高三上学期考试数学理试题分类汇编:圆锥曲线 Word版含答案

合集下载

(完整word版)圆锥曲线经典练习题及答案

(完整word版)圆锥曲线经典练习题及答案

一、选择题 1. 圆锥曲线经典练习题及解答大足二中 欧国绪直线I 经过椭圆的一个顶点和一个焦点,若椭圆中心到 1 l 的距离为其短轴长的丄,则该椭圆 4 的离心率为 1 (A ) ( B ) 3(C) I (D ) 2.设F 为抛物线 c : y 2=4x 的焦点, 曲线 ky= ( k>0)与C 交于点P , PF 丄x 轴,则k= x(B )1 3 (C)—2(D )23•双曲线 2 x C : Ta 2y_1(a 0,b 0)的离心率为2,焦点到渐近线的距离为'、3,贝U C的焦距等于 A. 2 B. 2、2 C.4D.4•已知椭圆 C :0)的左右焦点为 F i ,F 2,离心率为丄3,过F 2的直线l3交C 与A 、B 两点, 若厶AF i B 的周长为4、、3,则C 的方程为()2 A. x_3 B. 2x 2彳 xr y 1C.2 x 12 D. 2 x 12 5. y 2 b 2线的一个焦点在直线 2 A.— 5 6.已知 已知双曲线 2 x ~2a 1(a 0,b 0)的一条渐近线平行于直线 I :y 2x 10,双曲 2 B — 20 2为抛物线y 2 ' 1 20 F l 上, 2 y 5 则双曲线的方程为( 也1 100 A , B 在该抛物线上且位于x 轴的两侧, c 3x 21 C.— 25 占 八、、的焦点, uu uuuOA OB A 、2 (其中O 为坐标原点),则-1^/2 87.抛物线 =X 2的准线方程是4(A) y (B)2(C)) D M 辽.100 25 ABO 与 AFO 面积之和的最小值是( )x 1(D)8•已知点A( 2,3)在抛物线C:2px的准线上,记C的焦点为F,则直线AF的斜率为A. 4B. 13C.D.9.设F为抛物线C A, B两点,贝S AB =(A)旦3 2 c:y =3x(B)10.已知抛物线C: 的焦点,过F且倾斜角为30°的直线交于C于(C) 12 (D)7、、3x的焦点为F , A X o, y0是C上一点, AF 5 冲4X0,则X o ()A. 1B. 2C. 4x2 11.已知双曲线—a拆A. 2 B.- D. 82y3、5C. -D.121(a 0)的离心率为2,则a20)与C 交于点P , PF 丄x 轴,所以- 2,所以k=2 ,1选D.3.C4.A5.A••• - 2,0 2c 10, A c 5, a 2 5, b 2 20, a2 2A x- y_ 1.5206. B试卷答案 1.B试题分析:如图,在椭圆中, OF c, OB b, OD 2b -b2在 Rt OFB 中,| OF | |OB| |BF | |OD |,且 a 2 b 22c ,代入解得x2 2 a 4c ,所以椭圆的离心率为: e 1,故选B. k焦点F(1,0),又因为曲线y (k xy2= x ••• F(],0),设人(%2,%)弋(『22°2),%>0, y2<0, B=v OAOB>4OAOB= y^y^ + y』2 = 2 • (y』2+ 2)(%丫2-1) = 0,即yy = -21 1 1 1 - •…S从OF = ?- ?y1, S^A OB = ?OA?OB?sin 0= -?OAOB?tan 0= tan 0cos0=驴!. 4 22 4 2= < 222|OA||OB| W + y1 肛 + y2 2讥%+1)(y2 +1)1_______ = 1/2 2 2 2 - ,i'~2 2 - ■ y1 y2 + y1 + y2 + 1 , y1 + y2 +5i14 2 i14 2 2,— ----------- 川+4y1 +4 卩+4y1 +4 % + 2 2--tan 0= 比+ y2 + 4 = = = 一= y1 +y1 *y1 y1 + S 从OB =鲁+ %+ —= 98y1+ —8 y1 8 y17. A8. C【答SIC【解析】试題分析;由已知得,抛物柱於=2四的谁竝方程为兀=一彳,且过点故一彳=一2,则左二4,2 2-r 3-0 3戸(2卫>则直线AF的斜率肛=-- =—「选U-2-24【考点定位】1、抛物线的标准方程和简单几何性质;2、直线的斜率.9. C3设AF = 2m, BF = 2n, F(-,0).则由抛物线的定义和直角三角形知识可得,43 3 3 32m=2?—+ ..3m,2n=2?—- 3n,解得m= —(2+、3),n 二(2八3), • m+n =6.4 4 2 2AB= AF + BF = 2m+ 2n = 12故选C.10. A根据抛物线的定义可知AF1 5X0 - - X0,解之得X0 1 .选A4 411.D 注??:=3.选 BS AAOF2 3由双曲线的离心率可得7a------- 2,解得a 1,选D.a。

2019年高考数学理试题分类汇编:圆锥曲线(含答案)

2019年高考数学理试题分类汇编:圆锥曲线(含答案)

2019年高考数学理试题分类汇编:圆锥曲线(含答案)2019年高考数学理试题分类汇编——圆锥曲线一、选择题1.(2019年四川高考)设O为坐标原点,P是以F为焦点的抛物线y=2px(p>0)上任意一点,M是线段PF上的点,且PM=2MF,则直线OM的斜率的最大值为2/3.(答案:C)2.(2019年天津高考)已知双曲线x^2/4 - y^2/9 = 1(b>0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A、B、C、D四点,四边形ABCD的面积为2b,则双曲线的方程为x^2/4 - y^2/9 = 1.(答案:D)3.(2019年全国I高考)已知方程x^2/n^2 - y^2/m^2 = 1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是(-1,3)。

(答案:A)4.(2019年全国I高考)以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点。

已知|AB|=42,|DE|=25,则C的焦点到准线的距离为4.(答案:B)5.(2019年全国II高考)圆(x-1)^2 + (y-4)^2 = 13的圆心到直线ax+y-1=0的距离为1,则a=-2/3.(答案:A)6.(2019年全国II高考)已知F1,F2是双曲线E:x^2/4 -y^2/2 = 1的左、右焦点,点M在E上,MF1与x轴垂直,sin∠MF2F1=1/3,则E的离心率为2/3.(答案:A)7.(2019年全国III高考)已知O为坐标原点,F是椭圆C:x^2/a^2 + y^2/b^2 = 1(a>b>0)的左焦点,A、B分别为C的左、右顶点。

P为C上一点,且PF⊥x轴。

过点A的直线l与线段PF交于点M,与y轴交于点E。

若直线BM经过OE的中点,则C的离心率为1/3.(答案:A)8.(2019年浙江高考)已知椭圆 + y^2/(m^2-1) = 1(m>1)与双曲线- y^2/(n^2-1) = 1(n>0)的焦点重合,e1,e2分别为m,n,则e1+e2=3.(答案:C)解析】Ⅰ)由题意可知,椭圆C的离心率为$\frac{\sqrt{3}}{2}$,根据离心率的定义可得:$\frac{c}{a}=\frac{\sqrt{3}}{2}$,其中$c$为椭圆的焦距之一,即$2c$为椭圆的长轴长度,$a$为椭圆的半长轴长度,$b$为椭圆的半短轴长度,则有:$$\frac{2c}{2a}=\frac{\sqrt{3}}{2}$$ 即:$$\frac{c}{a}=\frac{\sqrt{3}}{4}$$ 又因为焦点$F$在椭圆的一个顶点上,所以该顶点的坐标为$(a,0)$,即$2c=2a$,代入上式可得:$$\frac{b}{a}=\frac{1}{2}$$ 又因为椭圆的方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,代入$\frac{b}{a}=\frac{1}{2}$可得:$$\frac{x^2}{a^2}+\frac{4y^2}{a^2}=1$$ 即:$$x^2+4y^2=a^2$$ (Ⅱ)(i)设椭圆C的另一个顶点为$V$,则$OV$为椭圆的长轴,$OF$为椭圆的短轴,且$OV=2a$,$OF=\sqrt{3}a$。

(word版)高中数学——圆锥曲线试题(含答案),文档

(word版)高中数学——圆锥曲线试题(含答案),文档

启智辅导高考圆锥曲线试题精选一、选择题:〔每题5分,计50分〕1、(2021x2y2的焦距为〔〕海南、宁夏文)双曲线1102A.32B.42332.〔2004全国卷Ⅰ文、理〕椭圆x2y21的两个焦点为F1、F2,过F1作垂直于x轴的4直线与椭圆相交,一个交点为P,那么|PF2|=〔〕A.3B.37D.4 2C.23.〔2006辽宁文〕方程2x25x20的两个根可分别作为〔〕A.一椭圆和一双曲线的离心率B.两抛物线的离心率C.一椭圆和一抛物线的离心率D.两椭圆的离心率4.〔2006四川文、理〕直线y=x-3与抛物线y24x交于A、B两点,过A、B两点向抛物线的准线作垂线,垂足分别为P、Q,那么梯形APQB的面积为〔〕〔A〕48.〔B〕56〔C〕64〔D〕72.x2y21的右焦点为圆心,且与其渐近线相切的圆的方程是5.(2007福建理)以双曲线169()A. B.C. D.6.〔2004全国卷Ⅳ理〕椭圆的中心在原点,离心率e 1,且它的一个焦点与抛物线y22 4x的焦点重合,那么此椭圆方程为〔〕A .x2y2x2y2x2y21D.x22141B.61C.y 3824x2y22,有一个焦点与抛物线7.〔2005湖北文、理〕双曲线1(mn0)离心率为y2m n4x的焦点重合,那么mn的值为〔〕A.3B.3C.16D.8168x232316y1的左焦点在抛物线28.(2021重庆文)假设双曲线p2y=2px的准线上,那么p的值为3()(A)(B)3(C)4(D)4229.〔2002北京文〕椭圆x2y2和双曲线x2y23m212m21有公共的焦点,那么5n23n2双曲线的渐近线方程是〔〕A.x 15B.y15C.x3D.y3 y x y4x 22410.〔2003春招北京文、理〕在同一坐标系中,方程x2y2与ax by20(a b0)的曲线大致是a2b21y y y()yO O O Ox x x x A B C D高考圆锥曲线试题精选第1页共8页启智辅导二、填空题:〔每题 5分,计20分〕11.〔2005上海文〕假设椭圆长轴长与短轴长之比为 2,它的一个焦点是215,0,那么椭圆的标准方程是_________________________12.(2021江西文)双曲线x 2 y 21(a 0,b 0)的两条渐近线方程为 y3x ,a 2b 23假设顶点到渐近线的距离为 1,那么双曲线方程为.x 2 y 21的中心为顶点,且以该双曲线的右焦点为焦点的13.〔2007上海文〕以双曲线45抛物线方程是.14.(2021天津理)圆C 的圆心与抛物线y 24x 的焦点关于直线yx 对称.直线4x 3y20 与圆C 相交于A,B 两点,且 AB6,那么圆C 的方程为.三、解答题:〔15—18题各13分,19、20 题各14 分〕x 2 y 2 1(a b 0)的两个焦点为F 1,F 2,点P 在椭圆C 上,15.〔2006北京文〕椭圆C:2b 2a且PF 1F 1F 2,|PF 1| 4,|PF 2|14. 〔Ⅰ〕求椭圆 C 的方程;33(Ⅱ)假设直线l 过圆x 2+y 2+4x-2y=0的圆心M, 交椭圆C 于A,B 两点,且A 、B 关于点M 对称,求直线l 的方程..16.〔2005重庆文〕中心在原点的双曲线 C 的右焦点为〔2,0〕,右顶点为 ( 3,0)〔1〕求双曲线 C 的方程; 〔2〕假设直线l:y kx 2与双曲线C 恒有两个不同的交点A 和B ,且OAOB 2〔其中O 为原点〕.求k 的取值范围.高考圆锥曲线试题精选 第2页 共8页启智辅导(2007安徽文)设F 是抛物线G :x 2=4y 的焦点.(Ⅰ)过点P 〔0,-4〕作抛物线 G 的切线,求切线方程:(Ⅱ)设A 、B 为抛物线G 上异于原点的两点,且满足FA ·FB0,延长AF 、BF 分别交抛物线G 于点C ,D ,求四边形ABCD 面积的最小值.18.(2021辽宁文) 在平面直角坐标系xOy 中,点P 到两点(0,3),(0,3) 的距离之和等于4,设点P 的轨迹为C .〔Ⅰ〕写出C 的方程; uuu r〔Ⅱ〕设直线yuuuruuur kx1与C 交于A ,B 两点.k 为何值时OAOB ?此时AB 的值是多少?高考圆锥曲线试题精选 第3页 共8页启智辅导22y〔2002广东、河南、江苏〕A、B是双曲线x-2=1上的两点,点N(1,2)是线段AB的中点求直线AB的方程;如果线段AB的垂直平分线与双曲线相交于C、D两点,那么A、B、C、D四点是否共圆?为什么?20.〔2007福建理)如图,点F〔1,0〕,直线l:x=-1,P为平面上的动点,过P作直线l的垂线,垂足为点Q,且=。

高三数学圆锥曲线综合试题答案及解析

高三数学圆锥曲线综合试题答案及解析

高三数学圆锥曲线综合试题答案及解析1.如图,已知椭圆,双曲线(a>0,b>0),若以C1的长轴为直径的圆与C2的一条渐近线交于A,B两点,且C1与该渐近线的两交点将线段AB三等分,则C2的离心率为()A.5B.C.D.【答案】C【解析】由已知,|OA|=a=设OA所在渐近线的方程为y=kx(k>0),于是A点坐标可表示为A(x0,kx)(x>0)于是,即A(),进而AB的一个三分点坐标为()该点在椭圆C1上,有,即,得k=2即=2,于是,所以离心率,选C【考点】圆的方程,椭圆的性质,双曲线的性质,双曲线的渐近线,直线与圆锥曲线的位置关系,双曲线的离心率.2.已知抛物线C:的焦点为F,准线为,P是上一点,Q是直线PF与C得一个焦点,若,则()A.B.C.D.【答案】B【解析】如图所示,因为,故,过点作,垂足为M,则轴,所以,所以,由抛物线定义知,,选B.【考点】1、抛物线的定义;2、抛物线的标准方程;3、向量共线.3.已知椭圆C:()的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C的标准方程;(2)设F为椭圆C的左焦点,T为直线上任意一点,过F作TF的垂线交椭圆C于点P,Q.(i)证明:OT平分线段PQ(其中O为坐标原点);(ii)当最小时,求点T的坐标.【答案】(1) ;(2)【解析】(1)因为焦距为4,所以,又,由此可求出的值,从而求得椭圆的方程.(2)椭圆方程化为.设PQ的方程为,代入椭圆方程得:.(ⅰ)设PQ的中点为,求出,只要,即证得OT 平分线段PQ.(ⅱ)可用表示出PQ,TF可得:.再根据取等号的条件,可得T的坐标.试题解答:(1),又.(2)椭圆方程化为.(ⅰ)设PQ的方程为,代入椭圆方程得:.设PQ的中点为,则又TF的方程为,则得,所以,即OT过PQ的中点,即OT平分线段PQ.(ⅱ),又,所以.当时取等号,此时T的坐标为.【考点】1、椭圆的方程;2、直线与圆锥曲线;3、最值问题.4.已知的三个顶点在抛物线:上,为抛物线的焦点,点为的中点,;(1)若,求点的坐标;(2)求面积的最大值.【答案】(1)或;(2).【解析】(1)根据抛物线方程为,写出焦点为,准线方程为,设,由抛物线的定义知,,把代入求得点的坐标,再由求得点的坐标;(2)设直线的方程为,,,,联立方程组,整理得,先求出的中点的坐标,再由,得出,用弦长公式表示,构造函数,用导数法求的面积的最大值.(1)由题意知,焦点为,准线方程为,设,由抛物线的定义知,,得到,代入求得或,所以或,由得或,(2)设直线的方程为,,,,由得,于是,所以,,所以的中点的坐标,由,所以,所以,因为,所以,由,,所以,又因为,点到直线的距离为,所以,记,,令解得,,所以在上是增函数,在上是减函数,在上是增函数,又,所以当时,取得最大值,此时,所以的面积的最大值为.【考点】抛物线的几何性质,直线与抛物线的位置关系,三角形的面积公式,平面向量的坐标运算.5.如图为椭圆C:的左、右焦点,D,E是椭圆的两个顶点,椭圆的离心率,的面积为.若点在椭圆C上,则点称为点M的一个“椭圆”,直线与椭圆交于A,B两点,A,B两点的“椭圆”分别为P,Q.(1)求椭圆C的标准方程;(2)问是否存在过左焦点的直线,使得以PQ为直径的圆经过坐标原点?若存在,求出该直线的方程;若不存在,请说明理由.【答案】(1);(2)直线方程为或.【解析】本题主要考查椭圆的标准方程、直线的标准方程、圆的标准方程、韦达定理、向量垂直的充要条件等基础知识,考查学生的分析问题解决问题的能力、计算能力.第一问,利用椭圆的离心率和三角形面积公式列出表达式,解方程组,得到基本量a和b的值,从而得到椭圆的方程;第二问,直线l过左焦点,所以讨论直线的斜率是否存在,当斜率不存在时,可以直接写出直线方程,令直线与椭圆联立,得到交点坐标,验证以PQ为直径的圆不过坐标原点,当斜率存在时,直线与椭圆联立,消参,利用韦达定理,证明,解出k的值.(1)由题意,,即,,即 2分又得:∴椭圆的标准方程:. 5分(2)①当直线的斜率不存在时,直线的方程为联立,解得或,不妨令,,所以对应的“椭点”坐标,.而所以此时以为直径的圆不过坐标原点. 7分②当直线的斜率存在时,设直线的方程为消去得,设,则这两点的“椭点”坐标分别为由根与系数关系得: 9分若使得以为直径的圆过坐标原点,则而,∴即,即代入,解得:所以直线方程为或. 12分【考点】椭圆的标准方程、直线的标准方程、圆的标准方程、韦达定理、向量垂直的充要条件.6.在平面直角坐标系xOy中,已知椭圆C的中心在原点O,焦点在x轴上,短轴长为2,离心率为.(1)求椭圆C的方程;(2)设A,B是椭圆C上的两点,△AOB的面积为.若A、B两点关于x轴对称,E为线段AB 的中点,射线OE交椭圆C于点P.如果=t,求实数t的值.【答案】(1)+y2=1(2)t=2或t=【解析】(1)设椭圆C的方程为:(a>b>0),则,解得a=,b=1,故椭圆C的方程为+y2=1.(2)由于A、B两点关于x轴对称,可设直线AB的方程为x=m(-<x<,且m≠0).将x=m代入椭圆方程得|y|=,所以S△AOB=|m| =.解得m2=或m2=.①又=t=t(+)=t(2m,0)=(mt,0),又点P在椭圆上,所以=1.②由①②得t2=4或t2=.又因为t>0,所以t=2或t=.7.双曲线的左右焦点分别为,且恰为抛物线的焦点,设双曲线与该抛物线的一个交点为,若是以为底边的等腰三角形,则双曲线的离心率为()A.B.C.D.【答案】B【解析】∵,∴焦点为,即,∵,∴,即,∴,则,即,∴.【考点】抛物线的标准方程及几何性质.8.已知双曲线=1的左支上一点M到右焦点F2的距离为18,N是线段MF2的中点,O是坐标原点,则|ON|等于()A.4B.2C.1D.【答案】A【解析】设双曲线左焦点为F1,由双曲线的定义知,|MF2|-|MF1|=2a,即18-|MF1|=10,所以|MF1|=8.又ON为△MF1F2的中位线,所以|ON|=|MF1|=4,所以选A.9.已知F1、F2为双曲线=1(a>0,b>0)的左、右焦点,过点F2作此双曲线一条渐近线的垂线,垂足为M,且满足||=3||,则此双曲线的渐近线方程为________.【答案】y=±x【解析】由双曲线的性质可推得||=b,则||=3b,在△MF1O中,||=a,||=c,cos∠F1OM=-,由余弦定理可知=-,又c2=a2+b2,可得a2=2b2,即=,因此渐近线方程为y=±x.10.如图,已知,,,分别是椭圆的四个顶点,△是一个边长为2的等边三角形,其外接圆为圆.(1)求椭圆及圆的方程;(2)若点是圆劣弧上一动点(点异于端点,),直线分别交线段,椭圆于点,,直线与交于点.(ⅰ)求的最大值;(ⅱ)试问:,两点的横坐标之和是否为定值?若是,求出该定值;若不是,说明理由.【答案】(1),,(2)(ⅰ),(ⅱ).【解析】(1)求椭圆标准方程,只需两个独立条件. 由题意知,,,所以,,所以椭圆的方程为,求圆的方程,有两个选择,一是求圆的标准方程,确定圆心与半径,二是求圆的一般方程,只需代入圆上三个点的坐标.本题两个方法皆简单,如易得圆心,,所以圆的方程为(2)(ⅰ)本题关键分析出比值暗示的解题方向,由于点在轴上,所以,因此解题方向为利用斜率分别表示出点与点的横坐标. 设直线的方程为,与直线的方程联立,解得点,联立,消去并整理得,,解得点,因此当且仅当时,取“=”,所以的最大值为.(ⅱ)求出点的横坐标,分析与点的横坐标的和是否为常数. 直线的方程为,与直线的方程联立,解得点,所以、两点的横坐标之和为.试题解析:(1)由题意知,,,所以,,所以椭圆的方程为, 2分易得圆心,,所以圆的方程为.4分(2)解:设直线的方程为,与直线的方程联立,解得点, 6分联立,消去并整理得,,解得点,9分(ⅰ),当且仅当时,取“=”,所以的最大值为. 12分(ⅱ)直线的方程为,与直线的方程联立,解得点, 14分所以、两点的横坐标之和为.故、两点的横坐标之和为定值,该定值为. 16分【考点】椭圆与圆标准方程,直线与椭圆位置关系11. 如图,在平面直角坐标系xOy 中,已知椭圆=1的左、右顶点为A 、B ,右焦点为F.设过点T(t ,m)的直线TA 、TB 与椭圆分别交于点M(x 1,y 1)、N(x 2,y 2),其中m>0,y 1>0,y 2<0.(1)设动点P 满足PF 2-PB 2=4,求点P 的轨迹; (2)设x 1=2,x 2=,求点T 的坐标;(3)设t =9,求证:直线MN 必过x 轴上的一定点(其坐标与m 无关). 【答案】(1)x =(2)(3)见解析【解析】(1)解:设点P(x ,y),则F(2,0)、B(3,0)、A(-3,0).由PF 2-PB 2=4,得(x -2)2+y 2-[(x -3)2+y 2]=4,化简得x =,故所求点P 的轨迹为直线x =. (2)解:将x 1=2,x 2=分别代入椭圆方程,以及y 1>0,y 2<0得M 、N.直线MTA的方程为,即y =x +1.直线NTB 的方程为,即y =x -.联立方程组,解得所以点T 的坐标为.(3)证明:点T 的坐标为(9,m),直线MTA 的方程为,即y =(x +3).直线NTB 的方程为,即y =(x -3).分别与椭圆=1联立方程组,同时考虑到x 1≠-3,x 2≠3,解得 M、N(证法1)当x 1≠x 2时,直线MN 的方程为,令y =0,解得x=1,此时必过点D(1,0);当x 1=x 2时,直线MN 的方程为x =1,与x 轴交点为D(1,0),所以直线MN 必过x 轴上的一定点D(1,0). (证法2)若x 1=x 2,则由及m>0,得m =2,此时直线MN 的方程为x =1,过点D(1,0).若x 1≠x 2,则m≠2.直线MD 的斜率k MD =,直线ND 的斜率k ND =,得k MD =k ND ,所以直线MN 过D 点.因此,直线MN 必过x 轴上的点D(1,0).12.已知F是椭圆C:+=1(a>b>0)的右焦点,点P在椭圆C上,线段PF与圆(x-)2+y2=相切于点Q,且=2,则椭圆C的离心率等于()A.B.C.D.【答案】A【解析】记椭圆的左焦点为F′,圆(x-)2+y2=的圆心为E,连接PF′、QE.∵|EF|=|OF|-|OE|=c-=,=2,∴==,∴PF′∥QE,∴=,且PF′⊥PF.又∵|QE|=(圆的半径长),∴|PF′|=b.据椭圆的定义知:|PF′|+|PF|=2a,∴|PF|=2a-b.∵PF′⊥PF,∴|PF′|2+|PF|2=|F′F|2,∴b2+(2a-b)2=(2c)2,∴2(a2-c2)+b2=2ab,∴3b2=2ab,∴b=,c==a,=,∴椭圆的离心率为.13.设抛物线的焦点为,点,线段的中点在抛物线上.设动直线与抛物线相切于点,且与抛物线的准线相交于点,以为直径的圆记为圆.(1)求的值;(2)试判断圆与轴的位置关系;(3)在坐标平面上是否存在定点,使得圆恒过点?若存在,求出的坐标;若不存在,说明理由.【答案】(1)(2)见解析(3)存在【解析】(1)判断抛物线的焦点位置,得到焦点坐标,利用中点坐标公式得到FA的中点坐标带入抛物线即可求的P的值.(2)直线与抛物线相切,联立直线与抛物线,判别式为0即可得到k,m之间的关系,可以用k 来替代m,得到P点的坐标,抛物线准线与直线的方程可得到Q点的坐标,利用中点坐标公式可得到PQ中点坐标,通过讨论k的取值范围得到中点到x轴距离与圆半径(PQ为直径)的大小比较即可判断圆与x轴的位置关系.(3)由(2)可以得到PQ的坐标(用k表示),根据抛物线对称性知点在轴上,设点坐标为,则M点需满足,即向量内积为0,即可得到M点的坐标,M点的坐标如果为常数(不含k),即存在这样的定点,如若不然,则不存在.试题解析:解:(1)利用抛物线的定义得,故线段的中点的坐标为,代入方程得,解得。

高考数学理试题分类圆锥曲线(含答案及解析)

高考数学理试题分类圆锥曲线(含答案及解析)

高考数学试题分类汇编:圆锥曲线(理科)一、选择题1、(2016年四川高考)设O 为坐标原点,P 是以F 为焦点的抛物线22(p 0)y px => 上任意一点,M 是线段上的点,且PM =2MF ,则直线的斜率的最大值为(A (B )23(C )2 (D )1【答案】C2、(2016年天津高考)已知双曲线2224=1x y b-(b >0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A 、B 、C 、D 四点,四边形的的面积为2b ,则双曲线的方程为( )(A )22443=1y x -(B )22344=1y x -(C )2224=1x y b -(D )2224=11x y - 【答案】D3、(2016年全国I 高考)已知方程–=1表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是(A )(–1,3) (B )(–1) (C )(0,3) (D )(0)【答案】A4、(2016年全国I 高考)以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知,C 的焦点到准线的距离为(A )2 (B )4 (C )6 (D )8 【答案】B5、(2016年全国高考)圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则( )(A )43- (B )34- (C (D )2 【答案】A6、(2016年全国高考)圆已知12,F F 是双曲线2222:1x y E a b-=的左,右焦点,点M 在E 上,1MF 与x 轴垂直,211sin 3MF F ∠=,则E 的离心率为( )(A (B )32(C (D )2【答案】A7、(2016年全国高考)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线经过的中 点,则C 的离心率为(A )13(B )12(C )23(D )34【答案】A8、(2016年浙江高考) 已知椭圆C 1:22x m 2=1(m >1)与双曲线C 2:22x n–y 2=1(n >0)的焦点重合,e 1,e 2分别为C 1,C 2的离心率,则A .m >n 且e 1e 2>1B .m >n 且e 1e 2<1C .m <n 且e 1e 2>1D .m <n 且e 1e 2<1 【答案】A二、填空题1、(2016年北京高考)双曲线22221x y a b-=(0a >,0b >)的渐近线为正方形的边,所在的直线,点B 为该双曲线的焦点,若正方形的边长为2,则a =. 【答案】22、(2016年山东高考)已知双曲线E :22221x y a b-= (a >0,b >0),若矩形的四个顶点在E 上,,的中点为E 的两个焦点,且23,则E 的离心率是. 【答案】2【解析】由题意c 2=BC ,所以3c =AB ,于是点),23(c c 在双曲线E 上,代入方程,得1492222=b c -a c , 在由2c b a =+22得E 的离心率为2==ace ,应填2.3、(2016年上海高考)已知平行直线012:,012:21=++=-+y x l y x l ,则21,l l 的距离【答案】54、(2016年浙江高考)若抛物线y 2=4x 上的点M 到焦点的距离为10,则M 到y 轴的距离是. 【答案】9三、解答题1、(2016年北京高考) 已知椭圆C :22221+=x y a b(0a b >>)的离心率为2 ,(,0)A a ,(0,)B b ,(0,0)O ,OAB ∆的面积为1.(1)求椭圆C 的方程;(2)设P 的椭圆C 上一点,直线PA 与y 轴交于点M ,直线与x 轴交于点N. 求证:BM AN ⋅为定值.【解析】⑴由已知,112c ab a ==,又222a b c =+,解得2,1,a b c ===∴椭圆的方程为2214x y +=.⑵方法一:设椭圆上一点()00,P x y ,则220014x y +=.直线PA :()0022y y x x =--,令0x =,得0022M y y x -=-. ∴00212y BM x =+- 直线PB :0011y y x x -=+,令0y =,得001N x x y -=-. ∴0021x AN y =+- 0000000000220000000000221122222214448422x y AN BM y x x y x y x y x y x y x y x y x y ⋅=+⋅+--+-+-=⋅--++--+=--+将220014x y +=代入上式得=4AN BM ⋅故AN BM ⋅为定值.方法二:设椭圆 上一点()2cos ,sin P θθ,直线:()sin 22cos 2y x θθ=--,令0x =,得sin 1cos M y θθ=-. ∴sin cos 11cos BM θθθ+-=-直线PB :sin 112cos y x θθ-=+,令0y =,得2cos 1sin N x θθ=-. ∴2sin 2cos 21sin AN θθθ+-=-2sin 2cos 2sin cos 11sin 1cos 22sin 2cos 2sin cos 21sin cos sin cos 4AN BM θθθθθθθθθθθθθθ+-+-⋅=⋅----+=--+=故AN BM ⋅为定值.2、(2016年山东高考)平面直角坐标系xOy 中,椭圆C :()222210x y a b a b+=>> 的离心率是2,抛物线E :22x y =的焦点F 是C 的一个顶点.(I )求椭圆C 的方程;()设P 是E 上的动点,且位于第一象限,E 在点P 处的切线l 与C 交与不同的两点A ,B ,线段的中点为D ,直线与过P 且垂直于x 轴的直线交于点M . (i )求证:点M 在定直线上;()直线l 与y 轴交于点G ,记PFG △的面积为1S ,PDM △的面积为2S ,求12S S的最大值及取得最大值时点P 的坐标.【解析】(Ⅰ) 由离心率是23,有224=b a , 又抛物线y x 2=2的焦点坐标为)21,0(F ,所以21=b ,于是1=a , 所以椭圆C 的方程为1=4+22y x .(Ⅱ) (i )设P 点坐标为)0>(),2m m ,P 2m (, 由y x 2=2得x y =′,所以E 在点P 处的切线l 的斜率为m , 因此切线l 的方程为2=2m mx -y ,设),(),,(2211y x B y x A ,),(00y x D ,将2=2m mx -y 代入1=4+22y x ,得0=1+4)4+12322-m x m -x m (.于是23214+14=+m m x x ,232104+12=2+=m m x x x , 又)4+1(2=2=22200m -m m -mx y ,于是 直线OD 的方程为x m-y 41=. 联立方程x m -y 41=与m x =,得M 的坐标为)41M(m,-.所以点M 在定直线41=y -上.()在切线l 的方程为2=2m mx -y 中,令0=x ,得2m =y 2-,即点G 的坐标为)2m G (0,-2,又)2m P(m,2,)21F(0,, 所以4)1+(=×21=S 21m m GF m ;再由)1)+2(4m -m ,1+4m 2m D(2223,得 )1+4(8)1+2(=1+4+2×41+2×21=S 2222322m m m m m m m 于是有 222221)1+2()1+)(1+4(2=S S m m m . 令1+2=2m t ,得222111+2=)1+)(21(2=S S t -t t t t - 当21=1t时,即2=t 时,21S S 取得最大值49.此时21=2m ,22=m ,所以P 点的坐标为)41,22P(. 所以21S S 的最大值为49,取得最大值时点P 的坐标为)41,22P(.3、(2016年上海高考) 有一块正方形菜地EFGH ,EH 所在直线是一条小河,收货的蔬菜可送到F 点或河边运走。

全国一卷圆锥曲线高考题汇编含答案#(精选.)

全国一卷圆锥曲线高考题汇编含答案#(精选.)

高二数学专题学案圆锥曲线部分高考试题汇编(椭圆部分)1、(2016全国I卷)(20)(本小题满分12分)设圆x2 + y2 + 2x—15 = 0的圆心为4直线l过点B (1,0)且与x轴不重合,l交圆A于C, D两点,过B作AC的平行线交AD于点E.(I)证明|EA| + |EB|为定值,并写出点E的轨迹方程;(II)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于PQ两点,求四边形MPNQ面积的取值范围.x2 y22、(2015全国I卷)(14)一个圆经过椭圆7十一二1的三个顶点,且圆心在乂轴上,则该圆的标准方程16 4为。

3、(2014全国I卷)20.(本小题满分12分)已知点A(0,-2),椭圆E:上+ y2= 1(a > b > 0)的离心率为3,,F是椭圆a2 b2 2的焦点,直线AF的斜率为233,O为坐标原点.(I)求E的方程;(II)设过点A的直线l与E相交于P, Q两点,当A OPQ的面积最大时,求l的方程.4、(2016山东卷)(21)(本小题满分14分)平面直角坐标系g中,椭圆C::喙=1(a>b>°)的离心率是浮,抛物线E3x=2'的焦点F是C的一个顶点.(I)求椭圆C的方程;(II)设P是E上的动点,且位于第一象限,E在点P处的切线l与C交与不同的两点A,B,线段AB的中点为D,直线OD与过P且垂直于x轴的直线交于点M.(i)求证:点M在定直线上;(ii)直线l与y轴交于点6,记^PFG的面积为S j ^PDM的面积为S2,求S-的最大值及取得最大值2时点P的坐标.八- x 2 Y 2 一,,〜5、(2015山东卷)(20)(本小题满分13分)平面直角坐标系xOy中,已知椭圆C :— + ) =1(a > b > 0)a 2 b2的离心率为*,左、右焦点分别是F , F ,以F 为圆心,以3为半径的圆与以F 为圆心,以1为半径的 2 1212圆相交,交点在椭圆C 上. (I )求椭圆C 的方程;x 2 y 2(H )设椭圆E :江+而二1,P 为椭圆C 上的任意一点,过点P的直线厂"m 交椭圆E 于A,B 两点,射线PO 交椭圆E 于点Q.圆锥曲线部分高考试题汇编(双曲线部分)1、(2016全国I 卷)(5)已知方禾m 2+n--就工=1表示双曲线,且该双曲线两焦点间的距离为4,则n的i )求|OQ | | OP |的值;(ii )求A ABQ 面积最大值.取值范围是(2、(2015全国I 卷)(5)已知M (x 0 丫0)是双曲线C : --W= 1上的一点,F 1、F 2是C 上的两个焦点,若西 • MF 2 <0,则y 0的取值范围是(2J3(D )(一二33、(2014全国I 卷)4.已知F 是双曲线C : x 2 - my 2 = 3m (m > 0)的一个焦点,则点F 到C 的一条渐近线的距离为( ) A . <3B .3C . <3mD . 3mx 2 y 24、(2016山东卷)(13)已知双曲线E_,: ---= 1 (a >0, b >0),若矩形ABCD 的四个顶点在E 上, 1a 2b 2AB , CD 的中点为E 的两个焦点,且21AB |=3|BC |,则E 的离心率是.x 2 y 25、(2015山东卷)(15)平面直角坐标系xOy 中,双曲线C : 一--—= 1(a > 0,b > 0)的渐近线与抛物线1a 2 b2C : x 2 = 2py (p > 0)交于点O , A , B ,若A OAB 的垂心为C 的焦点,则C 的离心率为. 2 21x 2 y 2 x 2 y 26、(2014山东卷)(10)已知a > b ,椭圆C 的方程为—+ -- = 1 ,双曲线C 的方程为——^- = 1, C1 a2 b 2 2 a 2 b 2 1与C 的离心率之积为二,则C 的渐近线方程为()222(A ) x 土 <2y = 0 (B ) J2x 土 y = 0 (C ) x 土2y = 0 (D ) 2x 土 y = 0圆锥曲线部分高考试题汇编(抛物线部分)(A )(-1,3)(B )(-1八”)(C )(0,3)(D )(0,\与)2<2 (C )(-—— 32<31、(2016全国I卷)(10)以抛物线C的顶点为圆心的圆交C于A, B两点,交C的准线于D, E两点.已知| AB | = 4";2 , | DEI= 2d5,则C的焦点到准线的距离为()(A)2 (B)4 (C)6 (D)82、(2015全国I卷)(20)(本小题满分12分)x2在直角坐标系xoy中,曲线C:y =—与直线y = kx + a(a >0)交与M,N两点,(I)当k=0时,分别求C在点M和N处的切线方程;(II)y轴上是否存在点R使得当k变动时,总有N OPM =Z OPN ?说明理由。

广东省13市高三上学期期末考试数学理试题分类汇编:圆锥曲线 Word版含答案

广东省13市高三上学期期末考试数学理试题分类汇编:圆锥曲线 Word版含答案

广东省13市2017届高三上学期期末考试数学理试题分类汇编圆锥曲线一、选择、填空题1、(潮州市2017届高三上学期期末)已知抛物线y 2=2px (p >0)的焦点成F ,过点F且倾斜角为45°的直线l 与抛物线在第一、第四象限分别交于A 、B ,则等于( )A .3B .7+C .3+D .22、(珠海市2017届高三上学期期末)已知双曲线221C 1164x y =:-,双曲线22222C 1(00)x y a b a b=>>:-,的左、右焦点分别为F 1,F 2,M 是双曲线C 2一条渐近线上的点,且OM ⊥MF 2,若△OMF 2的面积为 16,且双曲线C 1,C 2的离心率相同,则双曲线C 2的实轴长为A .4B .8C .16D .323、(佛山市2017届高三教学质量检测(一))已知双曲线)0(1:2222>>=-a b by a x C 的右焦点为F ,O 为坐标原点,若存在直线l 过点F 交双曲线C 的右支于B A ,两点,使0=⋅,则双曲线离心率的取值范围是________4、(广州市2017届高三12月模拟)已知双曲线:C 12222=-bx a y (0,0>>b a )的渐近线方程为x y 21±=, 则双曲线C 的离心率为(A) 25 (B) 5 (C) 26 (D) 65、(惠州市2017届高三第三次调研)设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于A ,B 两点,|AB |为C 的实轴长的2倍,则C 的离心率为( ) (A ) 3 (B )2(C )2 (D )3 6、(江门市2017届高三12月调研)过抛物线()焦点的直线与抛物线交于两点,以为直径的圆的方程为,则A .B .C .D .7、(揭阳市2017届高三上学期期末)设椭圆22221(0)x y a b a b+=>>的两焦点与短轴一端点组成一正三角形三个顶点,若焦点到椭圆上点的最大距离为,a b 为实半轴长和虚半轴长,焦点在y 轴上的双曲线标准方程为.8、(茂名市2017届高三第一次综合测试)过双曲线()0,012222>>=-b a by a x 的右焦点2(,0)F c 作圆222a y x =+的切线,切点为M ,延长2M F 交抛物线24y cx =-于点,P 其中O 为坐标原点,若21()2OM OF OP =+,则双曲线的离心率为() A .7224- B .7224+ C .231+D .251+ 9、(清远市清城区2017届高三上学期期末)已知双曲线c :,以右焦点F 为圆心,|OF|为半径的圆交双曲线两渐近线于点M 、N (异于原点O ),若|MN|=,则双曲线C 的离心率 是( )A B .2 D 1 10、(汕头市2017届高三上学期期末)圆0138222=+--+y x y x 的圆心到直线01=-+y ax 的距离为1,则=a ( )A .34-B .43- C .3 D .2 11、(韶关市2017届高三1月调研)已知点A 是双曲线)0,0(12222>>=-b a by a x 右支上一点,F 是右焦点,若AOF ∆(O 是坐标原点)是等边三角形,则该双曲线离心率e 为(C)1+1+二、解答题1、(潮州市2017届高三上学期期末)已知点A 、B 分别是左焦点为(﹣4,0)的椭圆C :22221(0)x y a b a b+=>>的左、右顶点,且椭圆C 过点P (,).(1)求椭圆C 的方程;(2)已知F 是椭圆C 的右焦点,以AF 为直径的圆记为圆M ,过P 点能否引圆M 的切线?若能,求出这条切线与x 轴及圆M 的弦PF 所对的劣弧围成的图形面积;若不能,说明理由.2、(珠海市2017届高三上学期期末)在平面直角坐标系xOy 中,椭圆G 的中心为坐标原点,左焦点为F 1(-1,0),离心率e . (1)求椭圆G 的标准方程;(2)已知直线l 1:y =kx +m 1与椭圆G 交于A ,B 两点,直线l 2:y =kx +m 2(m 1≠m 2)与椭圆G 交于C ,D 两点,且| AB |=|CD |,如图所示. ①证明:m 1+m 2=0;②求四边形ABCD 的面积S 的最大值.3、(佛山市2017届高三教学质量检测(一))已知椭圆)0(1:2222>>=+b a b y a x C 过点)1,2(M ,且离心率为23(Ⅰ)求椭圆C 的方程;(Ⅱ)设)1,0(-A ,直线l 与椭圆C 交于Q P ,两点,且AQ AP =,当OPQ ∆(O 为坐标原点)的面积S 最大时,求直线l 的方程4、(广州市2017届高三12月模拟)已知动圆P 与圆221:(2)49F x y ++=相切,且与圆1)2(:222=+-y x F 相内切,记圆心P 的轨迹为曲线C .(Ⅰ)求曲线C 的方程;(Ⅱ)设Q 为曲线C 上的一个不在x 轴上的动点,O 为坐标原点,过点2F 作OQ 的平行 线交曲线C 于,M N 两个不同的点, 求△QMN 面积的最大值.5、(惠州市2017届高三第三次调研)已知椭圆()2222:10x y C a b a b +=>>的左、右焦点分别为()()121,0,1,0F F -,点A ⎛ ⎝⎭在椭圆C 上.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)是否存在斜率为2的直线,使得当直线与椭圆C 有两个不同交点M N 、时,能在直线53y =上找到一点P ,在椭圆C 上找到一点Q ,满足PM NQ =?若存在,求出直线的方程;若不存在,说明理由.6、(江门市2017届高三12月调研)在平面直角坐标系中,椭圆:()的离心率为, 椭圆的顶点四边形的面积为.(Ⅰ)求椭圆的方程; (Ⅱ)过椭圆的顶点的直线交椭圆于另一点,交轴于点,若、、成等比数列,求直线的方程.7、(揭阳市2017届高三上学期期末)在平面直角坐标系xOy 中,已知点A (-1, 0)、B (1,0)、C (0, -1),N 为y 轴上的点,MN 垂直于y 轴,且点M 满足AM BM ON CM ⋅=⋅(O 为坐标原点),点M 的轨迹为曲线T . (Ⅰ)求曲线T 的方程;(Ⅱ)设点P (P 不在y 轴上)是曲线T 上任意一点,曲线T 在点P 处的切线l 与直线54y =-交于点Q ,试探究以PQ 为直径的圆是否过一定点?若过定点,求出该定点的坐标,若不过定点,说明理由.8、(茂名市2017届高三第一次综合测试),x y R ∈,向量,i j 分别为直角坐标平面内,x y 轴正方向上的单位向量,若向量(3)a x i y j =++, (3)b x i y j =-+,且||||4a b +=.(Ⅰ)求点(,)M x y 的轨迹C 的方程;(Ⅱ)设椭圆22:1164x y E +=,P 为曲线C 上一点,过点P 作曲线C 的切线=+y kx m 交椭圆E 于A 、B 两点,试证:∆OAB 的面积为定值.9、(清远市清城区2017届高三上学期期末)以椭圆()222:11x M y a a +=>的四个顶点为顶点的四边形的四条边与O :221x y +=共有6个交点,且这6个点恰好把圆周六等分. (Ⅰ)求椭圆M 的方程;(Ⅱ)若直线l 与O 相切,且与椭圆M 相交于P ,Q 两点,求PQ 的最大值.10、(汕头市2017届高三上学期期末)如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆22:1214600M x y x y +--+=及其上一点(2,4)A(1)设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线6x =上,求圆N 的标准方程; (2)设平行于OA 的直线l 与圆M 相交于,B C 两点,且BC OA =,求直线l 的方程; (3)设点(,0)T t 满足:存在圆M 上的两点P 和Q ,使得,TA TP TQ +=求实数t 的取值范围.11、(韶关市2017届高三1月调研)设椭圆2222:1(0)x yC a ba b+=>>,椭圆C短轴的一个端点与长轴的一个端点的连线与圆O:224 3x y+=相切,且抛物线2y=-的准线恰好过椭圆C的一个焦点.(Ⅰ)求椭圆C的方程;(Ⅱ)过圆O上任意一点P作圆的切线l与椭圆C交于,A B两点,连接PO并延长交圆O 于点Q,求ABQ∆面积的取值范围.参考答案一、选择、填空题1、【解答】解:直线l的方程为y=x﹣,代入y2=2px,整理得4x2﹣12px+p2=0,解得x=p,∴==3+2.故选C.2、C3、4、B5、【解析】设双曲线的标准方程为x2a2-y2b2=1(a>0,b>0),由于直线l过双曲线的焦点且与对称轴垂直,因此直线l 的方程为:x =c 或x =-c ,代入x 2a 2-y 2b 2=1得y 2=b 2(c 2a 2-1)=b 4a 2,∴y=±b 2a ,故|AB |=2b 2a ,依题意2b 2a =4a ,∴b 2a 2=2,∴c 2-a 2a 2=e 2-1=2,∴e = 3. 6、B7、221129y x -= 8、 D 解:如图9,∵21M (OP)2O OF =+,∴M 是2F P 的中点.设抛物线的焦点为F 1,则F 1为(- c ,0),也是双曲线的焦点. 连接PF 1,OM.∵O 、M 分别是12F F 和2PF 的中点,∴OM 为 △PF 2F 1的中位线.∵OM=a ,∴|PF 1|=2 a.∵OM ⊥2PF ,∴2PF ⊥PF 1,于是可得|2PF 2b =,设P (x ,y ),则 c -x =2a , 于是有x=c-2a , y 2=-4c (c -2 a ),过点2F 作x 轴的垂线,点P 到该垂线的距离为2a. 由勾股定理得 y 2+4a 2=4b 2,即-4c(c-2a)+4 a 2=4(c 2- a 2),变形可得c 2-a 2=ac ,两边同除以a 2有210e e --=, 所以12e = ,负值已经舍去. 故选D . 9、C 10、A11、【解析】依题意及三角函数定义,点(cos,sin )33B c c ππ⋅ ,即1()2B c ,代入双曲线方程 22222234b c a c a b -=,又222c a b =+,得24e =+e =1,故选D另解,设左焦点为1F , 可题意及双曲线几何性质可得190F AF ∠=,1AF = 所以212c e a ===二、解答题1、【解答】解:(1)由题意a 2=b 2+16,+=1,解得b 2=20或b 2=﹣15(舍), 由此得a 2=36,所以,所求椭圆C 的标准方程为=1.(2)由(1)知A (﹣6,0),F (4,0),又(,),则得=(,),=(﹣,).所以=0,即∠APF=90°,△APF 是Rt △,所以,以AF 为直径的圆M 必过点P ,因此,过P 点能引出该圆M 的切线, 设切线为PQ ,交x 轴于Q 点,又AF 的中点为M (﹣1,0),则显然PQ ⊥PM ,而k PM =,所以PQ 的斜率为﹣,因此,过P 点引圆M 的切线方程为:y ﹣=﹣(x ﹣),即x +y ﹣9=0.令y=0,则x=9,∴Q (9,0),又M (﹣1,0),所以S 扇形MPF ==,因此,所求的图形面积是S=S △PQM ﹣S 扇形MPF =.2、3、4、解:(Ⅰ)设圆P 的半径为R ,圆心P 的坐标为(,)x y ,由于动圆P 与圆221:(2)49F x y ++=相切,且与圆1)2(:222=+-y x F 相内切,所以动圆P 与圆1F 只能内切. …………………………………1分所以127,1.PF R PF R ⎧=-⎪⎨=-⎪⎩…………………………………2分则4||6||||2121=>=+F F PF PF .…………………………………3分 所以圆心P 的轨迹是以点12,F F 为焦点的椭圆, 且3,2a c ==, 则2225b a c =-=.所以曲线C 的方程为15922=+y x . …………………………………4分 (Ⅱ)设112233(,), (,), (,)M x y N x y Q x y ,直线MN 的方程为2x my =+,由222,1,95x my x y ì=+ïïïíï+=ïïî可得225920250m y my ++-=(), 则1212222025,5959m y y y y m m +=-=-++. …………………………………5分所以MN =…………………………………6分=()22301.59m m +=+…………………………………7分因为//MN OQ ,所以△QMN 的面积等于△OMN 的面积.…………………8分 点O 到直线2:+=my x MN 的距离d =. ……………………………9分所以△QMN的面积221130(1)2259m S MN dm +=?创+.…………………………………10分t ,则221m t =-(1)t ≥ ,()223030304545195t t S t t t t===+-++. 设()()451f t t t t=+?,则()2224545t f t t t -¢=-=. 因为1t ³, 所以()22540.t f t t-¢=>所以()45f t t t=+在[)1,+?上单调递增. 所以当1t =时, ()f t 取得最小值, 其值为9.…………………………………11分所以△QMN 的面积的最大值为309.…………………………………12分 说明:△QMN 的面积21212S OF yy =?==5、解:(Ⅰ)设椭圆C 的焦距为2c ,则1c =,因为2A ⎛⎫ ⎪ ⎪⎝⎭在椭圆C上,所以122a AF AF =+=, ……2分因此2221a b a c ==-=,故椭圆C 的方程为2212x y +=......5分 (Ⅱ)椭圆C 上不存在这样的点Q ,证明如下:设直线的方程为2y x t =+,设()11,M x y ,()()223445,,,,,3N x y P x Q x y ⎛⎫ ⎪⎝⎭,MN 的中点为()00,D x y ,由22212y x t x y =+⎧⎪⎨+=⎪⎩消去,得229280y ty t -+-=, ……………6分 所以1229t y y +=,且()2243680t t ∆=-->, 故12029y y ty +==且33t -<<..................8分 由PM NQ =得),()35,(2424131y y x x y x x --=-- .........9分所以有24135y y y -=-,=-+=35214y y y 3592-t ............10分(也可由PM NQ =知四边形PMQN 为平行四边形,而D 为线段MN 的中点,因此,也D 为线段PQ 的中点,所以405329y t y +==,可得42159t y -=), 又33t -<<,所以4713y -<<-,与椭圆上点的纵坐标的取值范围[]1,1-矛盾。

高三数学圆锥曲线试题答案及解析

高三数学圆锥曲线试题答案及解析

高三数学圆锥曲线试题答案及解析1.设、是定点,且均不在平面上,动点在平面上,且,则点的轨迹为()A.圆或椭圆B.抛物线或双曲线C.椭圆或双曲线D.以上均有可能【答案】D【解析】以为高线,为顶点作顶角为的圆锥面,则点就在这个圆锥面上,用平面截这个圆锥面所得截线就是点的轨迹,它可能是圆、椭圆、抛物线、双曲线,因此选D.【考点】圆锥曲线的性质.2.已知点是双曲线右支上一点,是双曲线的左焦点,且双曲线的一条渐近线恰是线段的中垂线,则该双曲线的离心率是( )A.B.C.D.【答案】D【解析】设直线:求直线与渐近线的交点,解得:是的中点,利用中点坐标公式,得,在双曲线上,所以代入双曲线方程得:,整理得,解得.故选D.【考点】1.双曲线的几何性质;2.双曲线的方程.3.已知椭圆的焦点重合,则该椭圆的离心率是.【答案】【解析】抛物线的焦点为,椭圆的方程为:,所以离心率.【考点】1、椭圆与抛物线的焦点;2、圆的离心率.4.已知双曲线的左、右焦点分别为,以为直径的圆与双曲线渐近线的一个交点为,则此双曲线的方程为()A.B.C.D.【答案】C【解析】由条件得:,即,而,渐近线为,在上,所以,得,所以双曲线方程为.【考点】1.双曲线方程的求法;2.双曲线的渐近线.5.已知动点到定点和的距离之和为.(Ⅰ)求动点轨迹的方程;(Ⅱ)设,过点作直线,交椭圆异于的两点,直线的斜率分别为,证明:为定值.【答案】(Ⅰ);(Ⅱ)证明过程详见解析.【解析】本题考查椭圆的基本量间的关系及韦达定理的应用.第一问是考查椭圆的基本量间的关系,比较简单;第二问是直线与椭圆相交于两点,先设出两点坐标,本题的突破口是在消参后的方程中找出两根之和、两根之积,整理斜率的表达式,但是在本问中需考虑直线的斜率是否存在,此题中蕴含了分类讨论的思想的应用.试题解析:(Ⅰ)由椭圆定义,可知点的轨迹是以为焦点,以为长轴长的椭圆.由,得.故曲线的方程为. 5分(Ⅱ)当直线的斜率存在时,设其方程为,由,得. 7分设,,,.从而.11分当直线的斜率不存在时,得,得.综上,恒有. 12分【考点】1.三角形面积公式;2.余弦定理;3.韦达定理;4.椭圆的定义.6.已知双曲线的左、右焦点分别为,以为直径的圆与双曲线渐近线的一个交点为,则此双曲线的方程为()A.B.C.D.【答案】C【解析】由条件得:,即,而,渐近线为,在上,所以,得,所以双曲线方程为.【考点】1.双曲线方程的求法;2.双曲线的渐近线.7.已知椭圆的中心在坐标原点,右准线为,离心率为.若直线与椭圆交于不同的两点、,以线段为直径作圆.(1)求椭圆的标准方程;(2)若圆与轴相切,求圆被直线截得的线段长.【答案】(1);(2).【解析】(1)先根据题中的条件确定、的值,然后利用求出的值,从而确定椭圆的方程;(2)先确定点的坐标,求出圆的方程,然后利用点(圆心)到直线的距离求出弦心距,最后利用勾股定理求出直线截圆所得的弦长.试题解析:(1)设椭圆的方程为,由题意知,,解得,则,,故椭圆的标准方程为 5分(2)由题意可知,点为线段的中点,且位于轴正半轴,又圆与轴相切,故点的坐标为,不妨设点位于第一象限,因为,所以, 7分代入椭圆的方程,可得,因为,解得, 10分所以圆的圆心为,半径为,其方程为 12分因为圆心到直线的距离 14分故圆被直线截得的线段长为 16分【考点】椭圆的方程、点到直线的距离、勾股定理8.已知为抛物线的焦点,抛物线上点满足(Ⅰ)求抛物线的方程;(Ⅱ)点的坐标为(,),过点F作斜率为的直线与抛物线交于、两点,、两点的横坐标均不为,连结、并延长交抛物线于、两点,设直线的斜率为,问是否为定值,若是求出该定值,若不是说明理由.【答案】(Ⅰ),(Ⅱ).【解析】(Ⅰ)利用抛物线的定义得到,再得到方程;(Ⅱ)利用点的坐标表示直线的斜率,设直线的方程,通过联立方程,利用韦达定理计算的值.试题解析:(Ⅰ)由题根据抛物线定义,所以,所以为所求. 2分(Ⅱ)设则,同理 4分设AC所在直线方程为,联立得所以, 6分同理 (8分)所以 9分设AB所在直线方程为联立得, 10分所以所以 12分【考点】抛物线标准方程,直线与抛物线位置关系的应用.9.极坐标系中椭圆C的方程为以极点为原点,极轴为轴非负半轴,建立平面直角坐标系,且两坐标系取相同的单位长度. (Ⅰ)求该椭圆的直角标方程;若椭圆上任一点坐标为,求的取值范围;(Ⅱ)若椭圆的两条弦交于点,且直线与的倾斜角互补,求证:.【答案】(Ⅰ)(Ⅱ)详见解析【解析】将椭圆的极坐标方程转化为一般标准方程,再利用换元法求范围,利用参数方程代入,计算得到结果.试题解析:(Ⅰ)该椭圆的直角标方程为, 2分设,所以的取值范围是 4分(Ⅱ)设直线的倾斜角为,直线的倾斜角为,则直线的参数方程为(为参数),(5分)代入得:即 7分同理 9分所以(10分)【考点】极坐标、参数方程,换元法应用.10.已知直线,,过的直线与分别交于,若是线段的中点,则等于()A.12B.C.D.【答案】B【解析】设、,所以、.所以.故选B.【考点】两点之间的距离点评:主要是考查了两点之间的距离的运用,属于基础题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京市部分区2017届高三上学期考试数学理试题分类汇编圆锥曲线一、选择、填空题1、(朝阳区2017届高三上学期期末)已知双曲线2221(0)4x y b b -=>的一条渐近线方程为320x y +=,则b 等于 .2、(西城区2017届高三上学期期末)已知双曲线2221(0)y x b b-=>的一个焦点是(2,0),则其渐近线的方程为(A )0x = (B 0y ±= (C )30x y ±=(D )30x y ±=3、(东城区2017届高三上学期期末)抛物线22y x =的准线方程是(A )1y =- (B )12y =- (C )1x =- (D )12x =-4、(丰台区2017届高三上学期期末)设椭圆C :222+1(0)16x y a a =>的左、右焦点分别为1F ,2F ,点P 在椭圆C 上,如果12||+||10PF PF =,那么椭圆C 的离心率为 .5、(海淀区2017届高三上学期期末)抛物线22y x =的焦点到准线的距离为A .12B .1C .2D .36、(昌平区2017届高三上学期期末)在焦距为2c 的椭圆2222:1(0)x y M a b a b+=>>中,12,F F 是椭圆的两个焦点,则 “b c <”是“椭圆M 上至少存在一点P ,使得12PF PF ⊥”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件7、(海淀区2017届高三上学期期末)已知直线l 经过双曲线2214x y -=的一个焦点且与其一条渐近线平行,则直线l 的方程可能是A .12y x =-+B .12y x =C .2y x =-D .2y x =-8、(石景山区2017届高三上学期期末)若双曲线2214x y m -=的渐近线方程为y x =,则双曲线的焦点坐标是 .9、(通州区2017届高三上学期期末)“>1m ”是“方程2211x y m m -=-表示双曲线”的 A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件10、(东城区2017届高三上学期期末))若点(2,0)P 到双曲线2221(0)x y a a-=>的一条渐近线的距离为1,则a =_______.11、(北京昌平临川育人学校2017届高三上学期期末)设双曲线=1的两焦点分别为F 1,F 2,P 为双曲线上的一点,若PF 1与双曲线的一条渐近线平行,则•=( )A .B .C .D .二、解答题1、(昌平区2017届高三上学期期末)椭圆C 的焦点为1(F ,2F ,且点M 在椭圆C 上.过点(0,1)P 的动直线l 与椭圆相交于,A B 两点,点B 关于y 轴的对称点为点D (不同于点A ).(I) 求椭圆C 的标准方程;(II)证明:直线AD 恒过定点,并求出定点坐标.2、(朝阳区2017届高三上学期期末)已知椭圆22:132x y C +=上的动点P 与其顶点(0)A ,B 不重合.(Ⅰ)求证:直线PA 与PB 的斜率乘积为定值;(Ⅱ)设点M ,N 在椭圆C 上,O 为坐标原点,当//OM PA ,//ON PB 时,求OMN ∆的面积.3、(西城区2017届高三上学期期末)已知直线:l x t =与椭圆22:142x y C +=相交于A ,B两点,M 是椭圆C 上一点.(Ⅰ)当1t =时,求△MAB 面积的最大值;(Ⅱ)设直线MA 和MB 与x 轴分别相交于点E ,F ,O 为原点.证明:||||OE OF ⋅ 为定值.4、(东城区2017届高三上学期期末)已知椭圆2222:1(0)x y C a b a b+=>>经过点(2,0)M ,离心率为12.,A B 是椭圆C 上两点,且直线,OA OB 的斜率之积为34-,O 为坐标原点. (Ⅰ)求椭圆C 的方程;(Ⅱ)若射线OA 上的点P 满足||3||PO OA =,且PB 与椭圆交于点Q ,求||||BP BQ 的值.5、(丰台区2017届高三上学期期末)已知抛物线C :22(0)y px p =>的焦点为F ,且经过点(12),A ,过点F 的直线与抛物线C 交于P ,Q 两点. (Ⅰ)求抛物线C 的方程;(Ⅱ)O 为坐标原点,直线OP ,OQ 与直线2px =-分别交于S ,T 两点,试判断FS FT ⋅uu r uu u r 是否为定值?若是,求出这个定值;若不是,请说明理由.6、(海淀区2017届高三上学期期末)已知(0,2),(3,1)A B 是椭圆G :22221(0)x y a b a b+=>>上的两点.(Ⅰ)求椭圆G 的离心率;(Ⅱ)已知直线l 过点B ,且与椭圆G 交于另一点C (不同于点A ),若以BC 为直径的圆经过点A ,求直线l 的方程.7、(石景山区2017届高三上学期期末)已知椭圆2222:1(0)x y C a b a b+=>>,点(2,0)在椭圆C 上.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)过点(1,0)P 的直线(不与坐标轴垂直)与椭圆交于A B 、两点,设点B 关于x 轴的对称点为B '.直线B A '与x 轴的交点Q 是否为定点?请说明理由.8、(通州区2017届高三上学期期末)如图,已知椭圆()2222:10x y C a b a b +=>>经过点)23,1(P ,离心率21=e .(Ⅰ)求椭圆C 的标准方程;(Ⅱ)设AB 是经过右焦点F 的任一弦(不经过点P ),直线AB 与直线:4l x =相交于点M ,记PA ,PB ,PM 的斜率分别为1k ,2k ,3k ,求证:1k ,3k ,2k 成等差数列.参考答案一、选择、填空题1、32、B3、D4、535、B6、A7、A 8、( 9、A 1011、解:由双曲线=1的a=,b=1,c=2,得F 1(﹣2,0),F 2(2,0),渐近线为,由对称性,不妨设PF 1与直线平行,可得,由得,即有,,•=﹣×+(﹣)2=﹣.故选B .二、解答题1、解:(I)法一设椭圆C 的标准方程为22221(0)x y a b a b+=>>.由已知得22222,211,a b c a b c ⎧=+⎪⎪+=⎨⎪⎪=⎩解得2a b =⎧⎪⎨=⎪⎩所以椭圆C 的方程为22142x y +=. …………6分法二设椭圆C 的标准方程为22221(0)x y a b a b+=>>.由已知得c =12214a MF MF =+==.所以2a =, 2222b a c =-=.所以椭圆C 的方程为22142x y +=. …………6分(II)法一当直线l 的斜率存在时(由题意0≠k ),设直线l 的方程为1y kx =+.由221,421x y y kx ⎧+=⎪⎨⎪=+⎩得22(21)420k x kx ++-=. 设11(,)A x y ,22(,)B x y .则22122122168(21)0,4,212.21k k k x x k x x k ⎧⎪∆=++>⎪⎪+=-⎨+⎪⎪=-⎪+⎩特殊地,当A 为(2,0)时,12=-k ,所以2423=-x ,223=-x ,243=y ,即24(,)33-B .所以点B 关于y 轴的对称点24(,)33D ,则直线AD 的方程为(2)=--y x . 又因为当直线l 斜率不存时,直线AD 的方程为0=x , 如果存在定点Q 满足条件,则(0,2)Q . 所以111112111---===-QA y y k k x x x ,222222111---===-+--QD y y k k x x x , 又因为 121212112()2()220QA QB x x k k k k k k x x x x +-=-+=-=-=, 所以=QA QD k k ,即,,A D Q 三点共线.即直线AD 恒过定点,定点坐标为(0,2)Q . …………14分 法二(II)①当直线l 的斜率存在时(由题意0≠k ),设直线l 的方程为1y kx =+ .由221,24y kx x y =+⎧⎨+=⎩,可得22(12)420k x kx ++-=. 设1122(,),(,)A x y B x y ,则22(,)D x y -.所以22122122168(21)0,4,212.21k k k x x k x x k ⎧⎪∆=++>⎪⎪+=-⎨+⎪⎪=-⎪+⎩因为2121AD y y k x x -=--,所以直线AD 的方程为:211121()y y y y x x x x --=---.所以21121112121y y x y x yy x y x x x x --=⋅++--+21121121112121y y x y x y x y x yx x x x x --++=⋅+--+2112212121y y x y x y x x x x x -+=⋅+--+ 2112212121(1)(1)y y x kx x kx x x x x x -+++=⋅+--+ 21122121212y y kx x x x x x x x x -++=⋅+--+ 2112212121y y kx x x x x x x -=⋅++--+21212y y x x x -=⋅+--.因为当0,2x y ==, 所以直线MD 恒过(0,2)点.②当k 不存在时,直线AD 的方程为0x =,过定点(0,2). 综上所述,直线AD 恒过定点,定点坐标为(0,2). …………14分2、解:(Ⅰ)设00(,)P x y ,则2200132x y +=. 所以直线PA 与PB2200220062233(3)3y x x x -===---.……4分 (Ⅱ)依题直线,OM ON 的斜率乘积为23-. ①当直线MN 的斜率不存在时,直线,OM ON的斜率为±OM 的方程是3y x =,由22236,,x y y x ⎧+=⎪⎨=⎪⎩得2x =±,1y =±.取M,则1)N -.所以OMN ∆②当直线MN 的斜率存在时,设直线MN 的方程是y kx m =+,由22,2360y kx m x y =+⎧⎨+-=⎩得222(32)6360k x kmx m +++-=. 因为M ,N 在椭圆C 上,所以2222364(32)(36)0k m k m ∆=-+->,解得22320k m -+>.设11(,)M x y ,22(,)N x y ,则122632kmx x k +=-+,21223632m x x k -=+.MN ===. 设点O 到直线MN 的距离为d,则d =.所以OMN ∆的面积为12OMNS d MN ∆=⨯⨯=⋅⋅⋅⋅⋅⋅①. 因为//OM PA ,//ON PB ,直线OM ,ON 的斜率乘积为23-,所以121223y y x x =-. 所以2212121212121212()()()y y kx m kx m k x x km x x m x x x x x x +++++==2222636m k m -=-. 由222262363m k m -=--,得22322k m +=.⋅⋅⋅⋅⋅⋅②由①②,得OMNS ∆===.综上所述,2OMN S ∆=. …………………………………13分 3、解:(Ⅰ)将1x =代入22142x y +=,解得2y =±,所以||AB =[2分] 当M 为椭圆C 的顶点()2,0-时,M 到直线1x =的距离取得最大值3,[4分]所以△MAB面积的最大值是2.[5分] (Ⅱ)设,A B 两点坐标分别为(),A t n ,(),B t n -,从而2224t n +=.[6分]设()00,M x y ,则有220024x y +=,0x t ≠,0y n ≠±.[7分]直线MA 的方程为00()y ny n x t x t--=--,[8分] 令0y =,得000ty nx x y n-=-,从而000ty nx OE y n -=-.[9分]直线M B 的方程为00()y ny n x t x t++=--,[10分] 令0y =,得000ty nx x y n+=+,从而000ty nx OF y n +=+.[11分]所以000000=ty nx ty nx OE OF y n y n -+⋅⋅-+222200220=t y n x y n--()()222202204242=n y n y y n ----[13分]22022044=y n y n -- =4.所以OE OF ⋅为定值.[14分]4、解:(Ⅰ)由题意得222212.a c a abc =⎧⎪⎪=⎨⎪⎪=+⎩,,解得b =所以椭圆C 的方程为22143x y +=. ……………………………5分(Ⅱ)设112233(,),(,),(,)A x y B x y Q x y . 因为点P 在直线AO 上且满足||3||PO OA =, 所以11(3,3)P x y . 因为,,B Q P 三点共线,所以BP BQ λ=.所以12123232(3,3)(,)x x y y x x y y λ--=--,123212323(),3().x x x x y y y y λλ-=-⎧⎨-=-⎩ 解得31231231,31.x x x y y y λλλλλλ-⎧=+⎪⎪⎨-⎪=+⎪⎩因为点Q 在椭圆C 上,所以2233143x y +=.所以2212123131()()143x x y y λλλλλλ--+++=.即22222112212122296(1)()()()()1434343x y x y x x y y λλλλλ--+++-+=1, 因为,A B 在椭圆C 上,所以2211143x y +=,2222143x y +=.因为直线,OA OB 的斜率之积为34-, 所以121234y y x x ⋅=-,即1212043x x y y+=.所以2291()1λλλ-+=,解得5λ=. 所以||||5||BP BQ λ==. ……………………………14分 5、解:(Ⅰ)把点(1,2)A 代入抛物线C 的方程22y px =,得42p =,解得2p =, 所以抛物线C 的方程为24y x =. (4)分(Ⅱ)因为2p =,所以直线2px =-为1x =-,焦点F 的坐标为(1,0) 设直线PQ 的方程为1x ty =+,211(,)4y P y ,222(,)4y Q y , 则直线OP 的方程为14y x y =,直线OQ 的方程为24y x y =. ……………….5分 由14,1,y x y x ⎧=⎪⎨⎪=-⎩得14(1,)S y --,同理得24(1,)T y --. ……………….7分 所以14(2,)FS y =--uu r ,24(2,)FT y =--uu u r ,则12164FS FT y y ⋅=+uu r uu u r . ……………….9分由21,4,x ty y x =+⎧⎨=⎩得2440y ty --=,所以124y y =-, ……………….11分 则164(4)FS FT ⋅=+-uu r uu u r 440=-=. 所以,FS FT ⋅u u r u u u r的值是定值,且定值为0. (13)分6、解:(Ⅰ)由已知2,b =由点(3,1)B 在椭圆G 上可得29114a +=,解得212,a a ==.所以2228,c a b c =-==所以椭圆G 的离心率是c e a == (Ⅱ)法1:因为以BC 为直径的圆经过点A ,所以AB AC ⊥,由斜率公式和(0,2),(3,1)A B 可得13AB k =-,所以3Ac k =,设直线AC 的方程为32y x =+. 由2232,1124y x x y =+⎧⎪⎨+=⎪⎩得2790x x +=,由题设条件可得90,7A C x x ==-,所以913()77C -,-,所以直线BC 的方程为213y x =-. 法2:因为以BC 为直径的圆经过点A ,所以AB AC ⊥,由斜率公式和(0,2),(3,1)A B 可得13AB k =-,所以3Ac k =,设C C C x y (,) ,则23C Ac Cy k x -==,即32C C y x =+① 由点C 在椭圆上可得221124C C x y +=② 将①代入②得2790C C x x +=,因为点C 不同于点A ,所以97C x =-,所以913()77C -,-,所以直线BC 的方程为213y x =-. 法3:当直线l 过点B 且斜率不存在时,可得点(3,1)C -,不满足条件.设直线BC 的方程为1(3)y k x -=-,点C C C x y (,)由2213,1124y kx k x y =+-⎧⎪⎨+=⎪⎩可得222(31)6(13)3(13)120k x k k x k ++-+--=,显然0∆>,此方程两个根是点B C 和点的横坐标,所以223(13)12331C k x k --=+,即22(13)4,31C k x k --=+ 所以22361,31C k k y k --+=+因为以BC 为直径的圆经过点A ,所以AB AC ⊥,即0AB AC ⋅=. (此处用1AB AC k k ⋅=-亦可)2222963961(3,1)(,)3131k k k k AB AC k k -----⋅=-⋅=++ 2236128031k k k --=+,即(32)(31)0k k -+=,1221,,33k k ==-当213k =-时,即直线AB ,与已知点C 不同于点A 矛盾,所以12,3BC k k ==所以直线BC 的方程为213y x =-.7、解:(Ⅰ)因为点(2,0)在椭圆C 上,所以2a =.又因为2c e a ==,所以c =1b =. 所以椭圆C 的标准方程为:2214x y +=. ……………………5分(Ⅱ)设112222(,),(,),(,),(,0)A x y B x y B x y Q n '-.设直线AB :(1)(0)y k x k =-≠. ……………………6分联立22(1)440y k x x y =-+-=和,得:2222(14)8440k x k x k +-+-=.所以2122814k x x k +=+,21224414k x x k -=+. ……………8分直线AB '的方程为121112()y y y y x x x x +-=--, ……………9分令0y =,解得112122111212()y x x x y x yn x y y y y -+=-+=++ ………11分又1122(1),(1)y k x y k x =-=-, 所以121212()42x x x x n x x -+==+-.所以直线B A '与x 轴的交点Q 是定点,坐标为(4,0)Q .………13分 8、解:(Ⅰ)由点3(1,)2P 在椭圆上得,221914a b +=① 11,22c e a ==又所以② 由①②得2221,4,3c a b ===,故椭圆C 的标准方程为22143x y +=……………….4分(Ⅱ)椭圆右焦点坐标F (1,0),显然直线AB 斜率存在, 设,AB k AB 的斜率为则直线的方程为(1)y k x =-③…………….5分代入椭圆方程22143x y +=,整理得2222(43)84(3)0k x k x k +-+-= ……………….6分 设1122(,),(,)A x y B x y ,则有2212122284(3),4343k k x x x x k k -+==++④ ……………….7分 在方程③中,令4x =得,(4,3)M k ,从而2121213322,,11y y k k x x --==-- 33312412k k k -==--,……………….9分 又因为B F A 、、共线,则有BF AF k k k ==,即有k x yx y =-=-112211 所以=+21k k =--+--1231232211x y x y )1111(2311212211-+---+-x x x y x y =2k -121212232()1x x x x x x +--++⑤将④代入⑤得=+21k k 322k -12134834)3(42348222222-=++-+--+k k kk k k k ,……………….12分又213-=k k , 所以=+21k k 32k ,即132,,k k k 成等差数列.……………….13分。

相关文档
最新文档