10月15日段连富的初中数学组卷 (7)

合集下载

圆周角圆心角垂径定理练习

圆周角圆心角垂径定理练习

江苏通海中学周飞初三数学周末练习班级:姓名:学号:一.选择题(共8小题)1.(2013•丽水)一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是()5C2.(2012•茂名)如图,AB是⊙O的直径,AB⊥CD于点E,若CD=6,则DE=()则OP的长为()4.(2013•黄石)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为()..6.(2007•仙桃)如图,已知:AB是⊙O的直径,C、D是上的三等分点,∠AOE=60°,则∠COE是()二.填空题(共8小题)9.(2009•郴州)如图,在⊙O中,,∠A=40°,则∠B=_________度.10.如图,在⊙O中,=,如果∠AOC=65°,则∠BOD=_________.11.(2011•阜新)如图,AB是⊙O的直径,CD是⊙O的弦,AB、CD的延长线交于E点,若AB=2DE,∠E=18°,则∠AOC的度数为_________度.12.(2010•湘西州)如图,在⊙O中,半径为5,∠AOB=60°,则弦长AB=_________.13.(2013•漳州)如图,一个宽为2厘米的刻度尺(刻度单位:厘米),放在圆形玻璃杯的杯口上,刻度尺的一边与杯口外沿相切,另一边与杯口外沿两个交点处的读数恰好是3和9,那么玻璃杯的杯口外沿半径为_________厘米.14.(2013•西宁)如图,AB为⊙O的直径,弦CD⊥AB于点E,若CD=6,且AE:BE=1:3,则AB=_________.15.(2013•上海)在⊙O中,已知半径长为3,弦AB长为4,那么圆心O到AB的距离为____.16.(2012•遵义)如图,AB是⊙O的弦,AB长为8,P是⊙O上一个动点(不与A、B重合),过点O作OC⊥AP于点C,OD⊥PB于点D,则CD的长为_________.三.解答题(共8小题)17.(2011•佛山)如图,已知AB是⊙O的弦,半径OA=20cm,∠AOB=120°,求△AOB的面积.18.(2010•长春)如图,将一个两边都带有刻度的直尺放在半圆形纸片上,使其一边经过圆心O,另一边所在直线与半圆相交于点D,E,量出半径OC=5cm,弦DE=8cm,求直尺的宽.19.(2006•青岛)某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下图是水平放置的破裂管道有水部分的截面.(1)请你补全这个输水管道的圆形截面;(2)若这个输水管道有水部分的水面宽AB=16cm,水面最深地方的高度为4cm,求这个圆形截面的半径.20.如图所示,在⊙O中,AB与CD是相交的两弦,且AB=CD,求证:.21.如图在⊙O中,AC=BC,OD=OE,求证:∠ACD=∠BCE.22.已知:如图,A、B、C、D是⊙O上的点,∠1=∠2,AC=3cm.(1)求证:=;(2)求BD的长.23.如图,点A、B、C、D在⊙O上,AB与OC、OD分别相交于E、F,AE=BF,说明AC=BD的理由.24.(2012•长春一模)如图,四边形ABCD是矩形,以AD为直径的⊙O交BC边于点E、F,AB=4,AD=12.求线段EF的长.2013年10月hylzf的初中数学组卷参考答案与试题解析一.选择题(共8小题)1.(2013•丽水)一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是()AB=×OC==62.(2012•茂名)如图,AB是⊙O的直径,AB⊥CD于点E,若CD=6,则DE=()AB=×3.(2012•陕西)如图,在半径为5的⊙O中,AB、CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为()OM=ON=4.(2013•黄石)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为()..==5=AB,)AM=,.6.(2007•仙桃)如图,已知:AB是⊙O的直径,C、D是上的三等分点,∠AOE=60°,则∠COE 是()是二.填空题(共8小题)9.(2009•郴州)如图,在⊙O中,,∠A=40°,则∠B=70度.10.如图,在⊙O中,=,如果∠AOC=65°,则∠BOD=65°.=,可得,继而求得∠中,=++,=11.(2011•阜新)如图,AB是⊙O的直径,CD是⊙O的弦,AB、CD的延长线交于E点,若AB=2DE,∠E=18°,则∠AOC的度数为54度.12.(2010•湘西州)如图,在⊙O中,半径为5,∠AOB=60°,则弦长AB=5.13.(2013•漳州)如图,一个宽为2厘米的刻度尺(刻度单位:厘米),放在圆形玻璃杯的杯口上,刻度尺的一边与杯口外沿相切,另一边与杯口外沿两个交点处的读数恰好是3和9,那么玻璃杯的杯口外沿半径为厘米.AB=×cm故答案为:14.(2013•西宁)如图,AB为⊙O的直径,弦CD⊥AB于点E,若CD=6,且AE:BE=1:3,则AB=4.x=AB=4x=415.(2013•上海)在⊙O中,已知半径长为3,弦AB长为4,那么圆心O到AB的距离为.AB=×==故答案为:16.(2012•遵义)如图,AB是⊙O的弦,AB长为8,P是⊙O上一个动点(不与A、B重合),过点O作OC⊥AP于点C,OD⊥PB于点D,则CD的长为4.ABAB=×三.解答题(共8小题)17.(2011•佛山)如图,已知AB是⊙O的弦,半径OA=20cm,∠AOB=120°,求△AOB的面积.∠AC=BC=AOC=∠ABOA=10cm=10cm=××cm18.(2010•长春)如图,将一个两边都带有刻度的直尺放在半圆形纸片上,使其一边经过圆心O,另一边所在直线与半圆相交于点D,E,量出半径OC=5cm,弦DE=8cm,求直尺的宽.DM=OM==319.(2006•青岛)某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下图是水平放置的破裂管道有水部分的截面.(1)请你补全这个输水管道的圆形截面;(2)若这个输水管道有水部分的水面宽AB=16cm,水面最深地方的高度为4cm,求这个圆形截面的半径.BD=AB=AB=×20.如图所示,在⊙O中,AB与CD是相交的两弦,且AB=CD,求证:.就是已知,要证明,可以转化为证明=21.如图在⊙O中,AC=BC,OD=OE,求证:∠ACD=∠BCE.22.已知:如图,A、B、C、D是⊙O上的点,∠1=∠2,AC=3cm.(1)求证:=;(2)求BD的长.,根据在同圆或等圆中,相等的圆心角所对的弧相等得到=)由,根据在同圆或等圆中,等弧所对的弦相等得到=++,==23.如图,点A、B、C、D在⊙O上,AB与OC、OD分别相交于E、F,AE=BF,说明AC=BD的理由.,24.(2012•长春一模)如图,四边形ABCD是矩形,以AD为直径的⊙O交BC边于点E、F,AB=4,AD=12.求线段EF的长.的长度为。

初中数学几何综合-含答案

初中数学几何综合-含答案

一.选择题(共13小题)1.如图,在正方形ABCD中,O是对角线AC与BD的交点,M是BC边上的动点(点M 不与B、C重合),过点C作CN垂直DM交AB于点N,连结OM、ON、MN.下列四个结论:其中正确结论是()①S四边形ABCD=4S四边形ONBM;②BM2+CM2=2ON2;③△CON≌△DOM;④若AB=2,则S△OMN的最小值是1.A.①②③B.①③④C.①②④D.②③④2.如图,正方形ABCD中,∠EAF=45°,BD分别交AE、AF于M、N,连MF、EF,下列结论:①MN2=BN2+DM2;②DE+BF=EF;③AM=MF且AM⊥MF;④若E为CD 中点,则=.其中正确的有()A.1个B.2个C.3个D.4个3.如图,在正方形ABCD中,AB=4,AC与BD相交于点O,N是AO的中点,点M在BC边上,且BM=3,P为对角线BD上一点,当对角线BD平分∠NPM时,PM﹣PN值为()A.1B.C.2D.4.如图,在正方形ABCD内一点E连接BE、CE,过C作CF⊥CE与BE延长线交于点F,连接DF、DE.CE=CF=1,DE=,下列结论中:①△CBE≌△CDF;②BF⊥DF;③点D到CF的距离为2;④S四边形DECF=+1.其中正确结论的个数是()A.1B.2C.3D.45.如图,已知E,F分别为正方形ABCD的边AB,BC的中点,AF与DE交于点M.则下列结论:①∠AME=90°,②∠BAF=∠EDB,③AM=MF,④ME+MF=MB.其中正确结论的有()A.4个B.3个C.2个D.1个6.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,EH与CF交于点O.则HE的长为()A.2B.C.2D.或27.如图,在正方形ABCD中,E为BC上一点,过点E作EF∥CD,交AD于F,交对角线BD于G,取DG的中点H,连结AH,EH,FH.下列结论:①FH∥AE;②AH=EH且AH⊥EH;③∠BAH=∠HEC;④△EHF≌△AHD;⑤若,则.其中哪些结论是正确()A.①②④⑤B.②③④C.①②③D.②③④⑤8.如图,在正方形ABCD中,AC、BD相交于点O,E、F分别为BC、CD上的两点,BE =CF,AE、BF分别交BD、AC于M、N两点,连OE、OF.下列结论:①AE=BF;②AE⊥BF;③CE+CF=BD;④S四边形OECF=S正方形ABCD,其中正确的是()A.①②B.①④C.①②④D.①②③④9.如图,在正方形ABCD中,M是对角线BD上的一点,点E在AD的延长线上,连接AM、EM、CM,延长EM交AB于点F,若AM=EM,∠E=30°,则下列结论:①FM=ME;②BF=DE;③CM⊥EF;④BF+MD=BC,其中正确的结论序号是()A.①②③B.①②④C.②③④D.①②③④10.如图,在正方形ABCD中,对角线AC,BD交于点O,AG平分∠BAC交BD于G,DE ⊥AG于点H.下列结论:①AD=2AE:②FD=AG;③CF=CD:④四边形FGEA是菱形;⑤OF=BE,正确的有()A.2个B.3个C.4个D.5个11.如图,以正方形ABCD的顶点A为圆心,以AD的长为半径画弧,交对角线AC于点E,再分别以D,E为圆心,以大于DE的长为半径画弧,两弧交于图中的点F处,连接AF并延长,与BC的延长线交于点P,则∠P=()A.90°B.45°C.30°D.22.5°12.如图,正方形ABCD中,点E在边CD上,连接AE,过点A作AF⊥AE交CB的延长线于点F,连接EF,AG平分∠F AE,AG分别交BC,EF于点G,H,连接EG,DH.则下列结论中:①AF=AE;②∠EGC=2∠BAG;③DE+BG=EG;④AD+DE=DH;⑤若DE=CE,则CE:CG:EG=3:4:5,其中正确的结论有()A.2个B.3个C.4个D.5个13.如图,矩形ABCD中,O为AC的中点,过点O的直线分别与AB、CD交于点E、F,连接BF交AC于点M,连接DE、BO.若∠COB=60°,FO=FC=2,则下列结论:①FB⊥OC;②△EOB≌△CMB;③四边形EBFD是菱形;④MB=2.其中正确结论的个数是()A.1个B.2个C.3个D.4个二.填空题(共3小题)14.如图,点E为正方形ABCD外一点,且ED=CD,连接AE,交BD于点F.若∠CDE =40°,则∠DFC的度数为.15.如图,正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G,下列结论:①EC=2DG;②∠GDH=∠GHD;③S△CDG=S四边形DHGE;④图中只有8个等腰三角形.其中正确的有(填番号).16.如图,在正方形ABCD中,P为AB的中点,BE⊥PD的延长线于点E,连接AE、BE、F A⊥AE交DP于点F,连接BF,FC.若AE=2,则FC=.三.解答题(共24小题)17.如图,在直线l上将正方形ABCD和正方形ECGF的边CD和边CE靠在一起,连接DG,过点A作AH∥DG,交BG于点H.连接HF,AF,其中FH交DG于点M.(1)求证:△AHF为等腰直角三角形.(2)若AB=3,EC=4,求DM的长.18.如图,已知正方形ABCD的面积是8,连接AC、BD交于点O,CM平分∠ACD交BD 于点M,MN⊥CM,交AB于点N,(1)求∠BMN的度数;(2)求BN的长.19.如图示,正方形ABCD的对角线交于点O,点E、F分别在AB,BC的延长线上,且∠EOF=90°,OE与BC交于点M,连接EF,G是EF的中点,连接OG.(1)求证:OE=OF(2)若∠BOG=65°,求∠BOE的度数;(3)是否存在点M是BC中点,且使(1)的结论成立,若存在,请给予证明;若不存在,请说明理由.20.如图,正方形ABCD中,AB=,在边CD的右侧作等腰三角形DCE,使DC=DE,记∠CDE为α(0°<α<90°),连接AE,过点D作DG⊥AE,垂足为G,交EC的延长线于点F,连接AF.(1)求∠DEA的大小(用α的代数式表示);(2)求证:△AEF为等腰直角三角形;(3)当CF=时,求点E到CD的距离.21.如图1,在正方形ABCD中,点E在边CD上(不与点C,D重合),AE交对角线BD 于点G,GF⊥AE交BC于点F.(1)求证:AG=FG.(2)若AB=10,BF=4,求BG的长.(3)如图2,连接AF,EF,若AF=AE,求正方形ABCD与△CEF的面积之比.22.在正方形ABCD中,点E是DC上一点,连结AC,AE.(1)如图1,若AC=8,AE=10,求△ACE的面积.(2)如图2,EF⊥AC于点F,连结BF.求证:AE=BF.23.如图1,正方形ABCD中,点E是边BC延长线上一点,连接DE,过点B作BF⊥DE,垂足为点F,BF与CD相交于点G.(1)求证:△BCG≌△DCE;(2)如图2,连接BD,若,求BG的长.24.如图,在正方形ABCD中,对角线AC、BD相交于点O,E为OC上动点(不与O、C 重合),作AF⊥BE,垂足为G,分别交BC、OB于F、H,连接OG、CG.(1)求证:△AOH≌△BOE;(2)求∠AGO的度数;(3)若∠OGC=90°,BG=,求△OGC的面积.25.如图,O为正方形ABCD对角线的交点,E为AB边上一点,F为BC边上一点,△EBF 的周长等于BC的长.(1)若AB=24,BE=6,求EF的长;(2)求∠EOF的度数;(3)若OE=OF,求的值.26.如图,正方形ABCD中,E为BC上一点,过B作BG⊥AE于G,延长BG至点F使∠CFB=45°(1)求证:∠BAG=∠CBF;(2)求证:AG=FG;(3)若GF=2BG,CF=,求AB的长.27.如图1,在正方形ABCD中,点P是对角线BD上的一点,点E在AD的延长线上,且P A=PE,PE交CD于点F,(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.28.如图,△ABC中,点O为AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的外角平分线CF于点F,交∠ACB内角平分线CE于E.(1)试说明EO=FO;(2)当点O运动到何处时,四边形AECF是矩形并证明你的结论;(3)若AC边上存在点O,使四边形AECF是正方形,猜想△ABC的形状并证明你的结论.29.如图,已知平行四边形ABCD中,对角线AC、BD交于点O,E是DB延长线上一点,且△ACE是等边三角形.(1)求证:四边形ABCD是菱形;(2)若∠AEB=2∠EAB,求证:四边形ABCD是正方形.30.如图1,在正方形ABCD中,G为线段BD上一点,连接AG,过G作AG⊥GE交BC 于E,连接AE.(1)求证:BG=DG+BE;(2)如图2,AB=4,E为BC中点,P,Q分别为线段AB,AE上的动点,满足QE=AP,则在P,Q运动过程中,当以PQ为对角线的正方形PRQS的一边恰好落在△ABE的某一边上时,直接写出正方形PRQS的面积.31.如图,在平行四边形ABCD中,AC⊥AD,延长DA于点E,使得DA=AE,连接BE.(1)求证:四边形AEBC是矩形;(2)过点E作AB的垂线分别交AB,AC于点F,G,连接CE交AB于点O,连接OG,若AB=6,∠CAB=30°,求△OGC的面积.32.如图,在四边形ABCD中,AD∥BC,AB=BC,对角线AC、BD交于点O,BD平分∠ABC,过点D作DE⊥BC,交BC的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若DC=2,AC=4,求OE的长.33.如图,在菱形ABCD中,对角线AC、BD交于点O,过点A作AE⊥BC于点E,延长BC至F,使CF=BE,连接DF.(1)求证:四边形AEFD是矩形;(2)若BF=8,DF=4,求CD的长.34.已知:如图,点E为▱ABCD对角线AC上的一点,点F在线段BE的延长线上,且EF =BE,线段EF与边CD相交于点G.(1)求证:DF∥AC;(2)如果AB=BE,DG=CG,联结DE、CF,求证:四边形DECF是矩形.35.如图,▱ABCD的对角线AC,BD交于点O,过点D作DE⊥BC于E,延长CB到点F,使BF=CE,连接AF,OF.(1)求证:四边形AFED是矩形.(2)若AD=7,BE=2,∠ABF=45°,试求OF的长.36.如图,平行四边形ABCD中,AC⊥BC,过点D作DE∥AC交BC的延长线于点E,点M为AB的中点,连接CM.(1)求证:四边形ADEC是矩形;(2)若CM=5,且AC=8,求四边形ADEC的周长.37.如图,已知△OAB中,OA=OB,分别延长AO、BO到点C、D.使得OC=AO,OD =BO,连接AD、DC、CB.(1)求证:四边形ABCD是矩形;(2)以OA、OB为一组邻边作▱AOBE,连接CE,若CE⊥BD,求∠AOB的度数.38.如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AE⊥BC于点E,延长BC到点F,使CF=BE,连接DF.(1)求证:四边形AEFD是矩形;(2)连接OE,若AD=10,EC=4,求OE的长度.39.如图,在平行四边形BPCD中,点O为BD中点,连接CO并延长交PB延长线于点A,连接AD、BC,若AC=CP,(1)求证:四边形ABCD为矩形;(2)在BA的延长线上取一点E,连接OE交AD于点F,若AB=9,BC=12,AE=3,则AF的长为.40.如图,菱形ABCD中,AC与BD交于点O,DE∥AC,DE=AC.(1)求证:四边形OCED是矩形;(2)连结AE,交OD于点F,连结CF,若CF=CE=1,求AC长.2021年01月06日杨莲莲的初中数学组卷参考答案与试题解析一.选择题(共13小题)1.如图,在正方形ABCD中,O是对角线AC与BD的交点,M是BC边上的动点(点M 不与B、C重合),过点C作CN垂直DM交AB于点N,连结OM、ON、MN.下列四个结论:其中正确结论是()①S四边形ABCD=4S四边形ONBM;②BM2+CM2=2ON2;③△CON≌△DOM;④若AB=2,则S△OMN的最小值是1.A.①②③B.①③④C.①②④D.②③④【分析】根据正方形的性质,依次判定△CNB≌△DMC,△AON≌△BOM,根据全等三角形的性质以及勾股定理进行计算即可得出结论.【解答】解:∵四边形ABCD是正方形,∴AC⊥BD,AO=AC,BO=BD,AC=BD,∴AO=BO,∠OAN=∠OBM=45°,∠AOB=90°,∵CN⊥DM,∴∠MCN+∠CMD=∠CMD+∠CDM=90°,∴∠CDM=∠BCN,∵CD=BC,∠DCM=∠CBN,∴△CDM≌△BCN(AAS),∴CM=BN,∴AN=BM,∴△AON≌△BOM(SAS),∴S△AON=S△BOM,∴S四边形ONBM=S△AOB=S正方形ABCD,∴S四边形ABCD=4S四边形ONBM;故①正确;∵△AON≌△BOM,∴ON=OM,∠AON=∠BOM,∴∠NOM=∠AOB=90°,∴△NOM是等腰直角三角形,∴MN2=2ON2,∵BN2+BM2=MN2,∴CM2+BM2=2ON2,故②正确;∵∠MON=∠COD=90°,∴∠NOC=∠MOD,∵OD=OC,ON=OM,∴△CON≌△DOM(SAS),故③正确;∵AB=2,∴S正方形ABCD=4,∵△AON≌△BOM,∴四边形BMON的面积=△AOB的面积=1,即四边形BMON的面积是定值1,∴当△MNB的面积最大时,△MNO的面积最小,设BN=x=CM,则BM=2﹣x,∴△MNB的面积=x(2﹣x)=﹣x2+x=﹣(x﹣1)2+,∴当x=1时,△MNB的面积有最大值,此时S△OMN的最小值是1﹣=,故④不正确,故选:A.【点评】本题主要考查了正方形的性质、全等三角形的判定与性质,二次函数的最值以及勾股定理的综合应用,解题时注意二次函数的最值的运用.2.如图,正方形ABCD中,∠EAF=45°,BD分别交AE、AF于M、N,连MF、EF,下列结论:①MN2=BN2+DM2;②DE+BF=EF;③AM=MF且AM⊥MF;④若E为CD 中点,则=.其中正确的有()A.1个B.2个C.3个D.4个【分析】①过B作BD的垂线,截取BH=MD,连接AH,HN,如图,易证△ADM≌△ABH,△AHN≌△AMN,得MN=HN,最后根据勾股定理可作判断;②延长CB,截取BI=DE,连接AI,如图,易证△ADE≌△ABI,△AIF≌△AEF,得IF=EF,即DE+BF=EF,成立.③作辅助线,则可证△AFJ为等腰直角三角形,CK=BF=KJ,证明∠JCK=45°,推出四边形BCJK为平行四边形,所以GJ=BC=AD,可证△GJM≌△DAM,则M为AJ的中点,又∠AFJ=90°,故AM=MF且AM⊥MF,成立.④延长CB,截取BL=DE,连接AL,可设DE=a,BF=x,则EF=LF=a+x,CF=2a﹣x,CE=a,由勾股定理可知:3x=2a,则==,成立.【解答】解:①过B作BD的垂线,截取BH=MD,连接AH,HN,如图,∵四边形ABCD是正方形,∴AD=AB,∠ADB=∠ABD=45°,∠BAD=90°,∴∠ABH=45°=∠ADM,在△ADM和△ABM中,∵,∴△ADM≌△ABH(SAS),∴∠DAM=∠BAH,AM=AH,∵∠EAF=45°,∠BAD=90°,∴∠DAM+∠BAN=∠BAH+∠BAN=45°,∴∠MAN=∠HAN=45°,在△AHN和△AMN中,∵,∴△AHN≌△AMN(SAS),∴MN=HN,Rt△BHN中,HN2=BH2+BN2,∴MN2=BN2+DM2,成立.②延长CB,截取BI=DE,连接AI,如图,在△ADE和△ABI中,∵∴△ADE≌△ABI(SAS),同理得△AIF≌△AEF(SAS),∴IF=EF,即DE+BF=EF,成立;③如图,过F作FJ⊥AF交AE的延长线于J,过J作JK⊥BC于K,连接CJ,过J作JG ∥BC交BD于G,∴∠AFJ=∠AFB+∠JFK=90°,∵∠AFB+∠BAF=90°,∴∠BAF=∠JFK,∵∠EAF=45°,∠AFJ=90°,∴△AFJ是等腰直角三角形,在△ABF和△FKJ中,∵,∴△ABF≌△FKJ(SAS),∴AB=FK=BC,BF=KJ,∴CK=BF=KJ,∴∠JCK=45°,∴∠DBC=∠JCK,∴BG∥CJ,∵JG∥BC,∴四边形BCJK为平行四边形,∴GJ=BC=AD,∵AD∥BC∥GJ,∴∠DAM=∠MJK,在△GJM和△DAM中,∵,∴△GJM≌△DAM(AAS),∴AM=MJ,则M为AJ的中点,又∠AFJ=90°,故AM=MF且AM⊥MF,成立.④延长CB,截取BL=DE,连接AL,可设DE=a,BF=x,则EF=LF=a+x,∵E为CD中点,∴CD=BC=2a,∴CF=2a﹣x,CE=a,在Rt△EFC中,由勾股定理得:EF2=CE2+CF2∴(a+x)2=a2+(2a﹣x)2解得:3x=2a,则==,成立.故选:D.【点评】本题考查了正方形的性质,全等三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.3.如图,在正方形ABCD中,AB=4,AC与BD相交于点O,N是AO的中点,点M在BC边上,且BM=3,P为对角线BD上一点,当对角线BD平分∠NPM时,PM﹣PN值为()A.1B.C.2D.【分析】作以BD为对称轴作N的对称点N',连接MN',PN',根据PM﹣PN=PM﹣PN'≤MN',当P,M,N'三点共线时,取“=”,再证得△MCN'∽△BCA,从而推得△MCN'为等腰直角三角形,结合BM=3.正方形的边长为4,求得CM,即为MN',问题可解.【解答】解:如图所示,∵对角线BD平分∠NPM,∴作以BD为对称轴N的对称点N',连接MN',PN',根据轴对称性质可知,PN=PN',∠NPO=N′PO,NO=N′O∵在正方形ABCD中,AB=4∴AC=AB=4,∵O为AC中点∴OA=OC=2∵N为OA的中点∴ON=∴ON'=CN'=∴AN'=3∵BM=3∴CM=4﹣3=1∴==∵∠MCN'=∠BCA∴△MCN'∽△BCA∴∠CMN'=∠ABC=90°∵∠MCN'=45°∴△MCN'为等腰直角三角形∴MN'=CM=1∴PM﹣PN的值为1.故选:A.【点评】本题主要考查了正方形的性质,明确正方形的相关性质及相似三角形的判定、勾股定理等知识点,是解题的关键.4.如图,在正方形ABCD内一点E连接BE、CE,过C作CF⊥CE与BE延长线交于点F,连接DF、DE.CE=CF=1,DE=,下列结论中:①△CBE≌△CDF;②BF⊥DF;③点D到CF的距离为2;④S四边形DECF=+1.其中正确结论的个数是()A.1B.2C.3D.4【分析】根据正方形的性质、全等三角形的判定和性质、勾股定理等知识逐项判断即可.【解答】解:∵四边形ABCD是正方形,∴BC=CD,∠BCD=90°,∵CF⊥CE,∴∠ECF=∠BCD=90°,∴∠BCE=∠DCF,在△BCE与△DCF中,,∴△BCE≌△DCF(SAS),故①正确;∵△BCE≌△DCF,∴∠CBE=∠CDF,∴∠DFB=∠BCD=90°,∴BF⊥DF,故②正确,过点D作DM⊥CF,交CF的延长线于点M,∵∠ECF=90°,FC=EC=1,∴∠CFE=45°,∵∠DFM+∠CFB=90°,∴∠DFM=∠FDM=45°,∴FM=DM,∴由勾股定理可求得:EF=,∵DE=,∴由勾股定理可得:DF=2,∵EF2+BE2=2BE2=BF2,∴DM=FM=,故③错误,∵△BCE≌△DCF,∴S△BCE=S△DCF,∴S四边形DECF=S△DCF+S△DCE=S△ECF+S△DEF=+,故④错误,故选:B.【点评】本题考查四边形的综合问题,涉及正方形的性质、全等三角形的性质与判定、勾股定理、三角形面积公式等知识内容,综合程度高,需要学生灵活运用知识解答.5.如图,已知E,F分别为正方形ABCD的边AB,BC的中点,AF与DE交于点M.则下列结论:①∠AME=90°,②∠BAF=∠EDB,③AM=MF,④ME+MF=MB.其中正确结论的有()A.4个B.3个C.2个D.1个【分析】根据正方形的性质可得AB=BC=AD,∠ABC=∠BAD=90°,再根据中点定义求出AE=BF,然后利用“边角边”证明△ABF和△DAE全等,根据全等三角形对应角相等可得∠BAF=∠ADE,然后求出∠ADE+∠DAF=∠BAD=90°,从而求出∠AMD =90°,再根据邻补角的定义可得∠AME=90°,得出①正确;根据中线的定义判断出∠ADE≠∠EDB,然后求出∠BAF≠∠EDB,判断出②错误;设正方形ABCD的边长为2a,利用勾股定理列式求出AF,再根据似三角形对应边成比例求出AM,然后求出MF,消掉a即可得到AM=MF,判断出③正确;过点M作MN⊥AB于N,由相似三角形的性质得出==,解得MN=a,AN=a,得出NB=AB﹣AN=2a﹣a=a,根据勾股定理得BM=a,求出ME+MF=+a=a,MB=a,得出ME+MF=MB,故④正确.于是得到结论.【解答】解:在正方形ABCD中,AB=BC=AD,∠ABC=∠BAD=90°,∵E、F分别为边AB,BC的中点,∴AE=BF=BC,在△ABF和△DAE中,,∴△ABF≌△DAE(SAS),∴∠BAF=∠ADE,∵∠BAF+∠DAF=∠BAD=90°,∴∠ADE+∠DAF=∠BAD=90°,∴∠AMD=180°﹣(∠ADE+∠DAF)=180°﹣90°=90°,∴∠AME=180°﹣∠AMD=180°﹣90°=90°,故①正确;∵DE是△ABD的中线,∴∠ADE≠∠EDB,∴∠BAF≠∠EDB,故②错误;设正方形ABCD的边长为2a,则BF=a,在Rt△ABF中,AF===a,∵∠BAF=∠MAE,∠ABC=∠AME=90°,∴△AME∽△ABF,∴=,即=,解得:AM=a,∴MF=AF﹣AM=a﹣a=a,∴AM=MF,故③正确;如图,过点M作MN⊥AB于N,则MN∥BC,∴△AMN∽△AFB,∴==,即==,解得MN=a,AN=a,∴NB=AB﹣AN=2a﹣a=a,根据勾股定理得:BM===a,∵ME+MF=+a=a,MB=a,∴ME+MF=MB,故④正确.综上所述,正确的结论有①③④共3个.故选:B.【点评】本题考查了正方形的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理等知识;仔细分析图形并作出辅助线构造出直角三角形与相似三角形是解题的关键.6.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,EH与CF交于点O.则HE的长为()A.2B.C.2D.或2【分析】利用直角三角形斜边上的中线等于斜边的一半,分别求得HO和OE的长后即可求得HE的长.【解答】解:∵AC、CF分别是正方形ABCD和正方形CGFE的对角线,∴∠ACD=∠GCF=45°,∴∠ACF=90°,又∵H是AF的中点,∴CH=HF,∵EC=EF,∴点H和点E都在线段CF的中垂线上,∴HE是CF的中垂线,∴点H和点O是线段AF和CF的中点,∴OH=AC,在Rt△ACD和Rt△CEF中,AD=DC=1,CE=EF=3,∴AC=,∴CF=3,又OE是等腰直角△CEF斜边上的高,∴OE=,∴HE=HO+OE=2.故选:C.【点评】本题考查了正方形的性质、直角三角形的性质及勾股定理的知识,综合性较强,难度较大.7.如图,在正方形ABCD中,E为BC上一点,过点E作EF∥CD,交AD于F,交对角线BD于G,取DG的中点H,连结AH,EH,FH.下列结论:①FH∥AE;②AH=EH且AH⊥EH;③∠BAH=∠HEC;④△EHF≌△AHD;⑤若,则.其中哪些结论是正确()A.①②④⑤B.②③④C.①②③D.②③④⑤【分析】①根据正方形对角线互相垂直、过一点有且只有一条直线与已知直线垂直即可得结论;②根据矩形的判定和性质、直角三角形的性质,证明三角形全等即可得结论;③根据全等三角形性质、矩形的性质进行角的计算即可得结论;④根据边边边证明三角形全等即可得结论;⑤根据割补法求四边形的面积,再求等腰直角三角形的面积,即可得结论.【解答】证明:①在正方形ABCD中,∠ADC=∠C=90°,∠ADB=45°,∵EF∥CD∴∠EFD=90°,得矩形EFDC.在Rt△FDG中,∠FDG=45°,∴FD=FG,∵H是DG中点,∴FH⊥BD∵正方形对角线互相垂直,过A点只能有一条垂直于BD的直线,∴AE不垂直于BD,∴FH与AE不平行.所以①不正确.②∵四边形ABEF是矩形,∴AF=EB,∠BEF=90°,∵BD平分∠ABC,∴∠EBG=∠EGB=45°,∴BE=GE,∴AF=EG.在Rt△FGD中,H是DG的中点,∴FH=GH,FH⊥BD,∴∠AFH=∠AFE+∠GFH=90°+45°=135°,∠EGH=180°﹣∠EGB=180°﹣45°=135°,∴∠AFH=∠EGH,∴△AFH≌△EGH,∴AH=EH,∠AHF=∠EHG,∴∠AHF+AHG=∠EHG+∠AHG,即∠FHG=∠AHE=90°,∴AH⊥EH.所以②正确.③∵△AFH≌△EGH,∴∠F AH=∠GEH,∵∠BAF=CEG=90°,∴∠BAH=∠HEC.所以③正确.④∵EF=AD,FH=DH,EH=AH,∴△EHF≌△AHD所以④正确.⑤如图,过点H作HM⊥AD于点M,设EC=FD=FG=x,则BE=AF=EG=2x,∴BC=DC=AB=AD=3x,HM=x,AM=x,∴AH2=(x)2+(x)2=x2,S四边形DHEC=S梯形EGDC﹣S△EGH=(2x+3x)•x﹣×=2x2S△AHE=AH•EH=AH2=x2∴==.所以⑤不正确.故选:B.【点评】本题考查了正方形的性质、矩形的判定和性质、全等三角形的判定和性质、直角三角形的性质、三角形和梯形的面积等内容,解题关键是综合利用以上知识解决问题.8.如图,在正方形ABCD中,AC、BD相交于点O,E、F分别为BC、CD上的两点,BE =CF,AE、BF分别交BD、AC于M、N两点,连OE、OF.下列结论:①AE=BF;②AE⊥BF;③CE+CF=BD;④S四边形OECF=S正方形ABCD,其中正确的是()A.①②B.①④C.①②④D.①②③④【分析】①易证得△ABE≌△BCF(ASA),则可证得结论①正确;②由△ABE≌△BCF,可得∠FBC=∠BAE,证得AE⊥BF,选项②正确;③证明△BCD是等腰直角三角形,求得选项③错误;④证明△OBE≌△OCF,根据正方形被对角线将面积四等分,即可得出选项④正确.【解答】解:①∵四边形ABCD是正方形,∴AB=BC,∠ABE=∠BCF=90°,在△ABE和△BCF中,∵,∴△ABE≌△BCF(SAS),∴AE=BF,故①正确;②由①知:△ABE≌△BCF,∴∠FBC=∠BAE,∴∠FBC+∠ABF=∠BAE+∠ABF=90°,∴AE⊥BF,故②正确;③∵四边形ABCD是正方形,∴BC=CD,∠BCD=90°,∴△BCD是等腰直角三角形,∴BD=BC,∴CE+CF=CE+BE==BC,故③错误;④∵四边形ABCD是正方形,∴OB=OC,∠OBE=∠OCF=45°,在△OBE和△OCF中,∵,∴△OBE≌△OCF(SAS),∴S△OBE=S△OCF,∴S四边形OECF=S△COE+S△OCF=S△COE+S△OBE=S△OBC=S正方形ABCD,故④正确;故选:C.【点评】此题属于四边形的综合题.考查了正方形的性质,全等三角形的判定与性质、勾股定理以及等腰直角三角形的性质.注意掌握全等三角形的判定与性质是解此题的关键.9.如图,在正方形ABCD中,M是对角线BD上的一点,点E在AD的延长线上,连接AM、EM、CM,延长EM交AB于点F,若AM=EM,∠E=30°,则下列结论:①FM=ME;②BF=DE;③CM⊥EF;④BF+MD=BC,其中正确的结论序号是()A.①②③B.①②④C.②③④D.①②③④【分析】①证明△AFM是等边三角形,可判断;②③证明△CBF≌△CDE(ASA),可作判断;④设MN=x,分别表示BF、MD、BC的长,可作判断.【解答】解:①∵AM=EM,∠AEM=30°,∴∠MAE=∠AEM=30°,∴∠AMF=∠MAE+∠AEM=60°,∵四边形ABCD是正方形,∴∠F AD=90°,∴∠F AM=90°﹣30°=60°,∴△AFM是等边三角形,∴FM=AM=EM,故①正确;②连接CE、CF,∵四边形ABCD是正方形,∴∠ADB=∠CDM,AD=CD,在△ADM和△CDM中,∵,∴△ADM≌△CDM(SAS),∴AM=CM,∴FM=EM=CM,∴∠MFC=∠MCF,∠MEC=∠ECM,∵∠ECF+∠CFE+∠FEC=180°,∴∠ECF=90°,∵∠BCD=90°,∴∠DCE=∠BCF,在△CBF和△CDE中,∵,∴△CBF≌△CDE(ASA),∴BF=DE;故②正确;③∵△CBF≌△CDE,∴CF=CE,∵FM=EM,∴CM⊥EF,故③正确;④过M作MN⊥AD于N,设MN=x,则AM=AF=2x,AN=x,DN=MN=x,∴AD=AB=x+x,∴DE=BF=AB﹣AF=x+x﹣2x=x﹣x,∴BF+MD=(x﹣x)+x=x,∵BC=AD=x+x x,故④错误;所以本题正确的有①②③;故选:A.【点评】本题考查了正方形的性质,全等三角形的判定与性质,等腰三角形的性质和判定,熟记正方形的性质确定出△AFM是等边三角形是解题的关键.【点评】此题考查的是正方形的性质,等腰直角三角形的性质和判定以及菱10.如图,在正方形ABCD中,对角线AC,BD交于点O,AG平分∠BAC交BD于G,DE⊥AG于点H.下列结论:①AD=2AE:②FD=AG;③CF=CD:④四边形FGEA是菱形;⑤OF =BE,正确的有()A.2个B.3个C.4个D.5个【分析】①根据正方形的性质和角平分线的定义得:∠BAG=∠CAG=22.5°,由垂直的定义计算∠AED=90°﹣22.5°=67.5°,∠EAD=∠EAD=22.5°,得ED是AG的垂直平分线,则AE=EG,△BEG是等腰直角三角形,则AD=AB>2AE,可作判断;②证明△DAF≌△ABG(ASA),可作判断;③分别计算∠CDF=∠CFD=67.5°,可作判断;④根据对角线互相平分且垂直的四边形是菱形可作判断;⑤设BG=x,则AF=AE=x,表示OF和BE的长,可作判断.【解答】解:①∵四边形ABCD是正方形,∴∠BAD=90°,∠BAC=45°,∵AG平分∠BAC,∴∠BAG=∠CAG=22.5°,∵AG⊥ED,∴∠AHE=∠EHG=90°,∴∠AED=90°﹣22.5°=67.5°,∴∠ADE=22.5°,∵∠ADB=45°,∴∠EDG=22.5°=∠ADE,∵∠AHD=∠GHD=90°,∴∠DAG=∠DGA,∴AD=DG,AH=GH,∴ED是AG的垂直平分线,∴AE=EG,∴∠EAG=∠AGE=22.5°,∴∠BEG=45°=∠ABG,∴∠BGE=90°,∴AE=EG<BE,∴AD=AB>2AE,故①不正确;②∵四边形ABCD是正方形,∴AD=AB,∠DAF=∠ABG=45°,∵∠ADF=∠BAG=22.5°,∴△DAF≌△ABG(ASA),∴DF=AG,故②正确;③∵∠CDF=45°+22.5°=67.5°,∠CFD=∠AFE=90°﹣22.5°=67.5°,∴∠CDF=∠CFD,∴CF=CD,故③正确;④∵∠EAH=∠F AH,∠AHE=∠AHF,∴∠AEF=∠AFE,∴AE=AF,∴EH=FH,∵AH=GH,AG⊥EF,∴四边形FGEA是菱形;故④正确;⑤设BG=x,则AF=AE=x,由①知△BEG是等腰直角三角形,∴BE=x,∴AB=AE+BE=x+x=(+1)x,∴AO==,∴OF=AO﹣AF=﹣x=,∴==,∴OF=BE;故⑤正确;本题正确的结论有:②③④⑤;故选:C.形的判定与性质等知识.此题综合性较强,难度较大,注意掌握正方形的性质,注意数形结合思想的应用.11.如图,以正方形ABCD的顶点A为圆心,以AD的长为半径画弧,交对角线AC于点E,再分别以D,E为圆心,以大于DE的长为半径画弧,两弧交于图中的点F处,连接AF并延长,与BC的延长线交于点P,则∠P=()A.90°B.45°C.30°D.22.5°【分析】根据正方形的性质得到∠DAC=∠ACD=45°,由作图知,∠CAP=∠DAC =22.5°,根据三角形的内角和即可得到结论.【解答】解:∵四边形ABCD是正方形,∴∠DAC=∠ACD=45°,由作图知,∠CAP=∠DAC=22.5°,∴∠P=180°﹣∠ACP﹣∠CAP=22.5°,故选:D.【点评】本题考查了正方形的性质,角平分线定义,正确的理解题意是解题的关键.12.如图,正方形ABCD中,点E在边CD上,连接AE,过点A作AF⊥AE交CB的延长线于点F,连接EF,AG平分∠F AE,AG分别交BC,EF于点G,H,连接EG,DH.则下列结论中:①AF=AE;②∠EGC=2∠BAG;③DE+BG=EG;④AD+DE=DH;⑤若DE=CE,则CE:CG:EG=3:4:5,其中正确的结论有()A.2个B.3个C.4个D.5个【分析】①正确.证明△ADE≌△ABF(ASA)可得结论.②正确.证明△AGF≌△AGE(SAS),推出∠AGF=∠AGE=90°﹣∠BAG,推出∠EGF =180°﹣2∠BAG可得结论.③正确.证明△GAF≌△GAE,推出GF=GE可得结论.④正确.过点H作HM⊥AD于M,HN⊥CD于N,证明△HMA≌△HNE(AAS),推出AM=EN,HM=HN,再证明四边形HMDN是正方形可得结论.⑤正确.当DE=EC时,设DE=EC=a,BG=x,则EG=a+x,GC=2a﹣x,利用勾股定理构建方程求出x即可解决问题.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∠ABC=∠ABF=∠ADE=∠BAD=90°,∵AE⊥AF,∴∠EAF=∠BAD=90°,∴∠BAF=∠DAE,∴△ADE≌△ABF(ASA),∴AE=AF,故①正确,∵AG平分∠EAF,∴∠GAF=∠GAE,∵AF=AE,AG=AG,∴△AGF≌△AGE(SAS),∴∠AGF=∠AGE=90°﹣∠BAG,∴∠EGF=180°﹣2∠BAG,∵∠EGF=180°﹣∠EGC,∴∠EGC=2∠BAG,故②正确,∵△ADE≌△ABF,∴DE=BF,∵△GAF≌△GAE,∴GF=GE,∵FG=BF+BG=DE+BG,∴EG=BG+DE,故③正确,过点H作HM⊥AD于M,HN⊥CD于N,∵AE=AF,∠EAF=90°,AH平分∠EAF,∴AH⊥EF,HF=HE,∴HA=HE=HF,∵∠ADE+∠AHE=180°,∴∠HAD+∠DEH=180°,∵∠DEH+∠HEN=180°,∴∠HAM=∠HEN,∵∠AMH=∠ENH=90°,∴△HMA≌△HNE(AAS),∴AM=EN,HM=HN,∵∠HMD=∠HND=∠MDN=90°,∴四边形HMDN是矩形,∵HM=HN,∴四边形HMDN是正方形,∴DM=DN=HM=HN,DH=DM,∴DA+DE=DM+AM+DN﹣EN=2DM=DH,故④正确,当DE=EC时,设DE=EC=a,BG=x,则EG=a+x,GC=2a﹣x,在Rt△ECG中,∵EG2=EC2+CG2,∴(x+a)2=a2+(2a﹣x)2,解得x=a,∴CG=a,EG=a,∴CE:CG:EG=a:a:=3:4:5,故⑤正确,故选:D.【点评】本题考查正方形的性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,学会利用参数构建方程解决问题,属于中考选择题中的压轴题.13.如图,矩形ABCD中,O为AC的中点,过点O的直线分别与AB、CD交于点E、F,连接BF交AC于点M,连接DE、BO.若∠COB=60°,FO=FC=2,则下列结论:①FB⊥OC;②△EOB≌△CMB;③四边形EBFD是菱形;④MB=2.其中正确结论的个数是()A.1个B.2个C.3个D.4个【分析】连接BD,先证明△BOC是等边三角形,得FO=FC,BO=BC,故①正确;因为△EOB≌△FOB≌△FCB,故△EOB不会全等于△CBM,故②错误;再证明四边形EBFD是平行四边形,由OB⊥EF推出四边形EBFD是菱形故③正确,先判断出CM=,再由∠CBM=30°,判断出BC=2,进而判断出④,由此不难得到答案.【解答】解:连接BD,∵四边形ABCD是矩形,∴AC=BD,AC、BD互相平分,∵O为AC中点,∴BD也过O点,∴OB=OC,∵∠COB=60°,OB=OC,∴△OBC是等边三角形,∴OB=BC=OC,∠OBC=60°,在△OBF与△CBF中,,∴△OBF≌△CBF(SSS),∴△OBF与△CBF关于直线BF对称,∴FB⊥OC,OM=CM;∴①正确,∵∠OBC=60°,∴∠ABO=30°,∵△OBF≌△CBF,∴∠OBM=∠CBM=30°,∴∠ABO=∠OBF,∵AB∥CD,∴∠OCF=∠OAE,∵OA=OC,∠AOE=∠FOC∴△AOE≌△COF(ASA),∴OE=OF,∴OB⊥EF,∴四边形EBFD是菱形,∴③正确,∵△EOB≌△FOB≌△FCB,∴△EOB≌△CMB错误.∴②错误;∵FO=FC=2,FM⊥OC,∠FCM=30°,∴CM=,∵∠CBM=30°,∴BC=2,∴BM=3,∴④错误.综上可知其中正确结论的个数是2个,故选:B.【点评】本题属于四边形的综合题,考查矩形的性质、等边三角形的判定和性质.全等三角形的判定和性质、菱形的判定、勾股定理等知识,解题的关键是灵活运用这些知识解决问题,属于中考常考题型.二.填空题(共3小题)14.如图,点E为正方形ABCD外一点,且ED=CD,连接AE,交BD于点F.若∠CDE =40°,则∠DFC的度数为110°.【分析】根据正方形性质和已知得:AD=DE,利用等腰三角形性质计算∠DAE=25°,由三角形的内角和定理得:∠AFD=110°,证明△ADF≌△CDF(SAS),∠DFC=∠AFD =110°.【解答】解:∵四边形ABCD是正方形,∴AD=DC,∠ADC=90°,∴∠ADB=∠BDC=45°,∵DC=DE,∴AD=DE,∴∠DAE=∠DEA,∵∠ADE=90°+40°=130°,∴∠DAE==25°,∴∠AFD=180°﹣25°﹣45°=110°,在△ADF和△CDF中,∵,∴△ADF≌△CDF(SAS),∴∠DFC=∠AFD=110°,故答案为:110°.【点评】本题考查了正方形的性质、三角形全等的性质和判定、等腰三角形的性质、三角形内角和定理,属于基础题,熟练掌握正方形的性质是关键.15.如图,正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G,下列结论:①EC=2DG;②∠GDH=∠GHD;③S△CDG=S四边形DHGE;④图中只有8个等腰三角形.其中正确的有②③(填番号).【分析】根据正方形的性质和已知推出四边形DECB是平行四边形,得到BD=CE,BD ∥CE,无法证出G为CE的中点;得到BD∥CE,推出∠DCG=∠BDC=45°,求出∠BGC=∠GBC,得到BC=CG=CD,求出∠CDG=∠DHG即可;根据三角形的面积公式推出△CDG和四边形DHGE的面积相等;可得有9个等腰三角形.【解答】解:∵正方形ABCD,DE=AD,∴AD∥BC,DE=BC,∠EDC=90°,∴四边形DECB是平行四边形,∴BD=CE,BD∥CE,∵DE=BC=AD,∴∠DCE=∠DEC=45°,要使CE=2DG,只要G为CE的中点即可,但DE=DC,DF=BD,∴EF≠BC,即△EFG和△BCG不全等,∴G不是CE中点,∴①错误;∵∠ADB=45°,DF=BD,∴∠F=∠DBH=∠ADB=22.5°,∴∠DHG=180°﹣90°﹣22.5°=67.5°,∵BD∥CE,∴∠DCG=∠BDC=45°,∵∠DHG=67.5°,∴∠HGC=22.5°,∠DEC=45°,∵∠BGC=180°﹣22.5°﹣135°=22.5°=∠GBC,∴BC=CG=CD,∴∠CDG=∠CGD=(180°﹣45°)=67.5°=∠DHG,∴②正确;∵CG=DE=CD,∠DCE=∠DEC=45,∠HGC=22.5°,∠GDE=90﹣∠CDG=90﹣67.5=22.5°,∴△DEG≌△CHG,要使△CDG和四边形DHGE的面积相等,只要△DEG和△CHG的面积相等即可,根据已知条件△DEG≌△CHG,∴③S△CDG=S四边形DHGE;正确,等腰三角形有△ABD,△CDB,△BDF,△CDE,△BCG,△DGH,△EGF,△CDG,△DGF;∴④错误;故答案为:②③.【点评】本题主要考查对三角形的内角和定理,等腰三角形的性质和判定,正方形的性质,平行四边形的性质和判定等知识.综合运用这些性质进行推理是解此题的关键.16.如图,在正方形ABCD中,P为AB的中点,BE⊥PD的延长线于点E,连接AE、BE、F A⊥AE交DP于点F,连接BF,FC.若AE=2,则FC=2.【分析】根据正方形的性质可得AB=AD,再求出∠BAE=∠DAF,∠ABE=∠ADF,然后利用“角边角”证明△ABE和△ADF全等,根据全等三角形对应边相等可得AE=AF,从而判断出△AEF是等腰直角三角形,根据AE的长度求出EF,过点A作AH⊥EF于H,连接BH,根据等腰直角三角形的性质可得AH=EH=FH,利用“角边角”证明△APH 和△BPE全等,根据全等三角形对应边相等可得BE=AH,然后求出△BEH是等腰直角三角形,根据等腰直角三角形的性质可得∠EHB=45°,然后求出∠AHB=∠FHB,再利用“边角边”证明△ABH和△FBH全等,根据全等三角形对应边相等可得AB=BF,再根据全等三角形对应边相等求出BE=DF,全等三角形对应角相等求出∠BAH=∠BFE,然后求出∠BFE=∠ADF,根据等角的余角相等求出∠EBF=∠FDC,再利用“边角边”证明△BEF和△DFC全等,根据全等三角形对应边相等可得FC=EF.【解答】解:在正方形ABCD中,AB=AD,∠BAD=90°,∵F A⊥AE,∴∠EAF=90°,∴∠BAE=∠DAF,∵∠ABE+∠BPE=∠ADF+∠APD=90°,∴∠ABE=∠ADF,在△ABE和△ADF中,,∴△ABE≌△ADF(ASA),∴AE=AF,BE=DF,∵F A⊥AE,∴△AEF是等腰直角三角形,∴EF=AE=2,过点A作AH⊥EF于H,连接BH,。

北师版八上数学第三章位置与坐标60题(含答案) 常考题型总结(全)

北师版八上数学第三章位置与坐标60题(含答案)  常考题型总结(全)

第三章位置与坐标常考题型总结(全)一.选择题(共23小题)1.如图,在中国象棋棋盘中,如果将“卒”的位置记作(3,1),那么“相”的位置可记作()A.(2,8)B.(2,4)C.(8,2)D.(4,2)2.如图,在一次“寻宝”游戏中,寻宝人找到了如图所示的两个标志点A(3,1),B(2,2),则“宝藏”点C的位置是()A.(1,0)B.(1,2)C.(2,1)D.(1,1)3.在一次“寻宝”游戏中,寻宝人已经找到两个标志点A(2,3)和B(1,﹣1),并且知道藏宝地点的坐标是(4,2),则藏宝处应为图中的()A.点M B.点N C.点P D.点Q4.如图,在平面直角坐标系中,对△ABC进行循环往复的轴对称变换,若原来点A坐标是(1,2),则经过第2021次变换后点A的对应点的坐标为()A.(1,﹣2)B.(﹣1,﹣2)C.(﹣1,2)D.(1,2)5.蝴蝶标本可以近似地看作轴对称图形.如图,将一只蝴蝶标本放在平面直角坐标系中,如果图中点A的坐标为(5,3),则其关于y轴对称的点B的坐标为()A.(5,﹣3)B.(﹣5,3)C.(﹣5,﹣3)D.(3,5)6.若点P是第二象限内的点,且点P到x轴的距离是4,到y轴的距离是3,则点P的坐标是()A.(﹣4,3)B.(4,﹣3)C.(﹣3,4)D.(3,﹣4)7.在平面直角坐标系中,点A(﹣2,﹣3)关于x轴对称的点的坐标是()A.(﹣2,﹣3)B.(﹣2,3)C.(2,﹣3)D.(2,3)8.已知点P(3,﹣2),点Q(﹣3,2),点R(﹣3,﹣2),点H(3,2),下面选项中关于y轴对称的是()A.P和Q B.P和H C.Q和R D.P和R9.小明在介绍郑州外国语中学位置时,相对准确的表述为()A.陇海路以北B.工人路以西C.郑州市人民政府西南方向D.陇海路和工人路交叉口西北角10.在平面直角坐标系中,点A(2,﹣1)在()A.第一象限B.第二象限C.第三象限D.第四象限11.若点P(m,1)在第二象限内,则点Q(﹣m,0)在()A.x轴正半轴上B.x轴负半轴上C.y轴正半轴上D.y轴负半轴上12.如图,在直角坐标系中,△AOB是等边三角形,若B点的坐标是(2,0),则A点的坐标是()A.(2,1)B.(1,2)C.(,1)D.(1,)13.平面直角坐标系中,点A(﹣5,3),B(7,9),经过点A的直线L∥x轴,点C是直线L上的一个动点,则线段BC的长度最小时点C的坐标为()A.(﹣7,9)B.(7,﹣3)C.(7,3)D.(19,3)14.在平面直角坐标系中,点P(4,﹣3)到x轴的距离()A.4B.3C.5D.﹣315.已知点A(a,2014)与点B(2015,b)关于x轴对称,则的值为()A.﹣1B.1C.2D.316.如图,在方格纸上△DEF是由△ABC绕定点P顺时针旋转得到的.如果用(2,1)表示方格纸上A点的位置,(1,2)表示B点的位置,那么点P的位置为()A.(5,2)B.(2,5)C.(2,1)D.(1,2)17.在平面直角坐标系中,若点P(a,b)在第二象限,则点Q(1﹣a,﹣b)在第()象限.A.第一象限B.第二象限C.第三象限D.第四象限18.已知(a﹣2)2+|b+3|=0,则P(﹣a,﹣b)关于x轴对称点的坐标为()A.(2,3)B.(2,﹣3)C.(﹣2,3)D.(﹣2,﹣3)19.将平面直角坐标系内的△ABC的三个顶点坐标的横坐标乘以﹣1,纵坐标不变,则所得的三角形与原三角形()A.关于x轴对称B.关于y轴对称C.关于原点对称D.无任何对称关系20.下列说法中,正确的是()A.点P(3,2)到x轴距离是3B.在平面直角坐标系中,点(2,﹣3)和点(﹣2,3)表示同一个点C.若y=0,则点M(x,y)在y轴上D.在平面直角坐标系中,第三象限内点的横坐标与纵坐标同号21.在平面直角坐标系中,把△ABC先沿y轴翻折,再向上平移3个单位得到△A1B1C1现把这两步操作规定为一种变换,如图,已知等边△ABC的顶点B、C的坐标分别是(﹣1,2),(﹣1,4),把三角形连续经过2022次这种变换得到△A2022B2022C2022,则点A2022的坐标是()A.(1+,6066)B.(1+,6069)C.(﹣1﹣,6069)D.(﹣1﹣,6066)22.点P的坐标为(2﹣a,3a+6),且到两坐标轴的距离相等,则点P的坐标为()A.(3,3)B.(3,﹣3)C.(6,﹣6)D.(3,3)或(6,﹣6)23.在平面直角坐标系中,点A(﹣2,m)和点B(n,﹣3)关于x轴对称,m+n的值是()A.﹣1B.1C.5D.﹣5二.填空题(共15小题)24.平面直角坐标系中,O为坐标原点,A点坐标为(,1),P为y轴上一点,且使△POA为等腰三角形,则满足条件的点P的坐标为.25.如图所示,以Rt△ABC的三边分别为直径作半圆,若Rt△ABC三边长分别为3,x,5,则图中阴影部分的面积为.26.如图,A,B两点的坐标分别是A(1,),B(3,0),则△AOB的面积是.27.若点P(a+3,a﹣1)在x轴上,则点P的坐标为.28.在直角坐标系中,坐标轴上到点P(﹣3,﹣4)的距离等于5的点共有个.29.与点A(m,n)关于原点对称的点的坐标为.30.在平面直角坐标系中,若点M(2,4)与点N(x,4)之间的距离是3,则x的值是.31.若|a+2|+=0,则点P(a,b)在第象限.32.若点P(2﹣a,2a﹣1)到两坐标轴的距离相等且在x轴下方,则点P的坐标是.33.已知点P(3,﹣1)关于y轴的对称点Q的坐标是(a+b,1﹣b),则a b的值为.34.在平面直角坐标系xOy中,我们把点O,A(0,4),B(8,4),C(8,0)顺次连接起来,得到一个长方形区域,P为该区域(含边界)内一点.若将点P到长方形相邻两边的距离之和的最小值记为d,则称P为“d距点”.例如:点P(5,3)称为“4距点”.当d=4时,横、纵坐标都是整数的点P的个数为个.35.若点P(m﹣2,m+1)在坐标轴上,则点P的坐标为.36.第三象限内的点P(x,y),满足|x|=5,y2=9,则点P的坐标是.37.如图,已知点A的坐标为(﹣2,2),点B的坐标为(﹣1,﹣2),则点C的坐标是.38.如图,点A,B,C在一次函数y=﹣3x+m的图象上,它们的横坐标依次为﹣1,1,2,分别过这些点作x轴与y轴的垂线,则图中阴影部分的面积之和是.三.解答题(共22小题)39.在平面直角坐标系中.(1)如何确定一个给定的点的坐标?请你举例说明.(2)某个图形上各点的纵坐标不变,而横坐标变为原来的相反数,此图形却未发生任何改变,你认为可能吗?请举例说明.40.如图,如果用(0,0)表示点A,(1,0)表示点B,(1,2)表示点F.请按照这个规律表示出其它点的坐标.41.在某旅游景点,为了增加旅游的乐趣,特安排了一次“寻宝”游戏,寻宝人找到了如图所示的两个标志点A(2,1),B(4,﹣1),这两个标志点到“宝藏”点的距离都是,请你想想办法,在如图的方格纸中画出这个平面直角坐标系,并求出“宝藏”所在位置的坐标.42.如图是规格为8×8的正方形网格,请在所给网格中按下列要求操作:(1)请在网格中建立平面直角坐标系,使A点坐标为(﹣2,4),B点坐标为(﹣4,2)(画出坐标系即可);(2)在第二象限内的格点上画一点C,连接AC,BC,使△ABC为以AB为底的等腰三角形,且腰长是无理数,则C点坐标是,△ABC的周长是(结果保留根号);(3)画出△ABC关于y轴对称的△A'B'C';(4)若M(x,y)是△ABC内部一点,请直接写出这点在△A'B'C内部的对应点M'的坐标.43.如图,在平面直角坐标系中(1)描出A(2,1),B(﹣1,3)两点.(2)描出点A关于y轴的对称点C,点B关于x轴的对称点D.(3)依次连接点A、B、C、D得到四边形ABCD,则四边形ABCD的面积为44.△ABC在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度.(1)将△ABC各顶点的横坐标不变,纵坐标乘﹣1,作出所得到的△A1B1C1;(2)请作出△A1B1C1关于y轴的对称图形△A2B2C2.(3)△A2B2C2(填“是”或“不是”)直角三角形.45.在学习完《位置与坐标》,小斌、小亮、小敏和小芳设计了一个游戏,他们在操场上画了如图所示,每小格边长均为2m的7×7方格.若小斌从点A出发,依次到点B(小亮),C(小敏),D(小芳)处,规定:向北和向东走为正,向南和向西走为负;如果从A到B 记为A→B(﹣3,﹣1),从B到A记为B→A(+3,+1),数对中的第一个数表示东西方向,第二个数表示南北方向.(1)图中的B到C,C到D分别记为;(2)若小斌的行走路线为A→B→C→D,请计算小斌走过的路程;(3)若小亮从点B出发到点P,行走的路线依次为(+3,0),(﹣1,﹣5),(﹣4,+4)请在图中标出点P的位置;(4)若图中有两个格点E,F,且点E→B(5+x,3﹣y),E→F(7+x,1﹣y),则F→B 应记为.46.等边三角形ABC的边长为6,建立适当的直角坐标系,并写出各点的坐标.47.已知点A、B都是x轴上的点,若点A的坐标为(4,0),且AB=5,点C的坐标为(2,5)(1)请写出点B的坐标,并画出符合条件的△ABC;(2)求S△ABC.48.在平面直角坐标系中,(1)已知点P(2a﹣6,a+4)在y轴上,求点P的坐标.(2)已知两点A(﹣3,m﹣1),B(n+1,4),若AB∥x轴,求m的值.49.已知y﹣1与x+成正比,且当x=1时y=7,求当y=5时,x的值.50.如图,已知△ABC:(1)AC的长等于;(2)若将△ABC向右平移2个单位得到△A′B′C′,则A点的对应点A′的坐标是;(3)若将△ABC绕点C按顺时针方向旋转90°后得到△A1B1C1,则A点对应点A1的坐标是.51.如图1,在△ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过点A作AD⊥ED 于点D,过点B作BE⊥ED于点E,易证明△BEC≌△CDA,我们将这个模型称为“一线三直角”.接下来我们就利用这个模型来解决一些问题:(1)如图2,将一块等腰直角三角板ACB放置在平面直角坐标系中,∠ACB=90°,AC =BC,点A在y轴的正半轴上,点C在x轴的负半轴上,点B在第二象限,点A的坐标为(0,2),点C的坐标为(﹣1,0),则点B的坐标为;(2)如图3,在平面直角坐标系中,∠ACB=90°,AC=BC,AB与y轴交于点D,点C的坐标为(0,﹣1),点A的坐标为(2,0),求点B的坐标.(3)如图4,∠ACB=90°,AC=BC,当点C在x轴正半轴上运动,点A(0,a)在y 轴的正半轴上运动,点B(m,n)在第四象限时,请直接写出a、m、n之间的数量关系.52.作图题如图,在平面直角坐标系xOy中,A(2,3),B(3,1),C(﹣2,﹣1).①在图中作出△ABC关于x轴的对称图形△A1B1C1并写出A1,B1,C1的坐标;②在y轴上画出点P,使P A+PB最小.(不写作法,保留作图痕迹)③求△ABC的面积.53.已知点A(3a+2,2a﹣4),试分别根据下列条件,求出a的值并写出点A的坐标.(1)点A在x轴上;(2)点A与点A'(﹣4,﹣)关于y轴对称;(3)经过点A(3a+2,2a﹣4),B(3,4)的直线,与x轴平行;(4)点A到两坐标轴的距离相等.54.如图,在直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),B(4,2),C(3,5),请回答下列问题:(1)画出△ABC关于x轴的对称图形△A1B1C1.(2)直接写出A1、B1、C1的坐标.(3)点P是y轴上一点且S△P AB=4,请求出点P的坐标.55.已知:如图所示.(1)作出△ABC关于y轴对称的△A′B′C′,并写出△A′B′C′三个顶点的坐标.(2)求出△ABC的面积;(3)在x轴上找一点P,使P A+PC最小,并求出最小值.56.如图,小明用4个图1中的矩形组成图2,其中四边形ABCD,EFGH,MNPQ都是正方形,证明:a2+b2=c2.57.如图,△ABC的三个顶点在边长为1的正方形网格中,已知A(﹣1,﹣1),B(4,﹣1),C(3,1).(1)画出△ABC,写出AC与x轴的交点D的坐标;(2)请直接写出以AB为边且与△ABC全等的三角形的第三个顶点(不与C重合)的坐标;(3)连接BD,判定△DBC的形状,并说明理由.58.如图,方格纸中每个小方格都是边长为1个单位长度的正方形,若体育馆位置的坐标为A(2,﹣3),图书馆位置坐标为B(﹣2,1).请在图中建立平面直角坐标系.(1)若学校位置坐标为C(3,2),请在坐标系中标出学校的位置;(2)顺次连接学校、图书馆、体育馆的位置,得到△ABC,求△ABC的面积.(3)请在图中画出△ABC关于y轴对称的图形△A1B1C1.59.在平面直角坐标系中,一只蚂蚁从原点O出发,按向上、向右、向下、向右……的方向依次不断移动,每次移动一个单位长度,其行走路线如图.(1)填写下列各点的坐标:A1(,),A3(,),A12(,);(2)写出点A n的坐标(n是4的倍数);(3)写出A2016和点A2017的坐标,并指出蚂蚁从点A2016到点A2017的移动方向.60.在直角坐标系中描出下列各点并顺次连接ABCDEFGA,然后保持横坐标不变,将纵坐标乘以(﹣1),图形发生变化了吗?说说理由.A(1,﹣2)B(4,0)C(1,2)D(1,1)E(﹣2,1)F(﹣2,﹣1)G(1,﹣1).2022年10月23日182****0572的初中数学组卷参考答案与试题解析一.选择题(共23小题)1.如图,在中国象棋棋盘中,如果将“卒”的位置记作(3,1),那么“相”的位置可记作()A.(2,8)B.(2,4)C.(8,2)D.(4,2)【分析】直接利用平面直角坐标系得出“相”的位置.【解答】解:∵将“卒”的位置记作(3,1),∴“相”的位置可记作(8,2).故选:C.【点评】此题主要考查了坐标确定位置,正确应用平面直角坐标系是解题关键.2.如图,在一次“寻宝”游戏中,寻宝人找到了如图所示的两个标志点A(3,1),B(2,2),则“宝藏”点C的位置是()A.(1,0)B.(1,2)C.(2,1)D.(1,1)【分析】根据题意首先确定原点的位置,进而得出“宝藏”的位置.【解答】解:根据两个标志点A(3,1),B(2,2)可建立如下所示的坐标系:由平面直角坐标系知,“宝藏”点C的位置是(1,1),故选:D.【点评】此题主要考查了坐标确定位置,正确得出原点位置是解题关键.3.在一次“寻宝”游戏中,寻宝人已经找到两个标志点A(2,3)和B(1,﹣1),并且知道藏宝地点的坐标是(4,2),则藏宝处应为图中的()A.点M B.点N C.点P D.点Q【分析】直接利用已知点坐标得出原点位置,进而建立平面直角坐标系,进而得出藏宝位置.【解答】解:如图所示:藏宝处应为图中的N点.故选:B.【点评】此题主要考查了坐标确定位置,正确得出原点位置是解题关键.4.如图,在平面直角坐标系中,对△ABC进行循环往复的轴对称变换,若原来点A坐标是(1,2),则经过第2021次变换后点A的对应点的坐标为()A.(1,﹣2)B.(﹣1,﹣2)C.(﹣1,2)D.(1,2)【分析】观察图形可知每四次对称为一个循环组依次循环,用2021除以4,然后根据商和余数的情况确定出变换后的点A所在的象限,然后解答即可.【解答】解:点A第一次关于y轴对称后在第二象限,点A第二次关于x轴对称后在第三象限,点A第三次关于y轴对称后在第四象限,点A第四次关于x轴对称后在第一象限,即点A回到原始位置,所以,每四次对称为一个循环组依次循环,∵2021÷4=505余1,∴经过第2021次变换后所得的A点与第一次变换的位置相同,在第二象限,坐标为(﹣1,2).故选:C.【点评】本题考查了轴对称的性质,点的坐标变换规律,读懂题目信息,观察出每四次对称为一个循环组依次循环是解题的关键,也是本题的难点.5.蝴蝶标本可以近似地看作轴对称图形.如图,将一只蝴蝶标本放在平面直角坐标系中,如果图中点A的坐标为(5,3),则其关于y轴对称的点B的坐标为()A.(5,﹣3)B.(﹣5,3)C.(﹣5,﹣3)D.(3,5)【分析】利用轴对称的性质解决问题即可.【解答】解:∵A,B关于y轴对称,A(5,3),∴B(﹣5,3),故选:B.【点评】本题考查轴对称,坐标的确定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.6.若点P是第二象限内的点,且点P到x轴的距离是4,到y轴的距离是3,则点P的坐标是()A.(﹣4,3)B.(4,﹣3)C.(﹣3,4)D.(3,﹣4)【分析】首先根据题意得到P点的横坐标为负,纵坐标为正,再根据到x轴的距离与到y轴的距离确定横纵坐标即可.【解答】解:∵点P在第二象限,∴P点的横坐标为负,纵坐标为正,∵到x轴的距离是4,∴纵坐标为:4,∵到y轴的距离是3,∴横坐标为:﹣3,∴P(﹣3,4),故选:C.【点评】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,熟练掌握其特点是解题关键.7.在平面直角坐标系中,点A(﹣2,﹣3)关于x轴对称的点的坐标是()A.(﹣2,﹣3)B.(﹣2,3)C.(2,﹣3)D.(2,3)【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.【解答】解:点A(﹣2,﹣3)关于x轴对称的点的坐标是(﹣2,3),故选:B.【点评】此题主要考查了关于x轴对称点的坐标,关键是掌握点的坐标的变化规律.8.已知点P(3,﹣2),点Q(﹣3,2),点R(﹣3,﹣2),点H(3,2),下面选项中关于y轴对称的是()A.P和Q B.P和H C.Q和R D.P和R【分析】直接利用关于y轴对称点的性质进而得出答案.【解答】解:点P(3,﹣2),点Q(﹣3,2),点R(﹣3,﹣2),点H(3,2)中Q和H,P和R都关于y轴对称.故选:D.【点评】此题主要考查了关于y轴对称点的性质,正确掌握横纵坐标的符号关系是解题关键.9.小明在介绍郑州外国语中学位置时,相对准确的表述为()A.陇海路以北B.工人路以西C.郑州市人民政府西南方向D.陇海路和工人路交叉口西北角【分析】根据坐标确定位置需要两个数据对各选项分析判断后利用排除法求解.【解答】解:A.陇海路以北不能确定位置,不符合题意;B.工人路以西不能确定位置,不符合题意;C.郑州市人民政府西南方向不能确定位置,不符合题意;D.陇海路和工人路交叉口西北角能确定位置,符合题意;故选:D.【点评】本题考查了坐标确定位置,理解位置的确定需要两个数据是解题的关键.10.在平面直角坐标系中,点A(2,﹣1)在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据横坐标是正数,纵坐标是负数,是点在第四象限的条件.【解答】解:∵2>0,﹣1<0,∴点A(2,﹣1)在第四象限.故选:D.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键.11.若点P(m,1)在第二象限内,则点Q(﹣m,0)在()A.x轴正半轴上B.x轴负半轴上C.y轴正半轴上D.y轴负半轴上【分析】根据第二象限内点的横坐标小于零,纵坐标大于零,可得不等式,根据不等式的性质,可得﹣m的取值范围,可得答案.【解答】解:由点P(m,1)在第二象限内,得m<0,﹣m>0,点Q(﹣m,0)在x轴的正半轴上,故选:A.【点评】本题考查了点的坐标,熟记点的坐标特点是解题关键,第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).12.如图,在直角坐标系中,△AOB是等边三角形,若B点的坐标是(2,0),则A点的坐标是()A.(2,1)B.(1,2)C.(,1)D.(1,)【分析】首先过点A作AC⊥OB于点C,由△AOB是等边三角形,若B点的坐标是(2,0),可求得OA=OB=2,OC=1,然后由勾股定理求得AC的长,则可求得答案.【解答】解:过点A作AC⊥OB于点C,∵B点的坐标是(2,0),∴OB=2,∵△AOB是等边三角形,∴OA=OB=2,OC=OB=1,在Rt△OAC中,AC===,∴A点的坐标是:(1,).故选:D.【点评】此题考查了等边三角形的性质以及勾股定理.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用.13.平面直角坐标系中,点A(﹣5,3),B(7,9),经过点A的直线L∥x轴,点C是直线L上的一个动点,则线段BC的长度最小时点C的坐标为()A.(﹣7,9)B.(7,﹣3)C.(7,3)D.(19,3)【分析】如图,根据垂线段最短可知,BC⊥AC时BC最短.【解答】解:如图,根据垂线段最短可知,BC⊥AC时BC最短.∵A(﹣5,3),B(7,9),AC∥x轴,∴BC=6,∴C(7,3),故选:C.【点评】本题考查坐标与图形的性质、垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.14.在平面直角坐标系中,点P(4,﹣3)到x轴的距离()A.4B.3C.5D.﹣3【分析】根据点的纵坐标的绝对值是点到x轴的距离,可得答案.【解答】解:在平面直角坐标系中,点P(4,﹣3)到x轴的距离为3.故选:B.【点评】本题考查了点的坐标,点的纵坐标的绝对值是点到x轴的距离,横坐标的绝对值是点到y轴的距离.15.已知点A(a,2014)与点B(2015,b)关于x轴对称,则的值为()A.﹣1B.1C.2D.3【分析】利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,﹣y),进而得出答案.【解答】解:∵点A(a,2014)与点B(2015,b)关于x轴对称,∴a=2015,b=﹣2014,∴==1.故选:B.【点评】此题主要考查了关于x轴、y轴对称的点的坐标性质,正确把握坐标变化规律是解题关键.16.如图,在方格纸上△DEF是由△ABC绕定点P顺时针旋转得到的.如果用(2,1)表示方格纸上A点的位置,(1,2)表示B点的位置,那么点P的位置为()A.(5,2)B.(2,5)C.(2,1)D.(1,2)【分析】如图,分别连接AD、CF,然后作它们的垂直平分线即可得到它们的旋转中心P,然后利用已知坐标即可求出P的坐标.【解答】解:如图,分别连接AD、CF,然后作它们的垂直平分线,它们交于P点,则它们旋转中心为P,根据图形知道△ABC绕P点顺时针旋转90°得到△DEF,∴P的坐标为(5,2).故选:A.【点评】本题涉及图形旋转,体现了新课标的精神,抓住旋转的三要素:旋转中心P,旋转方向顺时针,旋转角度90°,通过画图即可得P点坐标.17.在平面直角坐标系中,若点P(a,b)在第二象限,则点Q(1﹣a,﹣b)在第()象限.A.第一象限B.第二象限C.第三象限D.第四象限【分析】应根据点P的坐标特征先判断出点Q的横纵坐标的符号,进而判断点Q所在的象限.【解答】解:∵点P(a,b)在第二象限,∴a<0,b>0;∴﹣a>0,﹣b<0,则1﹣a>0,即点Q(1﹣a,﹣b)在第四象限.故选:D.【点评】解决本题的关键是牢记平面直角坐标系中各个象限内点的符号特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.18.已知(a﹣2)2+|b+3|=0,则P(﹣a,﹣b)关于x轴对称点的坐标为()A.(2,3)B.(2,﹣3)C.(﹣2,3)D.(﹣2,﹣3)【分析】平面内两个点关于x轴对称的点,横坐标相同,纵坐标互为相反数.【解答】解:∵(a﹣2)2+|b+3|=0,∴a=2,b=﹣3,根据平面直角坐标系中对称点的规律可知:点P(﹣2,3)关于x轴对称的点的坐标为(﹣2,﹣3).故选:D.【点评】主要考查了平面直角坐标系中对称点的规律.解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.19.将平面直角坐标系内的△ABC的三个顶点坐标的横坐标乘以﹣1,纵坐标不变,则所得的三角形与原三角形()A.关于x轴对称B.关于y轴对称C.关于原点对称D.无任何对称关系【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”,可知所得的三角形与原三角形关于y轴对称.【解答】解:∵横坐标乘以﹣1,∴横坐标相反,又纵坐标不变,∴关于y轴对称.故选B.【点评】主要考查了平面直角坐标系中对称点的规律.解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.20.下列说法中,正确的是()A.点P(3,2)到x轴距离是3B.在平面直角坐标系中,点(2,﹣3)和点(﹣2,3)表示同一个点C.若y=0,则点M(x,y)在y轴上D.在平面直角坐标系中,第三象限内点的横坐标与纵坐标同号【分析】根据点的坐标到坐标轴的距离、坐标轴上点的坐标特点及第三象限内点的坐标符号特点逐一判断可得.【解答】解:A、点P(3,2)到x轴距离是2,此选项错误;B、在平面直角坐标系中,点(2,﹣3)和点(﹣2,3)表示不同的点,此选项错误;C、若y=0,则点M(x,y)在x轴上,此选项错误;D、在平面直角坐标系中,第三象限内点的横坐标与纵坐标同为负号,此选项正确;故选:D.【点评】本题主要考查点的坐标,解题的关键是掌握点的坐标到坐标轴的距离、坐标轴上点的坐标特点及第三象限内点的坐标符号特点.21.在平面直角坐标系中,把△ABC先沿y轴翻折,再向上平移3个单位得到△A1B1C1现把这两步操作规定为一种变换,如图,已知等边△ABC的顶点B、C的坐标分别是(﹣1,2),(﹣1,4),把三角形连续经过2022次这种变换得到△A2022B2022C2022,则点A2022的坐标是()A.(1+,6066)B.(1+,6069)C.(﹣1﹣,6069)D.(﹣1﹣,6066)【分析】根据轴对称判断出点A2022在y轴左边,然后求出点A2022横坐标,再根据平移的距离求出点A2022的纵坐标,最后写出即可.【解答】解:∵△ABC是等边三角形,B、C的坐标分别是(﹣1,2)、(﹣1,4),∴BC=4﹣2=2,∴点A到y轴的距离为1+2×=+1,纵坐标为3,∴A(﹣﹣1,3),第2022次变换后A2022在y轴左边,所以,点A2022的横坐标为﹣﹣1,纵坐标3+2022×3=6069,所以,点C的对应点C′的坐标是(﹣﹣1,6069).故选:C.【点评】本题考查了坐标与图形变化﹣平移,等边三角形的性质,读懂题目信息,确定出连续2022次这样的变换得到A2022在x轴上方是解题的关键.22.点P的坐标为(2﹣a,3a+6),且到两坐标轴的距离相等,则点P的坐标为()A.(3,3)B.(3,﹣3)C.(6,﹣6)D.(3,3)或(6,﹣6)【分析】根据点P到两坐标轴的距离相等,可得|2﹣a|=|3a+6|,即可求出a的值,则点P 的坐标可求.【解答】解:∵点P的坐标为(2﹣a,3a+6),且到两坐标轴的距离相等,∴|2﹣a|=|3a+6|,∴2﹣a=±(3a+6)解得a=﹣1或a=﹣4,即点P的坐标为(3,3)或(6,﹣6).故选:D.【点评】本题考查了点到两坐标轴的距离相等的特点,即点的横纵坐标的绝对值相等.23.在平面直角坐标系中,点A(﹣2,m)和点B(n,﹣3)关于x轴对称,m+n的值是()A.﹣1B.1C.5D.﹣5【分析】根据关于x轴对称的点的横坐标相同,纵坐标互为相反数,可得m、n的值,根据有理数的加法,可得答案.【解答】解:∵点A(﹣2,m)和点B(n,﹣3)关于x轴对称,∴n=﹣2,m=3,∴m+n=﹣2+3=1.故选:B.【点评】本题考查了关于x轴对称的点的坐标特征,关键是掌握点P(x,y)关于x轴的对称点P′的坐标是(x,﹣y).二.填空题(共15小题)24.平面直角坐标系中,O为坐标原点,A点坐标为(,1),P为y轴上一点,且使△POA为等腰三角形,则满足条件的点P的坐标为(0,2),(0,﹣2).【分析】连接OA,作AM⊥x轴于M,由题意得出OM=,OM=1,由勾股定理得出OA=2=2AM,得出∠AOM=30°;分三种情况,由等腰三角形和等边三角形的性质即可得出答案.【解答】解:连接OA,作AM⊥x轴于M,如图所示:∵A点坐标为(,1),∴OM=,OM=1,∴OA==2=2AM,∴∠AOM=30°,当OP=OA时,点P的坐标为(0,2)或(0,﹣2);当PO=P A时,△OP A是等边三角形,OP=OA=2,∴P(0,2);当AP=AO时,△OP A是等边三角形,OP=OA=2,∴P(0,2);综上所述,满足条件的点P的坐标为(0,2)或(0,﹣2);故答案为:(0,2)或(0,﹣2).【点评】本题考查了等腰三角形的性质、坐标与图形性质、等边三角形的判定与性质等知识;进行分类讨论是解题的关键.25.如图所示,以Rt△ABC的三边分别为直径作半圆,若Rt△ABC三边长分别为3,x,5,则图中阴影部分的面积为6.【分析】先分别求出以3、x、5为直径的三个半圆的面积,再求出三角形ABC的面积,阴影部分的面积是三角形ABC的面积加以AC为直径和以BC为直径的两个半圆的面积再减去以AB为直径的半圆的面积.【解答】解:以AC为直径的半圆的面积:π×(3÷2)2×=π,以BC为直径的半圆的面积:π×(4÷2)2×=2π,以AB为直径的半圆的面积:π×(5÷2)2×=π,三角形ABC的面积:3×4×=6,阴影部分的面积:6+π+2π﹣π=6;答:图中阴影部分的面积是6.故答案为:6.【点评】本题考查了勾股定理的运用,解答此题的关键是,根据图形中半圆的面积、三角形的面积与阴影部分的面积的关系,找出对应部分的面积,列式解答即可.26.如图,A,B两点的坐标分别是A(1,),B(3,0),则△AOB的面积是.【分析】根据点A、B的坐标求出OB的长以及点A到OB的距离,然后利用三角形的面积公式列式计算即可得解.【解答】解:∵A,B两点的坐标分别是A(1,),B(3,0),∴OB=3,点A到OB的距离是.∴S△OAB=×3×=,故答案为.【点评】本题考查了三角形的面积,坐标与图形性质,准确识图判断出三角形的底边以及底边上的高的长度是解题的关键.27.若点P(a+3,a﹣1)在x轴上,则点P的坐标为(4,0).【分析】根据坐标在x轴上时纵坐标为0,得出a﹣1=0,得出a的值,即可求出点P的坐标.【解答】解:∵点P(a+3,a﹣1)在x轴上,∴a﹣1=0,即a=1,∴a+3=4,∴P点的坐标为(4,0).故答案为:(4,0).【点评】本题考查了坐标轴上的点的坐标的特征:x轴上的点的纵坐标为0,难度适中.28.在直角坐标系中,坐标轴上到点P(﹣3,﹣4)的距离等于5的点共有3个.【分析】利用勾股定理列式求出OP=5,再判断即可.【解答】解:∵点P(﹣3,﹣4),∴OP==5,∴坐标轴上到点P的距离等于5的点有原点和x轴、y轴上一个点,共3个点.故答案为:3.【点评】本题考查了坐标与图形性质,勾股定理的应用,求出OP的长是解题的关键.29.与点A(m,n)关于原点对称的点的坐标为(﹣m,﹣n).【分析】据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),然后直接作答即可.【解答】解:根据中心对称的性质,可知:点A(m,n)关于原点O中心对称的点的坐标为(﹣m,﹣n).故答案为:(﹣m,﹣n).【点评】本题考查关于原点对称的点坐标的关系,是需要熟记的基本问题,记忆方法可以结合平面直角坐标系的图形.30.在平面直角坐标系中,若点M(2,4)与点N(x,4)之间的距离是3,则x的值是﹣1或5.【分析】根据点M(2,4)与点N(x,4)之间的距离是3,可以得到|2﹣x|=3,从而可以求得x的值.【解答】解:∵点M(2,4)与点N(x,4)之间的距离是3,∴|2﹣x|=3,解得,x=﹣1或x=5,故答案为:﹣1或5.【点评】本题考查两点间的距离,解题的关键是明确题意,找出所求问题需要的条件.31.若|a+2|+=0,则点P(a,b)在第二象限.。

上传试卷(1)

上传试卷(1)

2015年10月12日段连富的初中数学组卷参考答案与试题解析一.选择题(共10小题)1.(1999•山西)用语言叙述代数式a2﹣b2,正确的是()A.a,b两数的平方差B.a与b差的平方2.(2014•安徽)已知x2﹣2x﹣3=0,则2x2﹣4x的值为()3.(2014•张家界)若﹣5x2y m与x n y是同类项,则m+n的值为()4.(2014•汕头)计算3a﹣2a的结果正确的是()5.(2014•佛山)多项式2a2b﹣ab2﹣ab的项数及次数分别是()6.(2014•南昌)如图1,将一个边长为a的正方形纸片剪去两个小矩形,得到一个“”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为()7.(2004•杭州)下列算式是一次式的是()A.8 B.4s+3t C. D.ah ah、8.(2007•宿迁)观察下面的一列单项式:﹣x、2x2、﹣4x3、8x4、﹣16x5、…根据其中的规律,得出的第10个单项式是()91091099999.(2014•呼和浩特)某商品先按批发价a元提高10%零售,后又按零售价降低10%出售,则它最后的单价是()元.10.(2015•镇江)计算﹣3(x﹣2y)+4(x﹣2y)的结果是()二.填空题(共6小题)11.(2012•沈阳)有一组多项式:a+b2,a2﹣b4,a3+b6,a4﹣b8,…,请观察它们的构成规律,用你发现的规律写出第10个多项式为a10﹣b20.12.(2014•咸宁)体育委员小金带了500元钱去买体育用品,已知一个足球x元,一个篮球y元.则代数式500﹣3x﹣2y表示的实际意义是体育委员买了3个足球、2个篮球后剩余的经费.13.(2014•盐城)“x的2倍与5的和”用代数式表示为2x+5.14.(2014•娄底)按照如图所示的操作步骤,若输入的值为3,则输出的值为55.15.(2014•北海)下列式子按一定规律排列:,,,,…,则第2014个式子是.,,,,个式子是:故答案为:16.(2014•乐山)如图.在正方形ABCD的边长为3,以A为圆心,2为半径作圆弧.以D为圆心,3为半径作圆弧.若图中阴影部分的面积分为S1、S2.则S1﹣S2=﹣9.=,=)﹣故答案为:﹣三.解答题(共14小题)17.(2013•益阳)已知:a=,b=|﹣2|,.求代数式:a2+b﹣4c的值.a=时,18.(2000•广西)把代数式2a2b2c和a3x2的共同点填写在下列横线上:例如:都是整式.(1)都是单项式;(2)都有字母a.19.(2004•长春)化简:3a﹣(2b﹣a)+b.20.(2005•南平)化简:3(a+5b)﹣2(b﹣a).21.(2008•宜昌)2008年6月1日北京奥运圣火在宜昌传递,圣火传递路线分为两段,其中在市区的传递路程为700(a﹣1)米,三峡坝区的传递路程为(881a+2309)米.设圣火在宜昌的传递总路程为s米,(1)用含a的代数式表示s;(2)已知a=11,求s的值.22.(2010•南昌)化简:(1﹣3a)2﹣3(1﹣3a)23.(2010•梧州)先化简,再求值:(﹣x2+5x+4)+(5x﹣4+2x2),其中x=﹣2.24.(2011•泉州)计算:3a+2a=5a.25.(2012•乐山)化简:3(2x2﹣y2)﹣2(3y2﹣2x2).26.(2007•茂名)已知正方形和圆的面积均为s.求正方形的周长l1和圆的周长l2(用含s 的代数式表示),并指出它们的大小.,.=4a=4,..27.(2009•杭州)在杭州市中学生篮球赛中,小方共打了10场球.他在第6,7,8,9场比赛中分别得了:22,15,12和19分,他的前9场比赛的平均得分y比前5场比赛的平均得分x要高,如果他所参加的10场比赛的平均得分超过18分.(1)用含x的代数式表示y;(2)小方在前5场比赛中,总分可达到的最大值是多少;(3)小方在第10场比赛中,得分可达到的最小值是多少?;);y=28.(2012•珠海)观察下列等式:12×231=132×21,13×341=143×31,23×352=253×32,34×473=374×43,62×286=682×26,…以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”.(1)根据上述各式反映的规律填空,使式子称为“数字对称等式”:①52×275=572×25;②63×396=693×36.(2)设这类等式左边两位数的十位数字为a,个位数字为b,且2≤a+b≤9,写出表示“数字对称等式”一般规律的式子(含a、b),并证明.29.(2014•安徽)观察下列关于自然数的等式:32﹣4×12=5 ①52﹣4×22=9 ②72﹣4×32=13 ③…根据上述规律解决下列问题:(1)完成第四个等式:92﹣4×42=17;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.30.(2015•梧州)先化简,再求值:2x+7+3x﹣2,其中x=2.。

初中数学专训:平行四边形性质和判定

初中数学专训:平行四边形性质和判定

初中数学组卷:平行四边形一.选择题1.如图,在平行四边形ABCD中,对角线AC和BD相交于O,∠BCD的平分线CE与边AB相交于E,若EB=EA=EC,那么下列结论正确的个数有()①∠ACE=30° ②OE∥DA ③S▱ABCD=AC•AD ④CE⊥DBA.1B.2C.3D.42.如图,点D是△ABC内一点,BD⊥CD,AD=11,BD=8,CD=6,点E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是()A.14B.18C.21D.243.如图:在4×4的正方形(每个小正方形的边长均为1)网格中,以A为顶点,其他三个顶点都在格点(网格的交点)上,且面积为2的平行四边形的共有()个.A.10B.12C.14D.234.有两个内角分别为90°,60°,30°的完全一样的三角形拼成四边形,其形状不同的有()A.2个B.3个C.4个D.6个二.填空题5.如图,点E是平行四边形ABCD的对角线BD上一点,连接CE,若点E在线段AD的垂直平分线上,点D在线段EC的垂直平分线上,且∠DCE=66°,则∠BCE=.6.如图,在R△ABC中,∠ACB=90°,BC=3,AC=4,点M为边AC的中点,点N为边BC上任意一点,若点C关于直线MN的对称点C′恰好落在△ABC的中位线上,则CN的长为.7.如图,△ABC中,AB=10,AC=7,AD平分∠BAC,AE是BC边上的中线,过点C作CG⊥AD于F,交AB于G,连接EF,则线段EF的长为.8.如图,在Rt△ABC中,∠BAC=90°,∠B=60°,AB=1,点P为BC上任意一点,连接PA,以PA、PC为邻边作▱PAQC,连接PQ,则PQ的最小值为.9.如图,顺次连结△ABC三边的中点D,E,F得到的三角形面积为S1,顺次连结△CEF三边的中点M,G,H得到的三角形面积为S2,顺次连结△CGH三边的中点得到的三角形面积为S3.设△ABC的面积为S,则S1+S2+S3=.10.如图,在平行四边形ABCD中,AC与BD交于点M,点F在AD上,AF=6cm,BF=12cm,∠FBM=∠CBM,点E是BC的中点,若点P以1cm/秒的速度从点A 出发,沿AD向点F运动;点Q同时以2cm/秒的速度从点C出发,沿CB向点B运动.点P运动到F点时停止运动,点Q也同时停止运动.当点P运动__________秒时,以点P、Q、E、F为顶点的四边形是平行四边形.11.如图,平行四边形ABCD中,∠A是它的外角的,延长CB到E,使CE=CD,过E作EF⊥CD于F,若EF=1,则DF的长等于.12.如图在平行四边形ABCD中,PQ、MN分别平行DC、AD、PQ、MN交于O点,其中S四边形AMOP=3,S四边形MBQO=4,S四边形NCQO=10,则△DMQ的面积=.三.解答题13.如图,在四边形ABCD中,∠ADC=90°,AB=AC,E,F分别为AC,BC的中点,连接EF,ED,FD.(1)求证:ED=EF;(2)若∠BAD=60°,AC平分∠BAD,AC=6,求DF的长.14.如图:在平行四边形ABCD中,∠BAD=45°,∠BDA=60°,点E为线段BD边上一动点,连接AE,将△AED剪下平移到△BGC,将△ABE剪下平移到△DCF.(1)试证明点G、C、F在一条直线上.(2)判断四边形BDFG的形状,并加以证明.15.已知:如图,在Rt△ABC中,∠C=90°,CD平分∠ACB,AD⊥CD,垂足为点D,M是边AB的中点,AB=20,AC=10,求线段DM的长.16.如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=10,AC=6,求DF的长.17.如图,平行四边形ABCD中,AE平分∠BAD,交BC于点E,且AB=AE,延长AB与DE的延长线交于点F.求证:(1)△ABE是等边三角形;(2)△ABC≌△AED;(3)S△ABE =S△CEF.18.如图,在平面直角坐标系中,点A,B的坐标分别是(﹣3,0),(0,6),动点P从点O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C 从点B出发,沿射线BO方向以每秒2个单位的速度运动.以CP,CO为邻边构造□PCOD.在线段OP延长线上一动点E,且满足PE=AO.(1)当点C在线段OB上运动时,求证:四边形ADEC为平行四边形;(2)当点P运动的时间为秒时,求此时四边形ADEC的周长是多少?19.如图,在四边形ABCD中,AD∥BC,∠C=90°,BC=8,DC=6,AD=10.动点P从点D出发,沿线段DA的方向以每秒2个单位长的速度运动,动点Q从点C出发,在线段CB上以每秒1个单位长的速度向点B运动,点P,Q分别从点D,C同时出发,当点P运动到点A时,点Q随之停止运动.设运动的时间为t(秒).(1)若四边形ABQP为平行四边形,求运动时间t.(2)当t为何值时,三角形BPQ是以BQ或BP为底边的等腰三角形?20.如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,∠ADC的平分线交AB于点M,交AE于点N,连接DE(1)求证:BC=CE;(2)若BC=2,∠ABC=120°,求DE的长.21.在△ABC中,BD是角平分线,点E、F分别在BC、AB边上,DE∥AB,BE=AF,EF交BD于点G.(1)如图1,求证:四边形ADEF是平行四边形;(2)如图2,若∠ABC=30°,D为AC边中点,请直接写出图中所有与BE长相等的线段.22.如图,点D、E是Rt△ABC两直角边AB、AC上的一点,连接BE,已知点F、G、H分别是DE、BE、BC的中点.(1)求∠FGH度数;(2)连CD,取CD中点M,连接GM,若BD=8,CE=6,求GM的长.23.在△ABC中,AB=AC,点P为△ABC所在平面内的一点,过点P分别作PE∥AC交AB于点E,PF∥AB交BC于点D,交AC于点F.(1)如图1,若点P在BC边上,此时PD=0,猜想并写出PD、PE、PF与AB满足的数量关系,然后证明你的猜想;(2)请直接利用(1)中的结论解答下列问题:(a)如图2,当点P在△ABC内,猜想并写出PD、PE、PF与AB满足的数量关系,然后证明你的猜想;(b)如图3,当点P在△ABC外,猜想并写出PD、PE、PF与AB满足的数量关系.(不用说明理由)。

南海七年级联考数学试卷

南海七年级联考数学试卷

一、选择题(每题4分,共40分)1. 下列数中,哪个数是负数?A. -5B. 0C. 5D. -3.52. 下列各数中,哪个数是质数?A. 12B. 15C. 17D. 203. 下列图形中,哪个图形是轴对称图形?A. 等腰三角形B. 长方形C. 平行四边形D. 正方形4. 下列哪个选项不是方程?A. 2x + 3 = 7B. 3x - 5 = 2C. 4x + 2 = 0D. 5x = 105. 下列哪个数是分数的倒数?A. 1/2B. 2/3C. 3/4D. 4/56. 下列哪个数是负数?A. -(-3)B. -3C. 3D. -3 + 37. 下列哪个选项是算术平方根?A. √4B. √9C. √16D. √258. 下列哪个数是正数?A. -5B. 0C. 5D. -5 + 59. 下列哪个图形是梯形?A. 等腰三角形B. 长方形C. 平行四边形D. 正方形10. 下列哪个选项是方程的解?A. x = 2B. x = 3C. x = 4D. x = 5二、填空题(每题5分,共50分)11. 5的平方是______。

12. -3和2的差是______。

13. 下列数的倒数是______。

(1)2/5(2)1/4(3)3/214. 下列各数中,哪个数是偶数?______。

(1)-6(2)5(3)7(4)1015. 下列哪个数是正数?______。

(1)-3(2)0(3)3(4)-3 + 316. 下列哪个图形是矩形?______。

(1)等腰三角形(2)长方形(3)平行四边形(4)正方形17. 下列哪个数是质数?______。

(1)12(2)15(3)17(4)2018. 下列哪个选项是方程的解?______。

(1)x = 2(2)x = 3(3)x = 4(4)x = 519. 下列哪个数是负数?______。

(1)-(-3)(2)-3(3)3(4)-3 + 320. 下列哪个选项是算术平方根?______。

2023年人教版八年级数学上册常用勾股数组一般运用专题练习(含参考答案)

★勾股定理专项练习
常见勾股数组的识记练习题参考答案
学校:_____________ 班级: ( )班 姓名:____________ 测试时间: 年 月 日请你根据直角三角形的勾股定理,写出Rt△常见的勾股数组。

题号直角边1直角边2斜边说明题号直角边1直角边2斜边说明1)512135)11等腰Rt△2)3456)6810
3)940417)72425
4)815178)12有一角为60度
★勾股定理专项练习
勾股定理逆定理的一般运用专项练习题参考答案
学校:_____________ 班级: ( )班 姓名:____________ 测试时间: 年 月 日已知三条线段的长度如下表所表,请判断这三条线段能否围成一个Rt△。

题号线段1线段2线段3是否为Rt△题号线段1线段2线段3是否为Rt△1)121622否16)12916否
2)202129是,勾股数组17)72526否
3)是18)116061是,勾股数组4)51417否19)241830是,勾股数组5)1是20)48是,60度Rt△6)152325否21)23是
7) a — b a+b是,完全平方和22)163530否
8)2是23)x2x是,60度Rt△9)579否24)m-11m否10)14否25)22是,45度Rt△11)是26)423否12)795否27)是13)否28)2n+12n +2n+12n +2n是14)6010991是,勾股数组29)0.51是,60度Rt△15)是,45度Rt△30)138580否。

2022-2023学年全国初中八年级下数学人教版同步练习(含答案解析)031805

2022-2023学年全国初中八年级下数学人教版同步练习考试总分:100 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1. 某商场“五•一”期间做促销活动,一件元的电器第一次降价后销售较慢,于是又进行第二次降价,第二次降价的百分率是第一次的倍,结果以元的价格迅速销售一空,设第一次降价的百分率为,根据题意,下面所列方程正确的是( )A.=B.=C.=D.=2. 将一元二次方程化成一般形式后,二次项系数和一次项系数分别是A.,B.,C.,D.,3.下列方程中,是一元二次方程的有( )个.; ;;.A.个B.个C.个D.个4. 关于的一元二次方程的一个解为,则为( )A.B.C.6002432x 600x ⋅2x 432600(1−x)⋅2x 432600(1−x)(1−2x)432600(1−x)(1−)x 24325−1=4x x 2()5−1545−451(1)2+y−1=0y 2(2)x(2x−1)=2x 2(3)−2x =11x 2(4)a +bx+c =0x 21234x +nx−12=0x 2x =3n 123D.5. 某药品经过两次涨价,每瓶零售价由元涨为元.已知两次涨价的百分率都为,那么满足的方程是( )A.B.C.D.6. 关于的一元二次方程,常数项为,则值等于( )A.B.C.或D.7. 下列方程中,关于的一元二次方程是( )A.=B.=C.=D.=8. 已知是一元二次方程的一个根,则的值是( )A.B.C.D.二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9. 某种品牌运动服经过两次降价,每件零售价由元降为元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为,所列方程是________.4100121x x 100(1+x =121)2100(1−x =121)2100(1−x%=121)2100=121x 2x (m−1)+2x+−5m+4=0x 2m 20m 1414x a +bx+c x 20+x 2+2x x 2+1x 22+x 20a −4x+1=0x 23−12a −2+a 28a 1+a 23−3−11560315x10. 若关于的一元二次方程的常数项为,则的值等于________.11. 若关于的一元二次方程有两个不相等的实数根,则的取值范围是________.12. 已知是方程的一个根,则的值等于________.三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13.茶叶是安徽省主要经济作物之一. 年新茶上市期间,某茶厂为获得最大利益,根据市场行情,把新茶价格定为元,并根据历年的新茶制作和销售数据整理出第天(,且 为整数)制茶(含采摘和加工)与销售的相关信息如下:制茶成本(元/)销售量假定该茶厂每天制作和销售的新茶没有损失,且能在当天全部售出,试列代数式表示第天销售新茶的收入(当天收入日销售额日制茶成本);试求第几天该茶厂销售新茶的收入恰好为元.14. 关于的一元二次方程化为一般形式后为.求,的值.15. 小明在学完了平行四边形后,想对“四边形的不稳定性”和“四边形的判定”有更好的理解,做了如下的探究:他用根木棍和一些钉子组成了正方形和平行四边形(如图),且,在同一条直线上,点落在边上.经小明测量,发现此时,,三个点在一条直线上,,.求的长;设的长度为,则________(用含的代数式表示);小明接着探究,在保证,位置不变的前提条件下,从点向右推动正方形,直到四边形刚好变为矩形时停止推动(如图).若此时,求的长. 16. 在一次聚会上,规定每两个人见面必须握手次若参加聚会的人数为,则共握手_______次;若参加聚会的人数为,则共握手_______次x (m−2)+5x+(m−2)(m−3)=0x 20m x k −6x+9=0x 2k a −2x−2020=0x 2−2a a 22019500/kg x 1≤x ≤15x kg 200+10x (kg)40+5x(1)x =−(2)14000x a(+1)+10(x+2)+c =0x 26+10x−1=0x 2a c 8ABCD HEFG 1BC EF D HE B D G ∠EFG =67.5∘DG =3(1)HG (2)BC a CE =a (3)BC EF A EFGH 2D =18(−1)E 22–√BF 1.(1)35.若参加聚会的人数为(为正整数),则共握手_______次若参加聚会的人共握手次,请求出参加聚会的人数嘉嘉由握手问题想到了另一个数学问题:若线段上共有个点(不含端点,),则线段总数为_______(用含的式子表示)(2)n n .(3)45.(4)AB m A B .m参考答案与试题解析2022-2023学年全国初中八年级下数学人教版同步练习一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1.【答案】C【考点】由实际问题抽象出一元二次方程【解析】根据题意可以列出相应的方程,从而可以解答本题.【解答】由题意可得,=,2.【答案】C【考点】一元二次方程的一般形式【解析】一元二次方程的一般形式是:,,是常数且特别要注意的条件.这是在做题过程中容易忽视的知识点.在一般形式中叫二次项,叫一次项,是常数项.其中,,分别叫二次项系数,一次项系数,常数项.【解答】解:将一元二次方程化成一般形式是,所以它的二次项系数是,一次项系数是.故选.3.【答案】600(1−x)(1−2x)432a +bx+c =0(a x 2b c a ≠0)a ≠0ax 2bx c a b c 5−1=4x x 25−4x−1=0x 25−4C【答案】A【考点】一元二次方程的定义【解析】此题暂无解析【解答】解:是关于的一元二次方程;化成一般式后不含二次项;不是整式方程;二次项系数可能为,不一定是一元二次方程.故是一元二次方程的有.故选.4.【答案】A【考点】一元二次方程的解【解析】根据一元二次方程的解的定义,把代入中可得到关于n 的方程,然后解此方程即可.【解答】解:把代入,得,解得.故选.5.【答案】A【考点】(1)2+y−1=0y 2y (2)x(2x−1)=2x 2(3)−2x =11x 2(4)a +bx+c =0x 20(1)A x =3+nx−12=0x 2x =3+nx−12=0x 29+3n−12=0n =1A由实际问题抽象出一元二次方程【解析】由两次涨价的百分率都为结合药品原价及两次涨价后的价格,即可列出关于的一元二次方程,此题得解.【解答】解:∵两次涨价的百分率都为,∴.故选.6.【答案】B【考点】一元二次方程的一般形式【解析】一元二次方程,,是常数且的、、分别是二次项系数、一次项系数、常数项.【解答】解:由题意,得,且,解得,故选:.7.【答案】D【考点】一元二次方程的定义【解析】此题暂无解析【解答】此题暂无解答8.x x x 100(1+x =121)2A a +bx+c =0(ax 2b c a ≠0)a b c −5m+4=0m 2m−1≠0m=4BB【考点】一元二次方程的解列代数式求值【解析】把代入已知方程,列出关于的新方程,通过解新方程可以求得的值.【解答】解:∵是一元二次方程的一个根,∴,即,∴.故选.二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9.【答案】【考点】由实际问题抽象出一元二次方程【解析】设每次降价的百分率为,根据题意可得,(降价的百分率),据此列方程即可.【解答】解:设每次降价的百分率为,由题意得,.故答案为:.10.【答案】x =a a a a −4x+1=0x 2−4a +1=0a 2+1=4a a 23−12a −2+a 28a1+a 2=3−3(+1)−2+a 2a 22(1+)a 21+a 2=−3B 560(1−x =315)2x 560×1−=3152x 560(1−x =315)2560(1−x =315)23一元二次方程的一般形式【解析】由常数项为列出方程,求出方程的解得到的值,代入检验即可.【解答】解:根据题意得:,解得:或,当时,方程为,不合题意,舍去,则时,方程为,是一元二次函数.故符合题意.故答案为:11.【答案】且【考点】根的判别式一元二次方程的定义【解析】因为关于的一元二次方程=有两个不相等的实数根,所以且=,建立关于的不等式组,解得的取值范围即可.【解答】解:∵关于的一元二次方程有两个不相等的实数根,∴,且,解得且.故答案为:且.12.【答案】【考点】一元二次方程的解【解析】0m (m−2)(m−3)=0=2m 1=3m 2m=25x =0m=34+5x =0x 2m=33k <1k ≠0x k −6x+9x 20k ≠0△−4ac >0b 2k k x k −6x+9=0x 2k ≠0Δ=−4ac =36−36k >0b 2k <1k ≠0k <1k ≠02020−2a2将=代入方程可得:=,从而可求出答案.【解答】解:将代入方程可得:.∴原式.故答案为:.三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13.【答案】解:由题意,第天销售新茶的收入可列代数式表示为:;根据题意得,整理得.∵,∴只取.答:第天该茶厂销售新茶的收入恰好为元.【考点】二次函数的应用由实际问题抽象出一元二次方程【解析】此题暂无解析【解答】解:由题意,第天销售新茶的收入可列代数式表示为:;根据题意得,整理得.∵,∴只取.答:第天该茶厂销售新茶的收入恰好为元.14.【答案】x a −2a a 22020x =a −2a =2020a 2=20202020(1)x [500−(200+10x)](40+5x)=−50+1100x+12000x 2(2)−50+1100x+12000=14000x 2−22x+40=0,(x−2)(x−20)=0,∴=2,=20x 2x 1x 21≤x ≤15x x =2214000(1)x [500−(200+10x)](40+5x)=−50+1100x+12000x 2(2)−50+1100x+12000=14000x 2−22x+40=0,(x−2)(x−20)=0,∴=2,=20x 2x 1x 21≤x ≤15x x =2214000a(+1)+10(x+2)+c =02解:一元二次方程展开后,可得,整理得.∵关于的一元二次方程化为一般形式后为,∴,,∴,解得.【考点】一元二次方程的一般形式【解析】【解答】解:一元二次方程展开后,可得,整理得.∵关于的一元二次方程化为一般形式后为,∴,,∴,解得.15.【答案】解:四边形是平行四边形,,,.四边形是正方形,,,,,,,,.在推进过程中的长度保持不变,设,则.四边形是矩形,,,,.,的位置不变,.在中,由勾股定理得,,a(+1)+10(x+2)+c =0x 2a +a +10x+20+c =0x 2a +10x+a +20+c =0x 2x a(+1)+10(x+2)+c =0x 26+10x−1=0x 2a =6a +20+c =−16+20+c =−1c =−27a(+1)+10(x+2)+c =0x 2a +a +10x+20+c =0x 2a +10x+a +20+c =0x 2x a(+1)+10(x+2)+c =0x 26+10x−1=0x 2a =6a +20+c =−16+20+c =−1c =−27(1)∵HEFG ∴∠H =∠GFE =67.5∘HE//FG ∴∠HEC =67.5∘∵ABCD ∴∠DCB =90∘∠BDC =∠CBD =45∘∴∠DCE =90∘∴∠CDE =22.5∘∴∠BDE =∠BDC +∠CDE =67.5∘∴∠HDG =∠BDE =67.5∘∴∠H =∠GDH ∴HG =DG =3(−1)a2–√(3)∵CD ∴CD =x BE =x 2–√∵EFGH ∴EF =HG =3∠HEF =90∘∴∠DEC =90∘∴D =C −C E 2D 2E 2∵BC EF ∴CE =BE−BC =(−1)x 2–√Rt △CDE D =C −C E 2D 2E 2∴18(−1)=−=2(−1)2–√x 2(−1)2–√2x 2x 22–√∴=92.,,.【考点】平行四边形的性质正方形的性质等腰三角形的性质与判定勾股定理矩形的判定与性质【解析】左侧图片未给出解析提示:由知,,的长度为,,,故答案为:.左侧图片未给出解析【解答】解:四边形是平行四边形,,,.四边形是正方形,,,,,,,,.由知,,的长度为,,.故答案为:.在推进过程中的长度保持不变,设,则.四边形是矩形,,,,.∴=9x 2∵x >0∴x =3∴BF =BE+EF =3+32–√(2)(1)∠BDE =∠BED =67.5∘∴BE =BD ∵BC a ∴BD =BC =a 2–√2–√∴CE =BE−BC =a −a =(−1)a2–√2–√(−1)a 2–√(1)∵HEFG ∴∠H =∠GFE =67.5∘HE//FG ∴∠HEC =67.5∘∵ABCD ∴∠DCB =90∘∠BDC =∠CBD =45∘∴∠DCE =90∘∴∠CDE =22.5∘∴∠BDE =∠BDC +∠CDE =67.5∘∴∠HDG =∠BDE =67.5∘∴∠H =∠GDH ∴HG =DG =3(2)(1)∠BDE =∠BED =67.5∘∴BE =BD ∵BC a ∴BD =BC =a 2–√2–√∴CE =BE−BC =a −a =(−1)a 2–√2–√(−1)a 2–√(3)∵CD ∴CD =x BE =x 2–√∵EFGH ∴EF =HG =3∠HEF =90∘∴∠DEC =90∘∴D =C −C E 2D 2E 2,的位置不变,.在中,由勾股定理得,,.,,.16.【答案】,依题意,得,整理得,解得,(不合题意,舍去),则参加聚会的有人.【考点】由实际问题抽象出一元二次方程【解析】此题暂无解析【解答】解:每两个人见面必须握手次,.故答案为:;.由知,若参加聚会的人数为(为正整数),则共握手次.故答案为:.依题意,得,整理得,解得,(不合题意,舍去),∵BC EF ∴CE =BE−BC =(−1)x 2–√Rt △CDE D =C −C E 2D 2E 2∴18(−1)=−=2(−1)2–√x 2(−1)2–√2x 2x 22–√∴=9x 2∵x >0∴x =3∴BF =BE+EF =3+32–√310n(n−1)12(3)n(n−1)=4512−n−90=0n 2=10n 1=−9n 210(m+2)(m+1)12(1)1.3×(3−1)÷2=35×(5−1)÷2=10310(2)(1)n n n(n−1)12n(n−1)12(3)n(n−1)=4512−n−90=0n 2=10n 1=−9n 2则参加聚会的有人.∵线段上共有个点(不含端点,),可当成共有个人握手,线段总数为.故答案为:.10(4)AB m A B (m+2)(m+2)(m+1)12(m+2)(m+1)12。

初二数学上链连中考试题几何部分

数学学的是一种思想! 初二数学链接中考制作:何春华初二数学(上)链连中考(几何部分)三角形内角和[ 知识重点 ]1、三角形内角和等于 ;三角形的一个外角等于,三角形的一个外角大于 。

2、三角形随意两边之和 ,随意两边之差。

[ 典型考题 ]1、(苏州卷)已知△ ABC 中,∠ A :∠ B :∠ C = 1: 2 : 3,则∠ C =。

2、(吉林卷)如图,∠ 1=。

800100013、(如图)∠ A =320,∠ B = 450,∠ C = 380,则∠ DFE 的度数为()A 、 1200B 、 1150C 、 1100D 、 1050ADFBCE4、(广西卷)如图,△ ABC 中, D 、E 分别在 AB 、AC 上, BE 、CD 订交于点 F ,∠ A = 620, ∠1= 350,∠ 2= 200,那么∠ BFD 的度数是 。

AEDF21BC5、 (河北卷 )已知三角形三边长分别为2、 3 和 a ,则 a 的取值范围是()A 、 2 a 3B 、 0 a 5C 、 a 2D 、 1 a 56、(山西卷)若△ ABC 的三边长是三个不一样的整数,周长为11,且有一边长为 4,则这个 三角形的最大边长是()数学学的是一种思想!初二数学链接中考制作:何春华A 、 7B、 6C、5D、 47、(南京卷)有以下长度的三条线段,能构成三角形的是()A、1cm 2cm 3cm B 、1cm4cm2cm C、2cm 3cm4cm D、6cm2cm 3cm8、(南京卷)两根木棒的长分别为5cm 和 7cm,要选择第三根木棒将它们钉成一个三角形,假如第三根木棒的长为偶数,那么第三根木棒的长的取值范围是()A、3 种B、4 种C、5 种D、6 种9、(连云港卷)已知△ABC 的三个内角知足∠ B+∠ C= 3∠A ,则此三角形()A 、必定有一个内角为)B 、必定有一个内角为600 45C、必定是直角三角形D、必定是钝角三角形10、(宿迁卷)已知等腰三角形的一边长4,一边长为 9,它的周长为()A、17B、22C、17 或 22D、6511a, b, c且 a c ,那么c a a c2b等于、(宁波卷)已知三角形的三边长分别为()A 、2a b B、2c b C、b 2a D 、b 2c4、全等三角形的性质和判断[ 知识重点 ]1、叫做全等三角形,全等三角形的对应边对应角。

连福镇初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

连福镇初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)某商场店庆活动中,商家准备对某种进价为600元、标价为1200元的商品进行打折销售,但要保证利润率不低于10%,则最低折扣是()A. 5折B. 5.5折C. 6折D. 6.5折【答案】B【考点】一元一次不等式的应用【解析】【解答】解:设至多可以打x折1200x-600≥600×10%解得x≥55%,即最多可打5.5折.故答案为:B【分析】设至多可以打x折,根据利润=售价减进价,利润也等于进价乘以利润率,即可列出不等式,求解得出答案。

2、(2分)在实数, ,,中,属于无理数是()A. 0B.C.D.【答案】D【考点】无理数的认识【解析】【解答】在实数, ,,中,属于无理数是,故答案为:D.【分析】根据无理数的定义可得.无限不循环小数叫无理数,常见形式有:开方开不尽的数、无限不循环小数和字母表示的无理数,如π等.3、(2分)在实数范围内定义新运算:,则不等式的非负整数解为()A.B.1C.0D.【答案】D【考点】一元一次不等式的特殊解【解析】【解答】解:根据题意得3x-x+1≤3,解得,x≤1,所以原不等式的的非负整数解为0,1,故答案为:D.【分析】先根据定义新运算求出3△x=3x-x+1,然后把不等式不等式转化为3x-x+1≤3,解不等式求出x的取值范围。

再从中找出非负整数即可(正整数和0).4、(2分)下列各数:0.3333…,0,4,-1.5,,,-0.525225222中,无理数的个数是()A. 0个B. 1个C. 2个D. 3个【答案】B【考点】无理数的认识【解析】【解答】解:是无理数,故答案为:B【分析】根据无理数的定义,无限不循环的小数就是无理数,常见的无理数有三类:①开方开不尽的;②及含的式子;③象0.101001001…这类有规律的数;从而得出答案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学组卷一.选择题(共10小题)1.(2015•重庆)在平面直角坐标系中,若点P的坐标为(﹣3,2),则点P所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.(2015•济南)在平面直角坐标系中有三个点A(1,﹣1)、B(﹣1,﹣1)、C(0,1),点P(0,2)关于A的对称点为P1,P1关于B的对称点P2,P2关于C的对称点为P3,按此规律继续以A、B、C为对称中心重复前面的操作,依次得到P4,P5,P6,…,则点P2015的坐标是()A.(0,0)B.(0,2)C.(2,﹣4)D.(﹣4,2)3.(2015•北京)如图是利用平面直角坐标系画出的故宫博物院的主要建筑分布图,若这个坐标系分别以正东、正北方向为x轴、y轴的正方向,表示太和门的点的坐标为(0,﹣1),表示九龙壁的点的坐标为(4,1),则表示下列宫殿的点的坐标正确的是()A.景仁宫(4,2) B.养心殿(﹣2,3)C.保和殿(1,0)D.武英殿(﹣3.5,﹣4)4.(2015•河北)如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是()A.②③B.②⑤C.①③④ D.④⑤5.(2015•温州)如图,C是以AB为直径的半圆O上一点,连结AC,BC,分别以AC,BC为边向外作正方形ACDE,BCFG.DE,FC,的中点分别是M,N,P,Q.若MP+NQ=14,AC+BC=18,则AB的长为()A. B.C.13 D.166.(2015•福州)如图,在3×3的正方形网格中由四个格点A,B,C,D,以其中一点为原点,网格线所在直线为坐标轴,建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点是()A.A点 B.B点C.C点D.D点7.(2015•广元)如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B 的坐标分别为(1,0)、(4,0).将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为()A.4 B.8 C.16 D.88.(2013•巴中)如图,在梯形ABCD中,AD∥BC,点E、F分别是AB、CD的中点且EF=6,则AD+BC的值是()A.9 B.10.5 C.12 D.159.(2015•山西)如图,在△ABC中,点D、E分别是边AB,BC的中点.若△DBE的周长是6,则△ABC的周长是()A.8 B.10 C.12 D.1410.(2016•贵阳模拟)如图,在平面直角坐标系中,点A在第一象限,⊙A与x轴交于B (2,0)、C(8,0)两点,与y轴相切于点D,则点A的坐标是()A.(5,4)B.(4,5)C.(5,3)D.(3,5)二.填空题(共6小题)11.(2015•广安)如果点M(3,x)在第一象限,则x的取值范围是.12.(2015•甘孜州)如图,正方形A1A2A3A4,A5A6A7A8,A9A10A11A12,…,(每个正方形从第三象限的顶点开始,按顺时针方向顺序,依次记为A1,A2,A3,A4;A5,A6,A7,A8;A9,A10,A11,A12;…)的中心均在坐标原点O,各边均与x轴或y轴平行,若它们的边长依次是2,4,6…,则顶点A20的坐标为.13.(2015•昆明)如图,在△ABC中,AB=8,点D、E分别是BC、CA的中点,连接DE,则DE=.14.(2015•铜仁市)已知点P(3,a)关于y轴的对称点为Q(b,2),则ab=.15.(2015•甘南州)将点A(2,1)向上平移3个单位长度得到点B的坐标是.16.(2013•天水)如图所示,在梯形ABCD中,AD∥BC,对角线AC⊥BD,且AC=12,BD=5,则这个梯形中位线的长等于.三.解答题(共14小题)17.(2015春•滑县期末)在我国沿海地区,几乎每年夏秋两季都会或多或少地遭受台风的侵袭,加强台风的监测和预报,是减轻台风灾害的重要措施.下表是中央气象台2010年发请在下面的经纬度地图上找到台风中心在16日23时和17日23时所在的位置.18.(2013•郧西县模拟)在平面直角坐标系中,设坐标轴的单位长度为1cm,整数点P从原点O出发,速度为1cm/s,且点P只能向上或向右运动,请回答下列问题:秒,可得到的整数点的个数是个.(3)当P点从点O出发秒时,可得到整数点(10,5)19.(2014春•高安市期中)在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如图所示.(1)填写下列各点的坐标:A1(,),A3(,),A12(,);(2)写出点A4n的坐标(n是正整数):A4n(,);(3)蚂蚁从点A2013到A2014的移动方向是.20.(2014秋•深圳期末)如图:①写出A、B、C三点的坐标.②若△ABC各顶点的横坐标不变,纵坐标都乘以﹣1,请你在同一坐标系中描出对应的点A′、B′、C′,并依次连接这三个点,所得的△A′B′C′与原△ABC有怎样的位置关系.21.(2014秋•肥东县期末)已知点P(x,y)的坐标满足方程,求点P分别关于x轴,y轴以及原点的对称点坐标.22.(2013秋•红安县期末)已知:(x、y、z均不为零),求的值.23.(2015春•广宁县期末)在平面直角坐标系中,点A(1,2a+3)在第一象限.(1)若点A到x轴的距离与到y轴的距离相等,求a的值;(2)若点A到x轴的距离小于到y轴的距离,求a的取值范围.24.(2015春•临沂期末)多多和爸爸、妈妈周末到动物园游玩,回到家后,她利用平面直角坐标系画出了动物园的景区地图,如图所示.可是她忘记了在图中标出原点和x轴、y轴.只知道马场的坐标为(﹣3,﹣3),你能帮她建立平面直角坐标系并求出其他各景点的坐标?25.(2015•茂名)补充完整三角形中位线定理,并加以证明:(1)三角形中位线定理:三角形的中位线;(2)已知:如图,DE是△ABC的中位线,求证:DE∥BC,DE=BC.26.(2015•邵阳)如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,延长BC至点F,使CF=BC,连接CD和EF.(1)求证:DE=CF;(2)求EF的长.27.(2015•自贡)如图,在△ABC中,D、E分别是AB、AC边的中点.求证:DE BC.28.(2015春•北流市期中)如图,已知单位长度为1的方格中有个△ABC.(1)请画出△ABC向上平移3格再向右平移2格所得△A′B′C′.(2)请以点A为坐标原点建立平面直角坐标系(在图中画出),然后写出点B、点B′的坐标:B(,);B′(,)29.(2008•贵港)如图所示,在梯形ABCD中,AD∥BC,点E、F分别为AB、CD的中点.连接AF并延长,交BC的延长线于点G.(1)求证:△ADF≌△GCF;(2)若EF=7.5,BC=10,求AD的长.30.(2009•潍坊)在四边形ABCD中,AB⊥BC,DC⊥BC,AB=a,DC=b,BC=a+b,且a≤b.取AD的中点P,连接PB、PC.(1)试判断三角形PBC的形状;(2)在线段BC上,是否存在点M,使AM⊥MD?若存在,请求出BM的长;若不存在,请说明理由.2015年10月15日段连富的初中数学组卷参考答案与试题解析一.选择题(共10小题)1.(2015•重庆)在平面直角坐标系中,若点P的坐标为(﹣3,2),则点P所在的象限是()2.(2015•济南)在平面直角坐标系中有三个点A(1,﹣1)、B(﹣1,﹣1)、C(0,1),点P(0,2)关于A的对称点为P1,P1关于B的对称点P2,P2关于C的对称点为P3,按此规律继续以A、B、C为对称中心重复前面的操作,依次得到P4,P5,P6,…,则点P2015的坐标是()=1,=3353.(2015•北京)如图是利用平面直角坐标系画出的故宫博物院的主要建筑分布图,若这个坐标系分别以正东、正北方向为x轴、y轴的正方向,表示太和门的点的坐标为(0,﹣1),表示九龙壁的点的坐标为(4,1),则表示下列宫殿的点的坐标正确的是()A.景仁宫(4,2) B.养心殿(﹣2,3)4.(2015•河北)如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是()MN=AB MN=AB5.(2015•温州)如图,C是以AB为直径的半圆O上一点,连结AC,BC,分别以AC,BC为边向外作正方形ACDE,BCFG.DE,FC,的中点分别是M,N,P,Q.若MP+NQ=14,AC+BC=18,则AB的长为()A. B.C.13 D.16OH+OI=(,(6.(2015•福州)如图,在3×3的正方形网格中由四个格点A,B,C,D,以其中一点为原点,网格线所在直线为坐标轴,建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点是()7.(2015•广元)如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B 的坐标分别为(1,0)、(4,0).将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为()8.(2013•巴中)如图,在梯形ABCD中,AD∥BC,点E、F分别是AB、CD的中点且EF=6,则AD+BC的值是()EF=(9.(2015•山西)如图,在△ABC中,点D、E分别是边AB,BC的中点.若△DBE的周长是6,则△ABC的周长是()ACAC10.(2016•贵阳模拟)如图,在平面直角坐标系中,点A在第一象限,⊙A与x轴交于B (2,0)、C(8,0)两点,与y轴相切于点D,则点A的坐标是()二.填空题(共6小题)11.(2015•广安)如果点M(3,x)在第一象限,则x的取值范围是x>0.12.(2015•甘孜州)如图,正方形A1A2A3A4,A5A6A7A8,A9A10A11A12,…,(每个正方形从第三象限的顶点开始,按顺时针方向顺序,依次记为A1,A2,A3,A4;A5,A6,A7,A8;A9,A10,A11,A12;…)的中心均在坐标原点O,各边均与x轴或y轴平行,若它们的边长依次是2,4,6…,则顶点A20的坐标为(5,﹣5).=5解:∵13.(2015•昆明)如图,在△ABC中,AB=8,点D、E分别是BC、CA的中点,连接DE,则DE=4.AB=4AB=×14.(2015•铜仁市)已知点P(3,a)关于y轴的对称点为Q(b,2),则ab=﹣6.15.(2015•甘南州)将点A(2,1)向上平移3个单位长度得到点B的坐标是(2,4).16.(2013•天水)如图所示,在梯形ABCD中,AD∥BC,对角线AC⊥BD,且AC=12,BD=5,则这个梯形中位线的长等于 6.5.(=BEBE===13×三.解答题(共14小题)17.(2015春•滑县期末)在我国沿海地区,几乎每年夏秋两季都会或多或少地遭受台风的侵袭,加强台风的监测和预报,是减轻台风灾害的重要措施.下表是中央气象台2010年发18.(2013•郧西县模拟)在平面直角坐标系中,设坐标轴的单位长度为1cm,整数点P从原点O出发,速度为1cm/s,且点P只能向上或向右运动,请回答下列问题:秒,可得到的整数点的个数是11个.(3)当P点从点O出发15秒时,可得到整数点(10,5)19.(2014春•高安市期中)在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如图所示.(1)填写下列各点的坐标:A1(0,1),A3(1,0),A12(6,0);(2)写出点A4n的坐标(n是正整数):A4n(2n,0);(3)蚂蚁从点A2013到A2014的移动方向是向右.20.(2014秋•深圳期末)如图:①写出A、B、C三点的坐标.②若△ABC各顶点的横坐标不变,纵坐标都乘以﹣1,请你在同一坐标系中描出对应的点A′、B′、C′,并依次连接这三个点,所得的△A′B′C′与原△ABC有怎样的位置关系.21.(2014秋•肥东县期末)已知点P(x,y)的坐标满足方程,求点P分别关于x轴,y轴以及原点的对称点坐标.解:由22.(2013秋•红安县期末)已知:(x、y、z均不为零),求的值.=k消去解:设===323.(2015春•广宁县期末)在平面直角坐标系中,点A(1,2a+3)在第一象限.(1)若点A到x轴的距离与到y轴的距离相等,求a的值;(2)若点A到x轴的距离小于到y轴的距离,求a的取值范围.>﹣,<24.(2015春•临沂期末)多多和爸爸、妈妈周末到动物园游玩,回到家后,她利用平面直角坐标系画出了动物园的景区地图,如图所示.可是她忘记了在图中标出原点和x轴、y轴.只知道马场的坐标为(﹣3,﹣3),你能帮她建立平面直角坐标系并求出其他各景点的坐标?25.(2015•茂名)补充完整三角形中位线定理,并加以证明:(1)三角形中位线定理:三角形的中位线平行于第三边,且等于第三边的一半;(2)已知:如图,DE是△ABC的中位线,求证:DE∥BC,DE=BC.,BC26.(2015•邵阳)如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,延长BC至点F,使CF=BC,连接CD和EF.(1)求证:DE=CF;(2)求EF的长.DE BCDE BCBCDEDE.DE BC27.(2015•自贡)如图,在△ABC中,D、E分别是AB、AC边的中点.求证:DE BC.边的中点,得出=,即可证明=,=,=,==,∠DE BC28.(2015春•北流市期中)如图,已知单位长度为1的方格中有个△ABC.(1)请画出△ABC向上平移3格再向右平移2格所得△A′B′C′.(2)请以点A为坐标原点建立平面直角坐标系(在图中画出),然后写出点B、点B′的坐标:B(1,2);B′(3,5)29.(2008•贵港)如图所示,在梯形ABCD中,AD∥BC,点E、F分别为AB、CD的中点.连接AF并延长,交BC的延长线于点G.(1)求证:△ADF≌△GCF;(2)若EF=7.5,BC=10,求AD的长.EF=BGEF=(7.5=(30.(2009•潍坊)在四边形ABCD中,AB⊥BC,DC⊥BC,AB=a,DC=b,BC=a+b,且a≤b.取AD的中点P,连接PB、PC.(1)试判断三角形PBC的形状;(2)在线段BC上,是否存在点M,使AM⊥MD?若存在,请求出BM的长;若不存在,请说明理由.PQ=((BC=时,代入得:=,。

相关文档
最新文档