于点O,且AO=OC,请添加 一个条件使△ABO≌△CDO,应添加的条件为: _________理由是: .(添加一个条件即可)
C
A
D
E
B
2.(2013年云南,本小题5分)如图,点B在AE上,点D在 AC上,AB=AD.请你添加一个适当的条件,使 △ABC≌△ADE(只能添加一个). (1)你添加的条件是 . (2)添加条件后,请说明△ABC≌△ADE的理由.
3.(2014年云南,本小题5分)如图,在△ABC和 △ABD中,AC与BD相交于点E,AD=BC, ∠DAB=∠CBA。求证:AC=BD。
C
EC∥EF,D,C在 AF上,且AD=CF,求证△ABC≌△DEF.
畅所欲言
努力了,就无怨无悔!有道是: 天道筹勤!相信自己吧!你是最棒的! 祝你们在中考中取得好成绩!
2015年数学学业水平考试 专题复习《全等三角形》
安乐中学 张天才
2015年5月
学习目标:
1、了解全等图形与全等三角形的概念; 2、掌握全等三角形的性质; 3、掌握全等三角形的判定方法,会用全等 三 角形的判定定理证明两个三角形全等;
复习导学——不看不讲:
完成下列考点填空: 1、能够 完全重合 的两个图形叫做全等形。 2、能够 完全重合 的两个三角形叫做全等三角形。 对应角相等 相等,全等 3、全等三角形的 对应边相等相等, 相等 ,全等三角形的对应高、 三角形的周长 相等 ,面积 对应中线、对应角平分线,对应中位线 相等 。 4、全等三角形的判定: (1) 三边对应相等的两个三角形全等 ,简称“边边边”公 理或SSS; (2) 两边及其夹角对应相等的两个三角形全等 ,简称“边 角边”公理或SAS; (3) 两角及其夹边对应相等的两个三角形全等 ,简称“角 边角”公理或ASA; (4) 两角和其中一角的对边对应相等的两个三角形全等 ,简 称“角角边”或AAS; (5) 斜边和一条直角边对应相等的两个直角三角形全等 ,
简称“斜边直角边”或HL。(仅直角三角形适用)
ABC
合作探究——不议不讲:
2011年至2014年云南考题归纳: 1、(2012年云南,本小题5分)如图,在 ABC 中, ∠ C 90 ,点D是边上的一点,DM⊥AB,且DM=AC, 过点M作ME∥BC交AB于E点. M 求证:△ABC≌△MED.
A B
O
D
C
三、解答题 5、(2014年衡阳市,本小题20分)如图,在 ABC 中,AB AC , BD CD ,DE AB于点E, DF AC 于点F。 求证: BED ≌ CFD 。
6.(20分)已知: BE⊥CD,BE=DE, BC=DA, 求证:△BEC≌△DAE
B F A
相关文档
最新文档