广西省来宾市2021届新高考最新终极猜押数学试题含解析
广西省来宾市2021届新高考数学考前模拟卷(3)含解析

广西省来宾市2021届新高考数学考前模拟卷(3)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.某四棱锥的三视图如图所示,记S 为此棱锥所有棱的长度的集合,则( )A .2223S S ,且B .2223S S ,且C .2223S S ,且D .2223S S ,且 【答案】D 【解析】 【分析】如图所示:在边长为2的正方体1111ABCD A B C D -中,四棱锥1C ABCD -满足条件,故{}2,22,23S =,得到答案.【详解】如图所示:在边长为2的正方体1111ABCD A B C D -中,四棱锥1C ABCD -满足条件. 故12AB BCCD AD CC =====,1122BC DC ==,123AC =故{}2,22,23S =,故2S ,23S .故选:D .【点睛】本题考查了三视图,元素和集合的关系,意在考查学生的空间想象能力和计算能力.2.已知定义在R 上的偶函数()f x ,当0x ≥时,22()2xx xf x e +=-,设2(ln 2),(2),(ln2a fb fc f ===,则( ) A .b a c >> B .b a c >=C .a c b =>D .c a b >>【答案】B 【解析】 【分析】根据偶函数性质,可判断,a c 关系;由0x ≥时,22()2xx xf x e +=-,求得导函数,并构造函数()1x g x e x =--,由()g x '进而判断函数()f x 在0x ≥时的单调性,即可比较大小.【详解】()f x 为定义在R 上的偶函数,所以(22ln ln 222c f f f ⎛⎫⎛⎫==-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ 所以a c =;当0x ≥时,22()2xx x f x e +=-,则)1(xf x e x =--', 令()1xg x e x =--则1()xg x e '=-,当0x ≥时,)0(1xg x e =-≥',则()1x g x e x =--在0x ≥时单调递增,因为000)10(g e =--=,所以1(0)x g x e x --=≥, 即)0(1x x f x e =--≥',则22()2xx xf x e +=-在0x ≥时单调递增,而0<<(f f<,综上可知,(ln 2f f f ⎛⎫=< ⎪ ⎪⎝⎭即a c b =<, 故选:B. 【点睛】本题考查了偶函数的性质应用,由导函数性质判断函数单调性的应用,根据单调性比较大小,属于中档题. 3.以()3,1A -,()2,2B-为直径的圆的方程是A .2280x y x y +---= B .2290x y x y +---= C .2280x y x y +++-= D .2290x y x y +++-=【答案】A 【解析】 【分析】设圆的标准方程,利用待定系数法一一求出,,a b r ,从而求出圆的方程. 【详解】设圆的标准方程为222()()x a y b r -+-=, 由题意得圆心(,)O a b 为A ,B 的中点, 根据中点坐标公式可得32122a -==,12122b -+==,又||2AB r ===,所以圆的标准方程为: 221117()()222x y -+-=,化简整理得2280x y x y +---=,所以本题答案为A. 【点睛】本题考查待定系数法求圆的方程,解题的关键是假设圆的标准方程,建立方程组,属于基础题.4.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,用其名字命名的“高斯函数”为:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,例如:[]0.51-=-,[]1.51=,已知函数12()4324x x fx -=-⋅+(02x <<),则函数[]()y f x =的值域为( ) A .13,22⎡⎫-⎪⎢⎣⎭B .{}1,0,1-C .{}1,0,1,2-D .{}0,1,2【答案】B 【解析】 【分析】利用换元法化简()f x 解析式为二次函数的形式,根据二次函数的性质求得()f x 的取值范围,由此求得[]()y f x =的值域.【详解】 因为12()4324x x f x -=-⋅+(02x <<),所以()21241324232424x x x x y =-⋅+=-⋅+,令2x t =(14t <<),则21()342f t t t =-+(14t <<),函数的对称轴方程为3t =,所以min 1()(3)2f t f ==-,max 3()(1)2f t f ==,所以13(),22f x ⎡⎫∈-⎪⎢⎣⎭,所以[]()y f x =的值域为{}1,0,1-. 故选:B 【点睛】本小题考查函数的定义域与值域等基础知识,考查学生分析问题,解决问题的能力,运算求解能力,转化与化归思想,换元思想,分类讨论和应用意识.5.如图,正方体的底面与正四面体的底面在同一平面α上,且//AB CD ,若正方体的六个面所在的平面与直线CE EF ,相交的平面个数分别记为m n ,,则下列结论正确的是( )A .m n =B .2m n =+C .m n <D .8m n +<【答案】A 【解析】 【分析】根据题意,画出几何位置图形,由图形的位置关系分别求得,m n 的值,即可比较各选项. 【详解】如下图所示,CE ⊂平面ABPQ ,从而//CE 平面1111A B PQ ,易知CE 与正方体的其余四个面所在平面均相交, ∴4m =,∵//EF 平面11BPPB ,//EF 平面11AQQ A ,且EF 与正方体的其余四个面所在平面均相交, ∴4n =,∴结合四个选项可知,只有m n =正确. 故选:A. 【点睛】本题考查了空间几何体中直线与平面位置关系的判断与综合应用,对空间想象能力要求较高,属于中档题. 6.定义在R 上的奇函数()f x 满足()()330f x f x --+-=,若()11f =,()22f =-,则()()()()1232020f f f f ++++=L ( )A .1-B .0C .1D .2【答案】C 【解析】 【分析】首先判断出()f x 是周期为6的周期函数,由此求得所求表达式的值. 【详解】由已知()f x 为奇函数,得()()f x f x -=-, 而()()330f x f x --+-=, 所以()()33f x f x -=+, 所以()()6f x f x =+,即()f x 的周期为6.由于()11f =,()22f =-,()00f =, 所以()()()()33330f f f f =-=-⇒=,()()()4222f f f =-=-=,()()()5111f f f =-=-=-, ()()600f f ==.所以()()()()()()1234560f f f f f f +++++=, 又202063364=⨯+,所以()()()()1232020f f f f ++++=L ()()()()12341f f f f +++=. 故选:C 【点睛】本小题主要考查函数的奇偶性和周期性,属于基础题. 7.函数()()23ln 1x f x x+=的大致图象是A .B .C .D .【答案】A 【解析】 【分析】利用函数的对称性及函数值的符号即可作出判断. 【详解】由题意可知函数()f x 为奇函数,可排除B 选项; 当x 0<时,()0f x <,可排除D 选项; 当x 1=时,()12f ln =,当x 3=时,ln10ln10(3),ln 22727f =>, 即()()1?3f f >,可排除C 选项, 故选:A 【点睛】本题考查了函数图象的判断,函数对称性的应用,属于中档题.8.已知集合A ={x ∈N|x 2<8x},B ={2,3,6},C ={2,3,7},则()A B C ⋃ð=( ) A .{2,3,4,5} B .{2,3,4,5,6} C .{1,2,3,4,5,6} D .{1,3,4,5,6,7}【答案】C根据集合的并集、补集的概念,可得结果. 【详解】集合A ={x ∈N|x 2<8x}={x ∈N|0<x <8}, 所以集合A ={1,2,3,4,5,6,7} B ={2,3,6},C ={2,3,7}, 故A C ð={1,4,5,6},所以()A B C ⋃ð={1,2,3,4,5,6}. 故选:C. 【点睛】本题考查的是集合并集,补集的概念,属基础题.9.已知等比数列{}n a 满足13a =,13521a a a ++=,则357a a a ++=( ) A .21 B .42 C .63 D .84【答案】B 【解析】由a 1+a 3+a 5=21得242421(1)21172a q q q q q ++=∴++=∴=∴ a 3+a 5+a 7=2135()22142q a a a ++=⨯=,选B.10.在平面直角坐标系中,经过点P ,渐近线方程为y =的双曲线的标准方程为( )A .22142-=x yB .221714x y -=C .22136x y -=D .221147y x -=【答案】B 【解析】 【分析】根据所求双曲线的渐近线方程为y =,可设所求双曲线的标准方程为222x y -=k .再把点(代入,求得 k 的值,可得要求的双曲线的方程.【详解】∵双曲线的渐近线方程为y =∴设所求双曲线的标准方程为222x y -=k .又(在双曲线上,则k=16-2=14,即双曲线的方程为222x y 14-=,∴双曲线的标准方程为22x y 1714-=本题主要考查用待定系数法求双曲线的方程,双曲线的定义和标准方程,以及双曲线的简单性质的应用,属于基础题.11.若(1+2ai)i =1-bi ,其中a ,b ∈R ,则|a +bi|=( ). A .12B.CD .5【答案】C 【解析】试题分析:由已知,-2a +i =1-bi ,根据复数相等的充要条件,有a =-12,b =-1 所以|a +bi|=,选C 考点:复数的代数运算,复数相等的充要条件,复数的模12.向量1,tan 3a α⎛⎫= ⎪⎝⎭r ,()cos ,1b α=r,且//a b r r ,则cos 2πα⎛⎫+= ⎪⎝⎭( )A .13B.3-C.3-D .13-【答案】D 【解析】 【分析】根据向量平行的坐标运算以及诱导公式,即可得出答案. 【详解】//a b∴r r 1cos tan sin 3ααα∴=⋅= 1cos sin 23παα⎛⎫∴+=-=- ⎪⎝⎭故选:D 【点睛】本题主要考查了由向量平行求参数以及诱导公式的应用,属于中档题. 二、填空题:本题共4小题,每小题5分,共20分。
广西省来宾市2021届新高考数学考前模拟卷(2)含解析

广西省来宾市2021届新高考数学考前模拟卷(2)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知命题p:直线a ∥b ,且b ⊂平面α,则a ∥α;命题q:直线l ⊥平面α,任意直线m ⊂α,则l ⊥m.下列命题为真命题的是( )A .p ∧qB .p ∨(非q )C .(非p )∧qD .p ∧(非q ) 【答案】C【解析】【分析】首先判断出p 为假命题、q 为真命题,然后结合含有简单逻辑联结词命题的真假性,判断出正确选项.【详解】根据线面平行的判定,我们易得命题:p 若直线//a b ,直线b ⊂平面α,则直线//a 平面α或直线a 在平面α内,命题p 为假命题;根据线面垂直的定义,我们易得命题:q 若直线l ⊥平面α,则若直线l 与平面α内的任意直线都垂直,命题q 为真命题.故:A 命题“p q ∧”为假命题;B 命题“()p q ∨⌝”为假命题;C 命题“()p q ⌝∧”为真命题;D 命题“()p q ∧⌝”为假命题.故选:C.【点睛】本小题主要考查线面平行与垂直有关命题真假性的判断,考查含有简单逻辑联结词的命题的真假性判断,属于基础题.2.已知将函数()sin()f x x ωϕ=+(06ω<<,22ππϕ-<<)的图象向右平移3π个单位长度后得到函数()g x 的图象,若()f x 和()g x 的图象都关于4x π=对称,则ω的值为( )A .2B .3C .4D .32【答案】B【解析】【分析】 因为将函数()sin()f x x ωϕ=+(06ω<<,22ππϕ-<<)的图象向右平移3π个单位长度后得到函数()g x 的图象,可得()sin sin 33g x x x ππωϕωωϕ⎡⎤⎛⎫⎛⎫=-+=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,结合已知,即可求得答案. 【详解】Q 将函数()sin()f x x ωϕ=+(06ω<<,22ππϕ-<<)的图象向右平移3π个单位长度后得到函数()g x 的图象 ∴()sin sin 33g x x x ππωϕωωϕ⎡⎤⎛⎫⎛⎫=-+=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 又Q ()f x 和()g x 的图象都关于4x π=对称,∴由1242432k k ππωϕππππωωϕπ⎧+=+⎪⎪⎨⎪-+=+⎪⎩()12,k k ∈Z , 得()123k k πωπ=-,()12,k k ∈Z ,即()123k k ω=-()12,k k ∈Z ,又Q 06ω<<,∴3ω=.故选:B.【点睛】本题主要考查了三角函数图象平移和根据图象对称求参数,解题关键是掌握三角函数图象平移的解法和正弦函数图象的特征,考查了分析能力和计算能力,属于基础题.3.集合*12|x N Z x ⎧⎫∈∈⎨⎬⎩⎭中含有的元素个数为( ) A .4B .6C .8D .12 【答案】B【解析】 解:因为*12|x N Z x ⎧⎫∈∈⎨⎬⎩⎭集合中的元素表示的是被12整除的正整数,那么可得为1,2,3,4,6,,12故选B4.把函数2()sin f x x =的图象向右平移12π个单位,得到函数()g x 的图象.给出下列四个命题 ①()g x 的值域为(0,1]②()g x 的一个对称轴是12x π=③()g x 的一个对称中心是1,32π⎛⎫ ⎪⎝⎭④()g x 存在两条互相垂直的切线其中正确的命题个数是( )A .1B .2C .3D .4 【答案】C【解析】【分析】 由图象变换的原则可得11()cos 2262g x x π⎛⎫=--+ ⎪⎝⎭,由cos 2[1,1]6x π⎛⎫-∈- ⎪⎝⎭可求得值域;利用代入检验法判断②③;对()g x 求导,并得到导函数的值域,即可判断④.【详解】由题,21cos 2()sin 2x f x x -==, 则向右平移12π个单位可得,1cos 21112()cos 22262x g x x ππ⎛⎫-- ⎪⎛⎫⎝⎭==--+ ⎪⎝⎭ cos 2[1,1]6x π⎛⎫-∈- ⎪⎝⎭Q ,()g x ∴的值域为[0,1],①错误; 当12x π=时,206x π-=,所以12x π=是函数()g x 的一条对称轴,②正确; 当3x π=时,226x ππ-=,所以()g x 的一个对称中心是1,32π⎛⎫ ⎪⎝⎭,③正确; ()sin 2[1,1]6g x x π⎛⎫'=-∈- ⎪⎝⎭,则1212,,()1,()1x x R g x g x ''∃∈=-=,使得12()()1g x g x ''⋅=-,则()g x 在1x x =和2x x =处的切线互相垂直,④正确.即②③④正确,共3个.故选:C【点睛】本题考查三角函数的图像变换,考查代入检验法判断余弦型函数的对称轴和对称中心,考查导函数的几何意义的应用.5.已知单位向量a r ,b r 的夹角为34π,若向量2m a =u r r ,4n a b λ=-r r r ,且m n ⊥u r r ,则n =r ( ) A .2B .2C .4D .6【答案】C【解析】【分析】根据m n ⊥u r r 列方程,由此求得λ的值,进而求得n r . 【详解】 由于m n ⊥u r r ,所以0m n ⋅=u r r ,即()23248282cos 8204a a b a a b πλλλλ⋅-=-⋅=-⋅=+=r r r r r r , 解得422λ=-=-. 所以442n a b =+r r r所以()2223442163223248322cos 483244a b a a b b n π+=+⋅+=-==+=r r r r r r r . 故选:C【点睛】本小题主要考查向量垂直的表示,考查向量数量积的运算,考查向量模的求法,属于基础题.6.某几何体的三视图如右图所示,则该几何体的外接球表面积为( )A .12πB .16πC .24πD .48π【答案】A【解析】【分析】 由三视图知:几何体为三棱锥,且三棱锥的一条侧棱垂直于底面,结合直观图判断外接球球心的位置,求出半径,代入求得表面积公式计算.【详解】由三视图知:几何体为三棱锥,且三棱锥的一条侧棱垂直于底面,高为2,底面为等腰直角三角形,斜边长为2,如图:ABC ∆∴的外接圆的圆心为斜边AC 的中点D ,OD AC ⊥,且OD ⊂平面SAC ,2SA AC ==Q ,SC ∴的中点O 为外接球的球心,∴半径3R =∴外接球表面积4312S ππ=⨯=.故选:A【点睛】本题考查了由三视图求几何体的外接球的表面积,根据三视图判断几何体的结构特征,利用几何体的结构特征与数据求得外接球的半径是解答本题的关键.7.已知过点(1,1)P 且与曲线3y x =相切的直线的条数有( ).A .0B .1C .2D .3【答案】C【解析】【分析】设切点为()00x ,y ,则300y x =,由于直线l 经过点()1,1,可得切线的斜率,再根据导数的几何意义求出曲线在点0x 处的切线斜率,建立关于0x 的方程,从而可求方程.【详解】若直线与曲线切于点()()000x ,y x 0≠,则32000000y 1x 1k x x 1x 1x 1--===++--, 又∵2y'3x =,∴200y'x x 3x ==,∴2002x x 10--=,解得0x 1=,01x 2=-, ∴过点()P 1,1与曲线3C :y x =相切的直线方程为3x y 20--=或3x 4y 10-+=,故选C .【点睛】本题主要考查了利用导数求曲线上过某点切线方程的斜率,求解曲线的切线的方程,其中解答中熟记利用导数的几何意义求解切线的方程是解答的关键,着重考查了运算与求解能力,属于基础题.8.如图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)的折线图.则下列结论中表述不正确...的是( )A .从2000年至2016年,该地区环境基础设施投资额逐年增加;B .2011年该地区环境基础设施的投资额比2000年至2004年的投资总额还多;C .2012年该地区基础设施的投资额比2004年的投资额翻了两番 ;D .为了预测该地区2019年的环境基础设施投资额,根据2010年至2016年的数据(时间变量t 的值依次为127,,…,)建立了投资额y 与时间变量t 的线性回归模型ˆ9917.5y t =+,根据该模型预测该地区2019的环境基础设施投资额为256.5亿元.【答案】D【解析】【分析】根据图像所给的数据,对四个选项逐一进行分析排除,由此得到表述不正确的选项.【详解】对于A 选项,由图像可知,投资额逐年增加是正确的.对于B 选项,20002004-投资总额为1119253537127++++=亿元,小于2012年的148亿元,故描述正确.2004年的投资额为37亿,翻两翻得到374148⨯=,故描述正确.对于D 选项,令10t =代入回归直线方程得9917.510274+⨯=亿元,故D 选项描述不正确.所以本题选D.【点睛】本小题主要考查图表分析能力,考查利用回归直线方程进行预测的方法,属于基础题.9.已知i 为虚数单位,复数z 满足()1z i i ⋅-=,则复数z 在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】B【解析】【分析】求出复数z ,得出其对应点的坐标,确定所在象限.【详解】 由题意i i(1i)11i 1i (1i)(1i)22z +===-+--+,对应点坐标为11(,)22- ,在第二象限. 故选:B .【点睛】本题考查复数的几何意义,考查复数的除法运算,属于基础题.10.若x yi +(,)x y ∈R 与31i i +-互为共轭复数,则x y +=( ) A .0B .3C .-1D .4 【答案】C【解析】【分析】 计算3121i i i+=+-,由共轭复数的概念解得,x y 即可. 【详解】3121i i i+=+-Q ,又由共轭复数概念得:x 1,y 2==-, 1x y ∴+=-.故选:C【点睛】本题主要考查了复数的运算,共轭复数的概念.11.若i 为虚数单位,则复数22sincos 33z i ππ=-+的共轭复数z 在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限 【答案】B【解析】【分析】 由共轭复数的定义得到z ,通过三角函数值的正负,以及复数的几何意义即得解【详解】 由题意得22sin cos 33z i ππ=--,因为2sin 032π-=-<,21cos 032π-=>, 所以z 在复平面内对应的点位于第二象限.故选:B【点睛】本题考查了共轭复数的概念及复数的几何意义,考查了学生概念理解,数形结合,数学运算的能力,属于基础题.12.设不等式组00x y x +≥⎧⎪⎨-≤⎪⎩表示的平面区域为Ω,若从圆C :224x y +=的内部随机选取一点P ,则P 取自Ω的概率为( )A.5 24B.724C.1124D.1724【答案】B【解析】【分析】画出不等式组表示的可行域,求得阴影部分扇形对应的圆心角,根据几何概型概率计算公式,计算出所求概率.【详解】作出Ω中在圆C内部的区域,如图所示,因为直线0x y+=,30x-=的倾斜角分别为34π,6π,所以由图可得P取自Ω的概率为3746224πππ-=.故选:B【点睛】本小题主要考查几何概型的计算,考查线性可行域的画法,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。
广西省来宾市重点中学2025届高考数学押题试卷含解析

广西省来宾市重点中学2025届高考数学押题试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数()ln f x x =,()()23g x m x n =++,若()0,x ∀∈+∞总有()()f x g x ≤恒成立.记()23m n +的最小值为(),F m n ,则(),F m n 的最大值为( )A .1B .1eC .21e D .31e 2.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高二丈,问:积几何?”其意思为:“今有底面为矩形的屋脊状的楔体,下底面宽3丈,长4丈,上棱长2丈,高2丈,问:它的体积是多少?”已知l 丈为10尺,该楔体的三视图如图所示,其中网格纸上小正方形边长为1,则该楔体的体积为( )A .10000立方尺B .11000立方尺C .12000立方尺D .13000立方尺3.已知点(m ,8)在幂函数()(1)n f x m x =-的图象上,设,(ln ),()m a f b f c f n n π⎛⎫=== ⎪⎝⎭,则( ) A .b <a <cB .a <b <cC .b <c <aD .a <c <b4.下列函数中既关于直线1x =对称,又在区间[1,0]-上为增函数的是( ) A .sin y x =π. B .|1|y x =- C .cos y x π=D .e e x x y -=+5.将函数()sin 3y x ϕ=+的图象沿x 轴向左平移9π个单位长度后,得到函数()f x 的图象,则“6π=ϕ”是“()f x 是偶函数”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件6.已知a ,b 为两条不同直线,α,β,γ为三个不同平面,下列命题:①若//αβ,//αγ,则//βγ;②若//a α,//a β,则//αβ;③若αγ⊥,βγ⊥,则αβ⊥;④若a α⊥,b α⊥,则//a b .其中正确命题序号为( )A .②③B .②③④C .①④D .①②③7.设(1)1i z i +⋅=-,则复数z 的模等于( ) A .2B .2C .1D .38.如图,已知三棱锥D ABC -中,平面DAB ⊥平面ABC ,记二面角D AC B --的平面角为α,直线DA 与平面ABC 所成角为β,直线AB 与平面ADC 所成角为γ,则( )A .αβγ≥≥B .βαγ≥≥C .αγβ≥≥D .γαβ≥≥9.已知AM BN ,分别为圆()221:11O x y ++=与()222:24O x y -+=的直径,则AB MN ⋅的取值范围为( )A .[]0,8B .[]0,9C .[]1,8D .[]1,910.已知函数()sin(2)4f x x π=-的图象向左平移(0)ϕϕ>个单位后得到函数()sin(2)4g x x π=+的图象,则ϕ的最小值为( ) A .4πB .38π C .2π D .58π 11.已知双曲线22221(0)x y a b a b-=>>的右焦点为F ,过F 的直线l 交双曲线的渐近线于A B 、两点,且直线l 的倾斜角是渐近线OA 倾斜角的2倍,若2AF FB =,则该双曲线的离心率为( ) A 32 B 23C 30D 512.已知函数()f x 的图象如图所示,则()f x 可以为( )A .3()3x f x x =-B .e e ()x xf x x --= C .2()f x x x =-D .||e ()xf x x=二、填空题:本题共4小题,每小题5分,共20分。
广西省来宾市2021届新高考数学仿真第二次备考试题含解析

广西省来宾市2021届新高考数学仿真第二次备考试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.217B.25C.3D.2【答案】B【解析】【分析】首先根据题中所给的三视图,得到点M和点N在圆柱上所处的位置,将圆柱的侧面展开图平铺,点M、N在其四分之一的矩形的对角线的端点处,根据平面上两点间直线段最短,利用勾股定理,求得结果. 【详解】根据圆柱的三视图以及其本身的特征,将圆柱的侧面展开图平铺,可以确定点M和点N分别在以圆柱的高为长方形的宽,圆柱底面圆周长的四分之一为长的长方形的对角线的端点处,所以所求的最短路径的长度为22+=,故选B.4225点睛:该题考查的是有关几何体的表面上两点之间的最短距离的求解问题,在解题的过程中,需要明确两个点在几何体上所处的位置,再利用平面上两点间直线段最短,所以处理方法就是将面切开平铺,利用平面图形的相关特征求得结果.2.如图所示,网络纸上小正方形的边长为1,粗线画出的是某四棱锥的三视图,则该几何体的体积为()A .2B .83C .6D .8【答案】A 【解析】 【分析】先由三视图确定该四棱锥的底面形状,以及四棱锥的高,再由体积公式即可求出结果. 【详解】由三视图可知,该四棱锥为斜着放置的四棱锥,四棱锥的底面为直角梯形,上底为1,下底为2,高为2,四棱锥的高为2, 所以该四棱锥的体积为()11V 1222232=⨯⨯+⨯⨯=. 故选A 【点睛】本题主要考查几何的三视图,由几何体的三视图先还原几何体,再由体积公式即可求解,属于常考题型. 3.已知直线22+=mx ny ()0,0m n >>过圆()()22125x y -+-=的圆心,则11m n+的最小值为( ) A .1 B .2 C .3 D .4【答案】D 【解析】 【分析】圆心坐标为(1,2),代入直线方程,再由乘1法和基本不等式,展开计算即可得到所求最小值. 【详解】圆22(1)(2)5x y -+-=的圆心为(1,2),由题意可得222m n +=,即1m n +=,m ,0n >, 则1111()()24n m m n m n m n m n +=++=++…,当且仅当n mm n =且1m n +=即12m n ==时取等号, 故选:D . 【点睛】本题考查最值的求法,注意运用乘1法和基本不等式,注意满足的条件:一正二定三等,同时考查直线与圆的关系,考查运算能力,属于基础题.4.在ABC ∆中,2AB =,3AC =,60A ∠=︒,O 为ABC ∆的外心,若AO x AB y AC =+u u u r u u u r u u u r ,x ,y R ∈,则23x y +=( ) A .2 B .53C .43D .32【答案】B【解析】 【分析】首先根据题中条件和三角形中几何关系求出x ,y ,即可求出23x y +的值. 【详解】如图所示过O 做三角形三边的垂线,垂足分别为D ,E ,F , 过O 分别做AB ,AC 的平行线NO ,MO ,由题知222294cos 607212AB AC BC BC BC AB AC +-++︒==⇒=⋅⋅则外接圆半径212sin 603BC r ==⋅︒, 因为⊥OD AB ,所以22213193OD AO AD =-=-=, 又因为60DMO ∠=︒,所以2133DM AM =⇒=,43MO AN ==, 由题可知AO xAB y AC AM AN =+=+u u u r u u u r u u u r u u u u ru u u r, 所以16AM x AB ==,49AN y AC ==, 所以5233x y +=. 故选:D. 【点睛】本题主要考查了三角形外心的性质,正弦定理,平面向量分解定理,属于一般题.5.已知12,F F 是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,若点2F 关于双曲线渐近线的对称点A 满足11F AO AOF ∠=∠(O 为坐标原点),则双曲线的渐近线方程为( )A .2y x =±B .3y x =±C .2y x =±D .y x =±【答案】B 【解析】 【分析】先利用对称得2AF OM ⊥,根据11F AO AOF ∠=∠可得1AF c =,由几何性质可得160AFO ∠=o,即260MOF ∠=o ,从而解得渐近线方程.【详解】 如图所示:由对称性可得:M 为2AF 的中点,且2AF OM ⊥, 所以12F A AF ⊥,因为11F AO AOF ∠=∠,所以11AF F O c ==,故而由几何性质可得160AFO ∠=o ,即260MOF ∠=o , 故渐近线方程为3y x =, 故选B. 【点睛】本题考查了点关于直线对称点的知识,考查了双曲线渐近线方程,由题意得出260MOF ∠=o是解题的关键,属于中档题.6.已知函数()f x 的定义域为()0,∞+,且()()2224m f m f f n n ⎛⎫ ⎪⎝⎭⋅=,当01x <<时,()0f x <.若()42f =,则函数()f x 在[]1,16上的最大值为( ) A .4 B .6C .3D .8【答案】A 【解析】 【分析】根据所给函数解析式满足的等量关系及指数幂运算,可得()()m f f n f m n ⎛⎫+=⎪⎝⎭;利用定义可证明函数()f x 的单调性,由赋值法即可求得函数()f x 在[]1,16上的最大值.【详解】函数()f x 的定义域为()0,∞+,且()()2224m f m f f n n ⎛⎫⎪⎝⎭⋅=,则()()m f f n f m n ⎛⎫+=⎪⎝⎭; 任取()12,0,x x ∈+∞,且12x x <,则1201x x <<, 故120x f x ⎛⎫<⎪⎝⎭, 令1m x =,2n x =,则()()1212x f f x f x x ⎛⎫+= ⎪⎝⎭, 即()()11220x f x f x f x ⎛⎫-=<⎪⎝⎭, 故函数()f x 在()0,∞+上单调递增, 故()()max 16f x f =, 令16m =,4n =,故()()()44164f f f +==, 故函数()f x 在[]1,16上的最大值为4. 故选:A. 【点睛】本题考查了指数幂的运算及化简,利用定义证明抽象函数的单调性,赋值法在抽象函数求值中的应用,属于中档题.7.已知函数21()log 1||f x x ⎛⎫=+⎪⎝⎭(lg )3f x >的解集为( )A .1,1010⎛⎫⎪⎝⎭B .1,(10,)10⎛⎫-∞⋃+∞ ⎪⎝⎭C .(1,10)D .1,1(1,10)10⎛⎫⋃⎪⎝⎭【答案】D 【解析】 【分析】先判断函数的奇偶性和单调性,得到1lg 1x -<<,且lg 0x ≠,解不等式得解. 【详解】由题得函数的定义域为(,0)(0,)-∞+∞U . 因为()()f x f x -=,所以()f x 为(,0)(0,)-∞+∞U 上的偶函数,因为函数11||y y x =+=,都是在(0,)+∞上单调递减. 所以函数()f x 在(0,)+∞上单调递减. 因为(1)3,(lg )3(1)f f x f =>=, 所以1lg 1x -<<,且lg 0x ≠,解得1,1(1,10)10x ⎛⎫∈⋃ ⎪⎝⎭.故选:D 【点睛】本题主要考查函数的奇偶性和单调性的判断,考查函数的奇偶性和单调性的应用,意在考查学生对这些知识的理解掌握水平. 8.已知函数()0,1ln ,1x f x x x <⎧=⎨≥⎩,若不等式()≤-f x x k 对任意的x ∈R 恒成立,则实数k 的取值范围是( ) A .(],1-∞ B .[)1,+∞C .[)0,1D .(]1,0-【答案】A 【解析】 【分析】先求出函数()f x 在(1,0)处的切线方程,在同一直角坐标系内画出函数()0,1ln ,1x f x x x <⎧=⎨≥⎩和()g x x k =-的图象,利用数形结合进行求解即可.【详解】当1x ≥时,()''1ln ,()(1)1f x x f x f x=⇒=⇒=,所以函数()f x 在(1,0)处的切线方程为:1y x =-,令()g x x k =-,它与横轴的交点坐标为(,0)k .在同一直角坐标系内画出函数()0,1ln ,1x f x x x <⎧=⎨≥⎩和()g x x k =-的图象如下图的所示:利用数形结合思想可知:不等式()≤-f x x k 对任意的x ∈R 恒成立,则实数k 的取值范围是1k ≤. 故选:A 【点睛】本题考查了利用数形结合思想解决不等式恒成立问题,考查了导数的应用,属于中档题. 9.已知函数()cos ||sin f x x x =+,则下列结论中正确的是 ①函数()f x 的最小正周期为π; ②函数()f x 的图象是轴对称图形; ③函数()f x 2; ④函数()f x 的最小值为1-. A .①③ B .②④ C .②③ D .②③④【答案】D 【解析】 【分析】 【详解】因为(π)cos(π)sin(π)|cos ||sin (|)f x x x x x f x +=+++=-≠,所以①不正确; 因为()cos ||sin f x x x =+,所以 cos sin ()|()|(sin |22c )|os 2x x x f x x πππ+++==++, ()2f x π-=cos sin sin |c |()|()|22os ππ++--=x x x x ,所以() ()22f x f x ππ+=-, 所以函数()f x 的图象是轴对称图形,②正确;易知函数()f x 的最小正周期为2π,因为函数()f x 的图象关于直线2x π=对称,所以只需研究函数()f x 在3[,]22ππ上的极大值与最小值即可.当322x ππ≤≤时,()cos sin 2sin()4f x x x x π=-+=-,且5444x πππ≤-≤,令42x ππ-=,得34x π=,可知函数()f x 在34x π=处取得极大值为2,③正确; 因为5444x πππ≤-≤,所以12sin()24x π-≤-≤,所以函数()f x 的最小值为1-,④正确. 故选D .10.洛书,古称龟书,是阴阳五行术数之源,在古代传说中有神龟出于洛水,其甲壳上心有此图象,结构是戴九履一,左三右七,二四为肩,六八为足,以五居中,五方白圈皆阳数,四角黑点为阴数.如图,若从四个阴数和五个阳数中分别随机选取1个数,则其和等于11的概率是( ).A .15B .25C .310D .14【答案】A 【解析】 【分析】基本事件总数4520n =⨯=,利用列举法求出其和等于11包含的基本事件有4个,由此能求出其和等于11的概率. 【详解】解:从四个阴数和五个阳数中分别随机选取1个数, 基本事件总数4520n =⨯=,其和等于11包含的基本事件有:(9,2),(3,8),(7,4),(5,6),共4个,∴其和等于11的概率41205p ==. 故选:A . 【点睛】本题考查概率的求法,考查古典概型等基础知识,考查运算求解能力,属于基础题. 11.设等比数列{}n a 的前n 项和为n S ,则“1322a a a +<”是“210n S -<”的( ) A .充分不必要 B .必要不充分 C .充要 D .既不充分也不必要【答案】A【分析】首先根据等比数列分别求出满足1322a a a +<,210n S -<的基本量,根据基本量的范围即可确定答案. 【详解】{}n a 为等比数列,若1322a a a +<成立,有()21201q a q -+<,因为2210q q -+≥恒成立, 故可以推出10a <且1q ≠, 若210n S -<成立, 当1q =时,有10a <, 当1q ≠时,有()211101n a q q--<-,因为21101n q q-->-恒成立,所以有10a <, 故可以推出10a <,q ∈R ,所以“1322a a a +<”是“210n S -<”的充分不必要条件. 故选:A. 【点睛】本题主要考查了等比数列基本量的求解,充分必要条件的集合关系,属于基础题.12.我国古代数学著作《九章算术》有如下问题:“今有蒲生一日,长三尺莞生一日,长一尺蒲生日自半,莞生日自倍.问几何日而长倍?”意思是:“今有蒲草第1天长高3尺,芜草第1天长高1尺以后,蒲草每天长高前一天的一半,芜草每天长高前一天的2倍.问第几天莞草是蒲草的二倍?”你认为莞草是蒲草的二倍长所需要的天数是( )(结果采取“只入不舍”的原则取整数,相关数据:lg30.4771≈,lg 20.3010≈) A .2 B .3C .4D .5【答案】C 【解析】 【分析】由题意可利用等比数列的求和公式得莞草与蒲草n 天后长度,进而可得:131212212112nn ⎛⎫- ⎪-⎝⎭⨯=--,解出即可得出.由题意可得莞草与蒲草第n 天的长度分别为1113,122n n n n a b --⎛⎫=⨯=⨯ ⎪⎝⎭据题意得:131212212112nn ⎛⎫- ⎪-⎝⎭⨯=--, 解得2n =12, ∴n 122lg lg ==232lg lg +≈1. 故选:C . 【点睛】本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题. 二、填空题:本题共4小题,每小题5分,共20分。
广西省来宾市2021届新高考数学模拟试题(3)含解析

广西省来宾市2021届新高考数学模拟试题(3)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合{}2A x x a =-<<,{}0,2,4B =,若集合A B I 中有且仅有2个元素,则实数a 的取值范围为 A .()0,2 B .(]2,4 C .[)4,+∞ D .(),0-∞【答案】B 【解析】 【分析】由题意知{}02A ⊆,且4A ∉,结合数轴即可求得a 的取值范围. 【详解】由题意知,{}=02A B I ,,则{}02A ⊆,,故2a >, 又4A ∉,则4a ≤,所以24a <≤, 所以本题答案为B. 【点睛】本题主要考查了集合的关系及运算,以及借助数轴解决有关问题,其中确定A B I 中的元素是解题的关键,属于基础题.2.已知数列{}n a 的前n 项和为n S ,11a =,22a =且对于任意1n >,*n N ∈满足()1121n n n S S S +-+=+,则( ) A .47a = B .16240S =C .1019a =D .20381S =【答案】D 【解析】 【分析】利用数列的递推关系式判断求解数列的通项公式,然后求解数列的和,判断选项的正误即可. 【详解】当2n …时,111112(1)22n n n n n n n n n S S S S S S S a a +-+-++=+⇒-=-+⇒=+. 所以数列{}n a 从第2项起为等差数列,1,122,2n n a n n =⎧=⎨-⎩…,所以,46a =,1018a =.21()(1)(1)12n n a a n S a n n +-=+=-+,1616151241S =⨯+=,2020191381S =⨯+=.故选:D . 【点睛】本题考查数列的递推关系式的应用、数列求和以及数列的通项公式的求法,考查转化思想以及计算能力,是中档题.3.执行如图所示的程序框图,输出的结果为( )A .78B .158C .3116D .1516【答案】D 【解析】 【分析】由程序框图确定程序功能后可得出结论. 【详解】执行该程序可得12341111150222216S =++++=. 故选:D . 【点睛】本题考查程序框图.解题可模拟程序运行,观察变量值的变化,然后可得结论,也可以由程序框图确定程序功能,然后求解.4.一个封闭的棱长为2的正方体容器,当水平放置时,如图,水面的高度正好为棱长的一半.若将该正方体绕下底面(底面与水平面平行)的某条棱任意旋转,则容器里水面的最大高度为( )A .1B .2C 3D .2【答案】B 【解析】 【分析】根据已知可知水面的最大高度为正方体面对角线长的一半,由此得到结论. 【详解】正方体的面对角线长为2,又水的体积是正方体体积的一半, 且正方体绕下底面(底面与水平面平行)的某条棱任意旋转, 所以容器里水面的最大高度为面对角线长的一半, 2,故选B. 【点睛】本题考查了正方体的几何特征,考查了空间想象能力,属于基础题. 5.双曲线22:21C x y -=的渐近线方程为( ) A .20x ±= B .20x y ±= C 20x y ±= D .20x y ±=【答案】A 【解析】 【分析】将双曲线方程化为标准方程为22112y x -=,其渐近线方程为2212y x -=,化简整理即得渐近线方程. 【详解】双曲线22:21C x y -=得22112y x -=,则其渐近线方程为22012y x -=, 整理得20x =. 故选:A【点睛】本题主要考查了双曲线的标准方程,双曲线的简单性质的应用. 6.如图,矩形ABCD 中,1AB =,2BC =,E 是AD 的中点,将ABE △沿BE 折起至A BE 'V ,记二面角A BE D '--的平面角为α,直线A E '与平面BCDE 所成的角为β,A E '与BC 所成的角为γ,有如下两个命题:①对满足题意的任意的A '的位置,αβπ+≤;②对满足题意的任意的A '的位置,αγπ+≤,则( )A .命题①和命题②都成立B .命题①和命题②都不成立C .命题①成立,命题②不成立D .命题①不成立,命题②成立【答案】A 【解析】 【分析】作出二面角α的补角、线面角β、线线角γ的补角,由此判断出两个命题的正确性. 【详解】①如图所示,过'A 作'AO ⊥平面BCDE ,垂足为O ,连接OE ,作OM BE ⊥,连接'A M .由图可知'A MO πα∠=-,''A EO A MO βπα∠=≤∠=-,所以αβπ+≤,所以①正确.②由于//BC DE ,所以'A E 与BC 所成角''A ED A MO γππα=-∠≤∠=-,所以αγπ+≤,所以②正确.综上所述,①②都正确. 故选:A【点睛】本题考查了折叠问题、空间角、数形结合方法,考查了推理能力与计算能力,属于中档题.7.如图所示,三国时代数学家赵爽在《周髀算经》中利用弦图,给出了勾股定理的绝妙证明.图中包含四个全等的直角三角形及一个小正方形(阴影),设直角三角形有一内角为30°,若向弦图内随机抛掷5003 1.732≈),则落在小正方形(阴影)内的米粒数大约为( )A .134B .67C .182D .108【答案】B 【解析】 【分析】根据几何概型的概率公式求出对应面积之比即可得到结论. 【详解】解:设大正方形的边长为1,则小直角三角形的边长为13,22, 312-,小正方形的面积23131222S ⎛⎫=-=- ⎪ ⎪⎝⎭, 则落在小正方形(阴影)内的米粒数大约为31325001500(10.866)5000.134********⎛⎫⨯=-⨯≈-⨯=⨯= ⎪ ⎪⨯⎝⎭,故选:B. 【点睛】本题主要考查几何概型的概率的应用,求出对应的面积之比是解决本题的关键. 8.要得到函数32sin 2y x x =-的图像,只需把函数sin 232y x x =-的图像( )A .向左平移2π个单位 B .向左平移712π个单位 C .向右平移12π个单位D .向右平移3π个单位 【答案】A 【解析】 【分析】运用辅助角公式将两个函数公式进行变形得2sin 23y x π⎛⎫=--⎪⎝⎭以及2sin 23y x π⎛⎫=-⎪⎝⎭,按四个选项分别对2sin 23y x π⎛⎫=- ⎪⎝⎭变形,整理后与2sin 23y x π⎛⎫=-- ⎪⎝⎭对比,从而可选出正确答案.【详解】 解:1sin 22sin 22sin 22sin 2233y x x x x x x ππ⎫⎛⎫⎛⎫=-=-=-=--⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1sin 222sin 222sin 223y x x x x x π⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭===-. 对于A :可得2sin 22sin 22sin 22333y x x x πππππ⎡⎤⎛⎫⎛⎫⎛⎫=+-=-+=-- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦. 故选:A. 【点睛】本题考查了三角函数图像平移变换,考查了辅助角公式.本题的易错点有两个,一个是混淆了已知函数和目标函数;二是在平移时,忘记乘了自变量前的系数. 9.设i 为数单位,z 为z 的共轭复数,若13z i=+,则z z ⋅=( ) A .110B .110i C .1100D .1100i 【答案】A 【解析】 【分析】由复数的除法求出z ,然后计算z z ⋅. 【详解】13313(3)(3)1010i z i i i i -===-++-, ∴223131311()()()()10101010101010z z i i ⋅=-+=+=. 故选:A. 【点睛】本题考查复数的乘除法运算,考查共轭复数的概念,掌握复数的运算法则是解题关键. 10.已知数列{}n a 满足11a =,1n n a a n --=(2n ≥),则数列{}n a 的通项公式n a =( ) A .()112n n + B .()1312n n - C .2n n 1-+ D .222n n -+【答案】A 【解析】 【分析】利用数列的递推关系式,通过累加法求解即可. 【详解】数列{}n a 满足:11a =,*1(2,)n n a a n n n N --=∈…, 可得11a =212a a -= 323a a -= 434a a -=⋯1n n a a n --=以上各式相加可得:1123(1)2n a n n n =+++⋯+=+, 故选:A . 【点睛】本题考查数列的递推关系式的应用,数列累加法以及通项公式的求法,考查计算能力.11.设函数()22cos cos f x x x x m =++,当0,2x π⎡⎤∈⎢⎥⎣⎦时,()17,22f x ⎡⎤∈⎢⎥⎣⎦,则m =( ) A .12B .32C .1D .72【答案】A 【解析】 【分析】由降幂公式,两角和的正弦公式化函数为一个角的一个三角函数形式,然后由正弦函数性质求得参数值. 【详解】()22cos cos f x x x x m =++1cos22x x m =+++2sin(2)16x m π=+++,0,2x π⎡⎤∈⎢⎥⎣⎦时,72[,]666x πππ+∈,1sin(2)[,1]62x π+∈-,∴()[,3]f x m m ∈+,由题意17[,3][,]22m m +=,∴12m =. 故选:A . 【点睛】本题考查二倍角公式,考查两角和的正弦公式,考查正弦函数性质,掌握正弦函数性质是解题关键. 12.某工厂一年中各月份的收入、支出情况的统计如图所示,下列说法中错误的是( ).A .收入最高值与收入最低值的比是3:1B .结余最高的月份是7月份C .1与2月份的收入的变化率与4至5月份的收入的变化率相同D .前6个月的平均收入为40万元 【答案】D 【解析】由图可知,收入最高值为90万元,收入最低值为30万元,其比是3:1,故A 项正确; 结余最高为7月份,为802060-=,故B 项正确;1至2月份的收入的变化率为4至5月份的收入的变化率相同,故C 项正确;前6个月的平均收入为1(406030305060)456+++++=万元,故D 项错误. 综上,故选D .二、填空题:本题共4小题,每小题5分,共20分。
广西来宾市(新版)2024高考数学人教版考试(押题卷)完整试卷

广西来宾市(新版)2024高考数学人教版考试(押题卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知,则()A.B.C.D.第(2)题已知函数,.若函数恰有两个非负零点,则实数的取值范围是()A.B.C.D.第(3)题已知向量,,则“”是“和的夹角是锐角”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件第(4)题已知正四面体的棱长为,,分别是,上的点,过作平面,使得,均与平行,且,到的距离分别为2,4,则正四面体的外接球被所截得的圆的面积为()A.B.C.D.第(5)题已知三棱锥的顶点都在以PC为直径的球M的球面上,.若球M的表面积为,,则三棱锥的体积的最大值为()A.B.C.D.32第(6)题已知复数,其中为虚数单位,且,则复数的模的最大值为()A.1B.2C.3D.4第(7)题设,,则“”是“”的A.充要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件第(8)题已知四棱锥中,四边形为等腰梯形,,,是等边三角形,且;若点在四棱锥的外接球面上运动,记点到平面的距离为,若平面平面,则的最大值为()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题从标有1,2,3,…,8的8张卡片中有放回地抽取两次,每次抽取一张,依次得到数字a,b,记点,,,则()A.是锐角的概率为B.是直角的概率为C.是锐角三角形的概率为D.的面积不大于5的概率为第(2)题设,是两个不同的平面,m,n是两条不同的直线,则下列结论正确的是()A.若,,则B.若,,,则C.若,,则D.若,,,则第(3)题工厂生产某零件,其尺寸服从正态分布(单位:cm).其中k由零件的材料决定,且.当零件尺寸大于10.3cm或小于9.7cm时认为该零件不合格;零件尺寸大于9.9cm且小于10.1cm时认为该零件为优质零件;其余则认为是普通零件.已知当随机变量时,,,,则下列说法中正确的有().A.越大,预计生产出的优质品零件与不合格零件的概率之比越小B.越大,预计生产出普通零件的概率越大C.若,则生产200个零件约有9个零件不合格D.若生产出优质零件、普通零件与不合格零件盈利分别为,,,则当时,每生产1000个零件预计盈利三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题某校的团知识宣讲小组由学生和青年教师组成,人员构成同时满足以下三个条件:(ⅰ)男学生人数多于女学生人数;(ⅱ)女学生人数多于青年教师人数;(ⅲ)青年教师人数的两倍多于男学生人数若青年教师人数为3,则该宣讲小组总人数为__________.第(2)题在梯形中,,,为的中点,将沿直线翻折成,当三棱锥的体积最大时,过点的平面截三棱锥的外接球所得截面面积的最小值为______.第(3)题已知函数的定义域为,,,,,,…,.写出满足上述条件的一个函数:______.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知定义域为的函数满足如下条件:①对任意的,总有;②;③当,,时,恒成立.已知正项数列满足,且,,令(1)求数列,的通项公式;(2)若,求证:().第(2)题已知函数.(Ⅰ)若是第二象限角,且,求的值;(Ⅱ)求函数的定义域和值域.第(3)题在平面直角坐标系中,直线的参数方程为(为参数),直线与曲线交于两点.(1)求的长;(2)在以为极点,轴的正半轴为极轴建立的极坐标系中,设点的极坐标为,求点到线段中点的距离.第(4)题如图,平面,,,,分别为的中点.(I)证明:平面;(II)求与平面所成角的正弦值.第(5)题在中,已知,,.(1)求的长;(2)求的值.。
广西来宾市(新版)2024高考数学部编版真题(押题卷)完整试卷

广西来宾市(新版)2024高考数学部编版真题(押题卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知数列满足,,则数列前2023项的积为()A.2B.3C.D.第(2)题函数的部分图像大致为A.B.C.D.第(3)题设为平面,,为两条不同的直线,则下列叙述正确的是()A.若,,则B.若,,则C.若,,则D.若,,则第(4)题已知向量,满足,,,则与的夹角等于()A.B.C.D.第(5)题已知函数的图象关于直线对称,则的最小值为()A.B.1C.2D.第(6)题()A.B.C.D.第(7)题已知是虚数单位,设复数,其中,则的值为()A.B.C.D.第(8)题已知全集,集合,则()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知双曲线与椭圆的一个交点为,分别是的左、右顶点,分别是的左、右顶点,则()A.直线与直线的斜率之积为1B.若,则C.若,则D.若的面积为,则第(2)题梯形中,,,,与交于点,点在线段上,则()A.B.C.为定值8D.若,则的最小值为第(3)题已知,则()A.B.C.D.三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题若双曲线的渐近线与圆相切,则_______.第(2)题已知单位向量,,,,,则___________.第(3)题有张卡片,每张卡片上分别标有两个连续的自然数,其中,从这张卡片中任取一张,记事件“该卡片上两个数的各位数字之和(例如:若取到标有的卡片,则卡片上两个数的各位数字之和为)不小于”为,则_________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题在直角坐标系中,已知曲线的参数方程为(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的普通方程与曲线的直角坐标方程;(2)已知点,曲线与交于A,B两点,求的值.第(2)题某高中学校对全体学生进行体育达标测试,每人测试A、B两个项目,每个项目满分均为60分.从全体学生中随机抽取了100人,分别统计他们A、B两个项目的测试成绩,得到A项目测试成绩的频率分布直方图和B项目测试成绩的频数分布表如下:将学生的成绩划分为三个等级如右表:(1)在抽取的100人中,求A项目等级为优秀的人数(2)已知A项目等级为优秀的学生中女生有14人,A项目等级为一般或良好的学生中女生有34人,试完成下列2×2列联表,并分析是否有95%以上的把握认为“A项目等级为优秀”与性别有关?参考数据:0.100.0500.0250.0100.0012.7063.841 5.024 6.63510.828参考公式其中(3)将样本的率作为总体的概率,并假设A 项目和B 项目测试成绩互不影响,现从该校学生中随机抽取1人进行调查,试估计其A 项目等级比B 项目等级高的概率,第(3)题设满足约束条件,求的最小值.第(4)题已知关的一元二次函数,设集合,分别从集合和中随机取一个数和得到数对.(1)列举出所有的数对并求函数有零点的概率;(2)求函数在区间上是增函数的概率.第(5)题已知,,且是的必要不充分条件,求实数的取值范围.。
广西来宾市(新版)2024高考数学人教版能力评测(押题卷)完整试卷

广西来宾市(新版)2024高考数学人教版能力评测(押题卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题的展开式中,的系数为()A.2B.C.8D.10第(2)题分别以锐角三角形的边AB,BC,AC为旋转轴旋转一周后得到的几何体体积之比为,则()A.B.C.D.第(3)题已知在正四面体中,,则直线与平面所成角的正弦值为()A.B.C.D.第(4)题已知为坐标原点,椭圆上两点满足,若椭圆上一点满足,则的最大值是()A.1B.C.D.2第(5)题如图,这是古希腊数学家特埃特图斯用来构造无理数的图形,已知是平面四边形内一点,则的取值范围是()A.B.C.D.第(6)题已知椭圆,一组斜率的平行直线与椭圆相交,则这些直线被椭圆截得的段的中点所在的直线方程为()A.B.C.D.第(7)题2022年11月,国内猪肉、鸡蛋、鲜果、禽肉、粮食、食用油、鲜菜价格同比(与去年同期相比)的变化情况如图所示,则下列说法正确的是()A.猪肉、鸡蛋、鲜果、禽肉、粮食、食用油这6种食品中,食用油价格同比涨幅最小.B.这7种食品价格同比涨幅的平均值超过C.去年11月鲜菜价格要比今年11月低D.猪肉价格同比涨幅超过禽肉价格同比涨幅的5倍第(8)题已知点在双曲线上,过点P作双曲线的渐近线的垂线,垂足分别为A,B,若,,则()A.B.2C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知函数的定义域都为为奇函数,且,,则()A.B.C.D.第(2)题如图,在矩形中,和交于点,将沿直线翻折,则正确的是()A.存在,在翻折过程中存在某个位置,使得B.存在,在翻折过程中存在某个位置,使得C.存在,在翻折过程中存在某个位置,使得平面D.存在,在翻折过程中存在某个位置,使得平面第(3)题“中国最具幸福感城市调查推选活动”由新华社《瞭望东方周刊》、瞭望智库共同主办,至今已连续举办15年,累计推选出80余座幸福城市,现某城市随机选取30个人进行调查,得到他们的收入、生活成本及幸福感分数(幸福感分数为0~10分),并整理得到散点图(如图),其中x是收入与生活成本的比值,y是幸福感分数,经计算得回归方程为.根据回归方程可知( )A.y与x成正相关B.样本点中残差的绝对值最大是2.044C.只要增加民众的收入就可以提高民众的幸福感D.当收入是生活成本3倍时,预报得幸福感分数为6.044三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知正四棱锥的底面边长为2,高为4,它的所有顶点都在同一球面上,则这个球的表面积是 _____第(2)题从古至今,奇门遁甲,五行八卦等,我们称之为玄学,它充满了神秘色彩,我们常说“无极生太极,太极生两仪,两仪生四象,四象生八卦”.下图是伏羲先天八卦生成图.八卦是由组合而成,八卦中的阳爻和阴爻这与计算机数制“二进制”中的1和0分别对应,例如在二进制下“110001”表示的“十进制”数为,在八卦中益卦代表的二进制数为“110001”表示十进制数49,据此,恒卦表示的十进制数字为___________.第(3)题如图,平行四边形中,,且,为边的中点,在上投影向量是,则______.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题2022年2月4日,第24届冬奥会在中国北京和张家口举行.冬奥会闭幕后,某学校体育社团从全校学生中随机抽取了200名学生,对其是否收看冬奥会进行了问卷调查,统计数据如下:收看没收看男生8020女生6040(1)根据上表说明,能否有99.5%的把握认为,是否收看冬奥会与性别有关?(2)现从参与问卷调查且收看了冬奥会的学生中,采用按性别分层抽样的方法,选取7人参加冰雪运动志愿宣传活动.若从这7人中随机选取2人,求选取的2人中有1名男生1名女生的概率.附:,其中.0.050.0250.0100.0050.0013.841 5.024 6.6357.87910.828第(2)题对一批产品的长度(单位:mm)进行抽样检测,检测结果的频率分布直方图如图所示.根据标准,产品长度在区间上的为一等品,在区间和区间上的为二等品,在区间和上的为三等品.(1)用频率估计概率,现从该批产品中随机抽取1件,求其为二等品的概率;(2)已知检测结果为一等品的有6件,现随机从三等品中有放回地连续取两次,每次取1件,求取出的2件产品中恰有1件的长度在区间上的概率.第(3)题已知函数.(1)求的解集;(2)若恒成立,求a的取值范围.第(4)题已知P为平面上的动点,记其轨迹为Γ.(1)请从以下两个条件中选择一个,求对应的的方程.①已知点,直线,动点到点的距离与到直线的距离之比为;②设是圆上的动点,过作直线垂直于轴,垂足为,且.(2)在(1)的条件下,设曲线的左、右两个顶点分别为,若过点的直线的斜率存在且不为0,设直线交曲线于点,直线过点且与轴垂直,直线交直线于点,直线交直线于点,则线段的比值是否为定值?若是,求出该定值;若不是,请说明理由.第(5)题已知正实数满足.(1)求的最小值;(2)当取得最小值时,的值满足不等式对任意的恒成立,求实数的取值范围.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广西省来宾市2021届新高考最新终极猜押数学试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知复数z 满足(3)1i z i +=+,则z 的虚部为( )A .i -B .iC .–1D .1 【答案】C【解析】【分析】利用复数的四则运算可得2z i =--,即可得答案.【详解】∵(3)1i z i +=+,∴131i z i i++==-, ∴2z i =--,∴复数z 的虚部为1-.故选:C.【点睛】本题考查复数的四则运算、虚部概念,考查运算求解能力,属于基础题.2.已知双曲线22221(0,0)x y a b a b-=>>的左焦点为F ,直线l 经过点F 且与双曲线的一条渐近线垂直,直线l 与双曲线的左支交于不同的两点A ,B ,若2AF FB =u u u r u u u r ,则该双曲线的离心率为( ).A B .C D【答案】A【解析】【分析】直线l 的方程为b x y c a =-,令1a =和双曲线方程联立,再由2AF FB =u u u r u u u r 得到两交点坐标纵坐标关系进行求解即可.【详解】由题意可知直线l 的方程为b x y c a=-,不妨设1a =. 则x by c =-,且221b c =- 将x by c =-代入双曲线方程2221y x b -=中,得到()4234120b y b cy b +--= 设()()1122,,,A x y B x y则341212442,11b c b y y y y b b +=⋅=-- 由2AF FB =u u u r u u u r ,可得122y y =-,故32442242121b c y b by b ⎧-=⎪⎪-⎨⎪-=⎪-⎩则22481b c b =-,解得219=b则3c ==所以双曲线离心率c e a == 故选:A【点睛】此题考查双曲线和直线相交问题,联立直线和双曲线方程得到两交点坐标关系和已知条件即可求解,属于一般性题目.3.下列说法正确的是( )A .“若1a >,则1a >”的否命题是“若1a >,则21a <”B .在ABC V 中,“A B >”是“sin sin A B >”成立的必要不充分条件C .“若tan 1α≠,则4πα≠”是真命题D .存在0(,0)x ∈-∞,使得0023x x <成立【答案】C【解析】【分析】A :否命题既否条件又否结论,故A 错.B :由正弦定理和边角关系可判断B 错.C :可判断其逆否命题的真假,C 正确.D :根据幂函数的性质判断D 错.【详解】解:A :“若1a >,则1a >”的否命题是“若1a ≤,则21a ≤”,故 A 错.B :在ABC V 中,2sin 2sin A B a b R A R B >⇔>⇔>,故“A B >”是“sin sin A B >”成立的必要充分条件,故B 错.C :“若tan 1α≠,则4πα≠”⇔“若=4πα,则tan =1α”,故C 正确.D :由幂函数(0)n y x n =<在()0+∞,递减,故D 错. 故选:C【点睛】考查判断命题的真假,是基础题.4.已知复数z 满足()1z i i =-,(i 为虚数单位),则z =( )AB C .2 D .3【答案】A【解析】 ()11z i i i =-=+,故z = A.5.若两个非零向量a r 、b r 满足()()0a b a b +⋅-=r r r r ,且2a b a b +=-r r r r ,则a r 与b r 夹角的余弦值为( ) A .35 B .35± C .12 D .12± 【答案】A【解析】【分析】设平面向量a r 与b r 的夹角为θ,由已知条件得出a b =r r ,在等式2a b a b +=-r r r r 两边平方,利用平面向量数量积的运算律可求得cos θ的值,即为所求.【详解】设平面向量a r 与b r 的夹角为θ,()()22220a b a b a b a b +⋅-=-=-=r r r r r r r r Q ,可得a b =r r , 在等式2a b a b +=-r r r r 两边平方得22222484a a b b a a b b +⋅+=-⋅+r r r r r r r r ,化简得3cos 5θ=. 故选:A.【点睛】本题考查利用平面向量的模求夹角的余弦值,考查平面向量数量积的运算性质的应用,考查计算能力,属于中等题.6.若()5211x a x ⎛⎫+- ⎪⎝⎭的展开式中的常数项为-12,则实数a 的值为( ) A .-2B .-3C .2D .3 【答案】C【解析】【分析】先研究511x ⎛⎫- ⎪⎝⎭的展开式的通项,再分()2x a +中,取2x 和a 两种情况求解. 【详解】 因为511x ⎛⎫- ⎪⎝⎭的展开式的通项为()5151r r r r T C x -+=-, 所以()5211x a x ⎛⎫+- ⎪⎝⎭的展开式中的常数项为:()32320551112(1)0x C C x a a -+--=--=-, 解得2a =,故选:C.【点睛】本题主要考查二项式定理的通项公式,还考查了运算求解的能力,属于基础题.7.正项等比数列{}n a 中的1a 、4039a 是函数()3214633f x x x x =-+-的极值点,则2020a =( )A .1-B .1CD .2 【答案】B【解析】【分析】根据可导函数在极值点处的导数值为0,得出140396a a =,再由等比数列的性质可得.【详解】解:依题意1a 、4039a 是函数()3214633f x x x x =-+-的极值点,也就是()2860f x x x '=-+=的两个根∴140396a a =又{}n a 是正项等比数列,所以2020a ==∴20201a ==.故选:B【点睛】本题主要考查了等比数列下标和性质以应用,属于中档题.8.某几何体的三视图如图所示,若侧视图和俯视图均是边长为2的等边三角形,则该几何体的体积为A .83B .43C .1D .2【答案】C【解析】【分析】【详解】由三视图可知,该几何体是三棱锥,底面是边长为23,所以该几何体的体积113223132V =⨯⨯⨯=,故选C . 9.正ABC ∆的边长为2,将它沿BC 边上的高AD 翻折,使点B 与点C 3A BCD -的外接球表面积为( )A .103πB .4πC .133πD .7π【答案】D【解析】【分析】如图所示,设AD 的中点为2O ,BCD ∆的外接圆的圆心为1O ,四面体A BCD -的外接球的球心为O ,连接12,,OO OO OD ,利用正弦定理可得11DO =,利用球心的性质和线面垂直的性质可得四边形21OO DO 为平行四边形,最后利用勾股定理可求外接球的半径,从而可得外接球的表面积.【详解】如图所示,设AD 的中点为2O ,BCD ∆外接圆的圆心为1O ,四面体A BCD -的外接球的球心为O ,连接12,,OO OO OD ,则1OO ⊥平面BCD ,2OO AD ⊥. 因为1,3CD BD BC ===,故231cos 2112BDC -∠==-⨯⨯, 因为()0,BDC π∠∈,故23BDC π∠=. 由正弦定理可得13222sin 3DO π==,故11DO =,又因为3AD =232DO =. 因为,,AD DB AD CD DB CD D ⊥⊥⋂=,故AD ⊥平面BCD ,所以1//OO AD ,因为AD ⊥平面BCD ,1DO ⊂平面BCD ,故1AD DO ⊥,故21//OO DO ,所以四边形21OO DO 为平行四边形,所以123OO DO ==, 所以37142OD =+=774=74ππ⨯. 故选:D.【点睛】 本题考查平面图形的折叠以及三棱锥外接球表面积的计算,还考查正弦定理和余弦定理,折叠问题注意翻折前后的变量与不变量,外接球问题注意先确定外接球的球心的位置,然后把半径放置在可解的直角三角形中来计算,本题有一定的难度.10.已知函数3sin ()(1)()x x x x f x x m x e e-+=+-++为奇函数,则m =( ) A .12 B .1 C .2 D .3【答案】B【解析】【分析】根据()f x 整体的奇偶性和部分的奇偶性,判断出m 的值.【详解】依题意()f x 是奇函数.而3sin y x x =+为奇函数,x x y e e -=+为偶函数,所以()()()1g x x m x =+-为偶函数,故()()0g x g x --=,也即()()()()110x m x x m x +---+=,化简得()220m x -=,所以1m =.故选:B【点睛】本小题主要考查根据函数的奇偶性求参数值,属于基础题.11.第24届冬奥会将于2022年2月4日至2月20日在北京市和张家口市举行,为了解奥运会会旗中五环所占面积与单独五个环面积之和的比值P ,某学生做如图所示的模拟实验:通过计算机模拟在长为10,宽为6的长方形奥运会旗内随机取N 个点,经统计落入五环内部及其边界上的点数为n 个,已知圆环半径为1,则比值P 的近似值为( )A .8N nπ B .12n N π C .8n N π D .12N nπ【答案】B【解析】【分析】根据比例关系求得会旗中五环所占面积,再计算比值P .【详解】设会旗中五环所占面积为S , 由于S 60n N =,所以60n S N=, 故可得5S P π==12n N π. 故选:B.【点睛】本题考查面积型几何概型的问题求解,属基础题.12.设F 为抛物线24x y =的焦点,A ,B ,C 为抛物线上三点,若0FA FB FC ++=u u u r u u u r u u u r r ,则|||||FA FB FC ++=u u u r u u u r u u u r ( ).A .9B .6C .38D .316【答案】C【解析】【分析】设11(,)A x y ,22(,)B x y ,33(,)C x y ,由0FA FB FC ++=u u u r u u u r u u u r r 可得123316x x x ++=,利用定义将|||||FA FB FC ++u u u r u u u r u u u r 用123,,x x x 表示即可.【详解】设11(,)A x y ,22(,)B x y ,33(,)C x y ,由0FA FB FC ++=u u u r u u u r u u u r r 及1(,0)16F , 得111(,)16x y -+221(,)16x y -331(,)(0,0)16x y +-=,故123316x x x ++=, 所以123111|||||161616FA FB FC x x x ++=+++++=u u u r u u u r u u u r 38. 故选:C.【点睛】本题考查利用抛物线定义求焦半径的问题,考查学生等价转化的能力,是一道容易题.二、填空题:本题共4小题,每小题5分,共20分。