扫描电子显微分析
13.扫描电子显微分析

第十三章扫描电子显微分析由于透射电镜是利用穿透样品的电子束进行成像的,这就要求样品的厚度必须保证在电子束可穿透的尺寸范围内。
为此需要通过各种较为繁琐的样品制备手段将大尺寸样品转变到透射电镜可以接受的程度。
能否直接利用样品表面材料的物质性能进行微观成像,成为科学家追求的目标。
经过努力,这种想法已成为现实-----扫描电子显微镜(Scanning Electronic Microscopy, SEM)。
扫描电镜是介于透射电镜和光学显微镜之间的一种微观性貌观察手段。
第一节扫描电镜的工作原理工作过程:由最上边电子枪发射出来的电子束,经栅极聚焦后,在加速电压作用下,经过二至三个电磁透镜所组成的电子光学系统,电子束会聚成一个细的电子束聚焦在样品表面。
在末级透镜上边装有扫描线圈。
在它的作用下使电子束在样品表面扫描。
由于高能电子束与样品物质的交互作用,结果产生了各种信息:二次电子、背反射电子、吸收电了、X射线、俄歇电子、阴极发光和透射电子等。
这些信号被相应的接收器接收,经放大后送到显像管的栅极上,调制显像管的亮度。
由于经过扫描线圈上的电流是与显像管相应的亮度一一对应,也就是说,电子束打到样品上一点时,在显像管荧光屏上就出现一个亮点。
扫描电镜就是这样采用逐点成像的方法,把样品表面不同的特征,按顺序、成比例地转换为视频信号,完成一帧图像。
从而使我们在荧光屏上观察到样品表面的各种特征图像。
第二节扫描电镜的结构扫描电镜包含以下部分:1. 电子光学部分该系统由电子枪、电磁透镜、光阑、样品室等部件组成。
它的作用与透射电镜不同,仅仅用来获得扫描电子束。
显然,扫描电子束应具有较高的亮度和尽可能小的束斑直径。
(1)电子枪目前使用中的扫描电镜大多为普通热阴极电子枪,由于受到钨丝阴极发射率较低的限制,需要较大的发射截面,才能获得足够的电子束强度。
其优点是灯丝价格较便宜,对真空度要求不高,缺点是钨丝热电子发射效率低,发射源直径较大,即使经过二级或三级聚光镜,在样品表面上的电子束斑直径也在5~7nm,因此仪器分辨率受到限制。
第三章扫描电子显微镜与电子探针显微分析

5. 可做综合分析。
6. SEM装上波长色散X射线谱仪(WDX)(简称 波谱仪)或能量色散X射线谱仪(EDX)(简称 能谱仪)后,在观察扫描形貌图像的同时,可 对试样微区进行元素分析。
7. 装上半导体样品座附件,可以直接观察晶体管 或集成电路的p-n结及器件失效部位的情况。
8. 装上不同类型的试样台和检测器可以直接观察 处于不同环境(加热、冷却、拉伸等)中的试 样显微结构形态的动态变化过程(动态观察)。
其它物理信号
除了上述六种信号外,固体样品中还会 产生例如阴极荧光、电子束感生效应和电 动势等信号。
这些信号经过调制后也可以用于专门的 分析。
小结
X射线
与物质相互 作用
1.散射(相干,非相干) 2.光电效应(俄歇,二次荧光,光电子) 3.透射 4.热
电子束
与物质相互 作用
1.背散射; 3.透射电子; 5.俄歇; 7.阴极荧光……
7. 非弹性背散射电子的能量分布范围很宽,从数十 电子伏到数千电子伏。
8. 从数量上看,弹性背散射电子远比非弹性背散射 电子所占的份额多。
9. 背散射电子的产生范围在1000 Å到1 μm深。
由于背散射电子的产额随原子序数的增加而增 加,所以,利用背散射电子作为成像信号不仅能 分析形貌特征,也可用来显示原子序数衬度,定 性地进行成分分析。
LaB6 filament
W filament
(2)电磁透镜(ቤተ መጻሕፍቲ ባይዱlectromagnetic lens)
• 其作用是把电子枪的束斑逐渐聚焦缩小,使原来 直径约50μm的束斑缩小成一个只有数nm的细小 束斑。
• 扫描电子显微镜一般由三个聚光镜,前两个聚光 镜是强透镜,用来缩小电子束光斑尺寸。
扫描电子显微镜分析

扫描电子显微镜分析扫描电子显微镜是利用入射电子从试样中激发的各种信号成像,对试样表面举行形貌观看、x射线微区化学分析。
扫描电子显微镜应用范围涉及各行各业,凡是用光学显微镜的地方,凡是需要亚显微结构、超微结构的形态讨论和成分分析的地方,都可以用法扫描电子显微镜。
扫描电子显微镜在微生物形态讨论中,也得到了广泛应用。
一、吸附铅及吸附一浮选铅后扫描电镜观看苦味诺卡菌、草分枝杆菌和胶质芽在pH=5时吸附铅及用十二胺作捕收剂浮选吸附铅后的微生物。
在pH=6条件吸附铅及吸附-浮选铅后苦味诺卡菌的扫描电镜照片。
在pH=6条件吸附铅及吸附一浮选铅后草分枝杆菌的扫描电镜照片。
在pH=6条件吸附铅及吸附一浮选铅后胶质芽孢杆菌的扫描电镜照片。
吸附铅离子后,苦味诺卡菌的菌体发生膨胀,局部表面聚拢有大量絮状物和团状物;草分枝杆菌的菌体中部发觉塌陷,表面变得高低不平,菌体粗糙有绒毛状物豁附;胶质芽孢杆菌吸附后的细胞表面能观看到一层致密的极小颗粒状物,形状变得不规章,菌体表面浮现皱褶收缩。
苦味诺卡氏菌、草分枝杆菌和胶质芽孢杆菌3种菌株经过吸附一浮选以后,菌体都变粗膨胀,表面黏附有一层绒状物,而且简单粘连成片。
二、吸附镉及吸附-浮选镉后微生物扫描电镜观看沟戈登菌、胶质芽孢杆菌、枯草芽孢杆菌分离在pH=6、5、8时吸附电镀废水中镉及以为捕收剂浮选吸附镉后的微生物。
吸附镉及吸附-浮选电镀废水中福后沟戈登菌的扫描电子显微镜形貌。
吸附镉及吸附-浮选电镀废水中镉后胶质芽孢杆菌的扫描电子显微镜形貌。
吸附镉及吸附-浮选电镀废水中镉后枯草芽孢杆菌的扫描电子显微镜形貌。
工业废菌及水洗工业废菌在pH为7时吸附电镀废水中镉后的扫描电子显微镜形貌。
沟戈登菌吸附镉后,细胞略弯曲,外形未发生显然变幻,菌体略显含糊和肿胀。
吸附-浮选镉后,菌体变短、变粗,菌体表面有粘连物。
胶质芽孢杆菌吸附锡后,细胞外形同样未发生显然变幻,菌体略显含糊和肿胀。
吸附-浮选镉后,菌体变得越发含糊肿胀,体积略显缩小,菌体表面也附有粘连物。
扫描电子显微分析.ppt

得清晰图像的深度范围。当一束微细的电子束照射在表 面粗糙的试样上时,由于电子束有一定发散度,发散半 角为β,除了焦平面处,电子束将展宽,设可获得清晰 图像的束斑直径为d,由图中几何关系可得:
Dtdg
d
若d的大小相当于荧能 光屏上
区分的最小距离d时M, 0即 .2mm,则
D 0.2
M
3.5 扫描电子显微分析
3.5 扫描电子显微分析
3.5.2 扫描电镜图象及其衬度
3.5 扫描电子显微分析
3.5.2 扫描电镜图象及其衬度
•当试样表面倾角增大时,作用体积改 变,且显著增加发射系数。 •背散射电子在试样上方有一定的角分 布。垂直入射时为余弦分布: η(φ)=η0cosφ
当试样表面倾角增大时,由于电子 有向前散射的倾向,峰值前移。因 此电子探测器必须放在适当的位置 才能探测到较高强度的电子信号。
系: δ(θ)=δ0/cosθ (4)二次电子在试样上方的角分布也服从余弦分布,
但与背散射电子不同的是二次电子在试样倾斜时仍为 余弦分布,见图2-83。
3.5 扫描电子显微分析
3.5.2 扫描电镜图象及其衬度
表2-6 二次电子发射系数
元素 能量 10keV 30keV 50keV
铝
0.40 0.10 0.05
3.5 扫描电子显微分析
3.5.1扫描电子显微镜
扫描电子显微镜的原理及应用

扫描电子显微镜的原理及应用扫描电子显微镜(Scanning Electron Microscope,简称SEM)是一种使用电子束而不是光束的显微镜,它通过对被测样品表面进行扫描和检测,以获取高分辨率的图像。
SEM具有优秀的分辨率和放大倍数,被广泛应用于材料科学、生命科学、纳米技术、地质学等领域。
SEM的工作原理如下:1. 产生电子束:通过电子枪产生高能电子束,电子枪包括一个热阴极和一根聚焦的阳极。
电子束可以通过区域限制器(aperture)来控制束流的大小。
2.加速电子束:电子束通过电子镜来加速,这是一个由透镜组成的系统。
电子束在电子镜中得到聚焦,束流变窄,成为高能、高分辨率的束流。
3.扫描样品:样品被放置在SEM的样品台上,电子束通过磁场的作用进行X、Y方向扫描。
扫描电子镜的样品台通常也可以进行上下方向的运动,以获得不同深度的图像。
4.接收和检测:当电子束照射在样品表面上时,样品中发生的相互作用将会发射出各种信号,包括二次电子、透射电子、X射线以及退火融合过程产生的光谱信号等。
SEM通过收集并检测这些信号,并将其转化为电信号。
5.构建显像:电信号被转化为亮度信号,并用于构建图像。
SEM可以生成大量的图像类型,包括二次电子图像(SE图像)、透射电子图像(BSE图像)、X射线能谱图(EDS图像)等。
6.分析和测量:SEM可以提供非常详细的样品表面形貌信息,包括形貌、尺寸、形状、纹理等。
还可以使用EDS技术分析样品的化学元素组成。
SEM的应用范围十分广泛:1.材料科学:SEM可以研究材料的微观结构、相变过程、表面形貌以及晶格结构等。
它可以用于分析金属、陶瓷、纤维、塑料等材料的微观结构,从而改进材料的性能和开发新材料。
2.生命科学:SEM非常适合观察生物样品的微观结构,如昆虫、细胞、细菌等。
它可以研究生物样品的组织结构、表面形貌,以及细胞壁、细胞器等微观结构。
3.纳米技术:SEM可以观察和测量纳米级别的颗粒、膜、纳米线、纳米管等纳米材料。
扫描电子显微分析

扫描电子显微分析§1、概述SEM在20世纪30年代由德国人Knoll和von Ardenne首创,40年代美国RCA研究室对它的进展起了重要作用,在后来的显微镜上可以发现许多他们预期的关于仪器的设计和性能。
现代的SEM是Oatley和他的学生从1948年到1965年期间在剑桥大学的研究成果,第一台商用SEM是1965年由英国剑桥仪器公司生产的Stereoscan。
扫描电镜(SEM)是材料学科领域应用最为广泛的一种显微镜,SEM的广泛使用是因为它既具有光学显微镜制样简易,又具有昂贵、复杂的透射电镜的众多功能和适用性。
SEM可对较大试样进行原始表面观察,能清晰地显示出试样表面的凸凹形貌,具有连续可调的的放大倍率,目前二次电子像的最高分辨率可达0.5纳米。
利用入射束与试样作用产生的各种信号,SEM还可以对试样进行成分、晶体学、阴极发光、感应电导等多方面分析;也可以在某些环境条件下进行动态观察。
§3、初级电子束轰击试样产生的信号 俄歇电子:透射电子:当样品很薄时,有一部分电子穿过样品(TEM或STEM)。
吸收电流:初级电子束由于和样品中的原子或电子发生多次散射后,能量逐渐减小以致最终被样品吸收。
特征x射线:阴极荧光:主要针对半导体和绝缘体,在入射电子或散射电子的作用下,价电带子发生跃迁,由于跃迁能量较低(几-几十电子伏特),所以发出可见光,其波长与杂质及其能级有关。
电子束感生电效应:电子在半导体中的非弹性性散射产生电子-空穴对。
通过外加电场可以分离正负电荷,产生附加电导;而p-n结对这些自由载流子的收集作用可以产生附加电动势。
Primary Electron Beam放大倍数:等于荧光屏上扫描振幅A C 和电子束在样品上扫描振幅A S 之比,即M = A C /A S ,是纯几何表示。
分辨率:指样品上两个邻近点靠近到何种程度仍可辨认出来;分辨率可从拍摄的图像上测量两亮区最小暗间隙宽度除以放大倍数得到。
第十章 扫描电子显微分析(SEM)

核外电子叫做二次电子。表层5-10μm,能 量较低(小于50eV) 若入射电子束强度为I0,二次电子信号强度为 Is,则二次电子产额δ= Is/ I0
影响二次电子产额的主要因素:
(1)二次电子能谱特性:几个eV量大 (2)入射电子的能量: δ有极值 (3)材料的原子序数:略增加 (4)样品倾斜角θ: δ∝(sec θ)n,n=1.3(轻
元素),1(中等元素),0.8(重元素)
二次电子像衬度分类
(1)形貌衬度:当入射电子方向一定时,样品表面的 凸凹形貌就决定了电子束的不同倾斜角θ,也就决定了 二次电子的产额。尖棱、小粒子、坑穴边缘显得异常亮
(2)成分衬度:部分二次电子是由背散射电子激发的, 而背散射电子与原子序数Z关系密切。当入射电子能量 小于5keV时,二次电子能反映表面薄层的成分变化
(3)电压衬度:局部电位将影响二次电子的轨迹和强 度,造成正偏压的地方图像较暗,而负偏压的地方图像 较亮
(4)磁衬度(第一类):样品表面处的外延磁场会造 成二次电子的偏转而形成衬度
2.背散射电子像衬度
若子入产射额电δ子=束IR强/度I0为I0,背散射电子信号强度为IR,则二次电 影响背散射电子产额的因素: (1)原子序数: δ增大 (2)入射电子能量E0:10-100keV,δ与E0无关,<5eV,
5.电源系统:为扫描电子显微镜各部分提供所需要的电源 6.真空系统:确保电子光学系统正常工作、防止样品污染、保证
灯丝的工作寿命等
SEM的主要性能
(1)放大倍数:M=Ac/As, Ac是阴极射 线管电子束在荧光屏上的扫描振幅,一般 为100mm,As是电子束在样品表面的扫 描振幅。M=20-20万倍
第二章第6节扫描电子显微分析

能谱议和波谱仪的谱线比较
(a)能谱曲线;(b)波谱曲线
电子探针分析的基本工作方式
• 一是定点分析,即对样品表面选定微区作定点的全谱扫描, 进行定性或半定量分析,并对其所含元素的质量分数进行 定量分析;
①扫描电子束斑直径 ; ②入射电子束在样品中的扩展效应(作用区的大小和形 状);
高能电子与材料的相互作用区的形状与大小主要取 决于样品的原子序数,入射的高能电子虽不能改变作用区 的形状,但却能影响作用区的大小。
③操作方式及其所用的调制信号 由于各种成像操作方式所用的调制信号不同,因而得
到的图像的分辨率也不同; 如:二次电子成像、背散射电子成像;
•
一马当先,全员举绩,梅开二度,业 绩保底 。20.10.2220.10.2204:5104:51:4204:51:42Oc t-20
•
牢记安全之责,善谋安全之策,力务 安全之 实。2020年10月22日 星期四4时51分 42秒T hursday, October 22, 2020
•
相信相信得力量。20.10.222020年10月 22日星 期四4时51分42秒20.10.22
激发源。
图10-2 电子光学系统示意图
表10-1 几种类型电子枪性能比较
•电子束斑的要求:为了获得较高的信号强度和扫描像分 辨率,电子束应具有较高的亮度和尽可能小的束斑直径; 束斑的亮度和直径与电子枪的类型有关;
2.偏转系统
• 作用:使电子束产生横向 偏转,包括用于形成光栅 状扫描的扫描系统,以及 使样品上的电子束间断性 消隐或截断的偏转系统。
谢谢大家!
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第11-12讲教学目的:使学生了解扫描电子显微镜结构、工作成像原理及应用教学要求:了解扫描电子显微镜的发展、原理与应用;了解扫描电镜相关术语;掌握扫描电镜制样技术教学重点:1. 扫描电镜的工作原理; 2. 扫描电镜的二次电子像和背散射电子像教学难点:两种种像差的形成原理;教学拓展:扫描电镜的未来发展趋势第3节扫描电子显微分析扫描电子显微镜又称扫描电镜或SEM(scaning electron microscope),它是利用细聚焦电子束在样品表面做光栅状逐点扫描,与样品相互作用后产生各种物理信号,这些信号经检测器接收、放大并转换成调制信号,最后在荧光屏上显示反映样品表面各种特征的图像。
扫描电镜具有景深大、图像立体感强、放大倍数范围大、连续可调、分辨率高、样品室空间大且样品制备简单等特点,是进行样品表面研究的有效分析工具。
扫描电镜所需的加速电压比透射电镜要低得多,一般约在 1~30kV,实验时可根据被分析样品的性质适当地选择。
扫描电镜的图像放大倍数在一定范围内(几十倍到几十万倍)可以实现连续调整,放大倍数等于荧光屏上显示的图像横向长度与电子束在样品上横向扫描的实际长度之比。
扫描电镜的电子光学系统与透射电镜有所不同,其作用仅仅是为了提供扫描电子束,作为使样品产生各种物理信号的激发源。
扫描电镜最常使用的是二次电子信号和背散射电子信号,前者用于显示表面形貌衬度,后者用于显示原子序数衬度。
3.1扫描电子显微镜概述、基本结构、工作原理一、扫描电子显微镜概述第一阶段理论奠基阶段1、1834年法拉第提出“电的原子”概念;2、1858年普鲁克发现阴极射线;3、1878年阿贝-瑞利给出显微镜分辨本领极限公式;4、1897年汤姆逊提出电子概念;5、1924年德布罗依提出波粒二象性;第二阶段试验阶段1、1935年克诺尔提出用电子束从样品表面得到图像的原理并设计简单实验装置;2、1938年冯.阿登制备出了第一台透射扫描电子显微镜;3、1952年奥特利研制出分辨率为50nm的扫描电子显微镜;4、1963年皮斯利用三个电磁透镜制造了第一台商品电子显微镜的雏形;第三阶段商品化发展阶段1、1965年斯图尔特等在剑桥科学仪器公司制造出世界第一台商品扫描电子显微镜,分辨率为25nm;2、1980年加入了能谱仪和波谱仪等分析装备;3、1990年全面进入数字阶段4、当今高分辨率、高图象质量以及多功能分析是发展方向和目标。
二、扫描电子显微镜的基本结构扫描电子显微镜具有由三极电子枪发出的电子束经栅极静电聚焦后成为直径为50mm的电子光源。
在2-30KV的加速电压下,经过2-3个电磁透镜所组成的电子光学系统,电子束会聚成孔径角较小,束斑为5-10m m的电子束,并在试样表面聚焦。
末级透镜上边装有扫描线圈,在它的作用下,电子束在试样表面扫描。
高能电子束与样品物质相互作用产生二次电子,背反射电子,X射线等信号。
这些信号分别被不同的接收器接收,经放大后用来调制荧光屏的亮度。
由于经过扫描线圈上的电流与显象管相应偏转线圈上的电流同步,因此,试样表面任意点发射的信号与显象管荧光屏上相应的亮点一一对应。
也就是说,电子束打到试样上一点时,在荧光屏上就有一亮点与之对应,其亮度与激发后的电子能量成正比。
换言之,扫描电镜是采用逐点成像的图像分解法进行的。
光点成像的顺序是从左上方开始到右下方,直到最後一行右下方的像元扫描完毕就算完成一帧图像。
这种扫描方式叫做光栅扫描。
扫描电子显微镜由电子光学系统,信号收集及显示系统,真空系统及电源系统组成。
扫描电子显微镜的原理和结构示意图蔡司Ultra-Plus场发射扫描电镜真空系统和电源系统真空系统主要包括真空泵和真空柱两部分。
真空柱是一个密封的柱形容器。
真空泵用来在真空柱内产生真空。
有机械泵、油扩散泵以及涡轮分子泵三大类,机械泵加油扩散泵的组合可以满足配置钨枪的SEM的真空要求,但对于装置了场致发射枪或六硼化镧枪的SEM,则需要机械泵加涡轮分子泵的组合。
成像系统和电子束系统均内置在真空柱中。
真空柱底端即为右图所示的密封室,用于放置样品。
之所以要用真空,主要基于以下两点原因:电子束系统中的灯丝在普通大气中会迅速氧化而失效,所以除了在使用SEM时需要用真空以外,平时还需要以纯氮气或惰性气体充满整个真空柱。
为了增大电子的平均自由程,从而使得用于成像的电子更多。
电子光学系统电子光学系统由电子枪,电磁透镜,扫描线圈和样品室等部件组成。
其作用是用来获得扫描电子束,作为产生物理信号的激发源。
为了获得较高的信号强度和图像分辨率,扫描电子束应具有较高的亮度和尽可能小的束斑直径。
<1>电子枪其作用是利用阴极与阳极灯丝间的高压产生高能量的电子束。
目前大多数扫描电镜采用热阴极电子枪。
其优点是灯丝价格较便宜,对真空度要求不高,缺点是钨丝热电子发射效率低,发射源直径较大,即使经过二级或三级聚光镜,在样品表面上的电子束斑直径也在5-7nm,因此仪器分辨率受到限制。
现在,高等级扫描电镜采用六硼化镧(LaB6)或场发射电子枪,使二次电子像的分辨率达到2nm。
但这种电子枪要求很高的真空度。
<2>电磁透镜其作用主要是把电子枪的束斑逐渐缩小,是原来直径约为50m m的束斑缩小成一个只有数nm的细小束斑。
其工作原理与透射电镜中的电磁透镜相同。
扫描电镜一般有三个聚光镜,前两个透镜是强透镜,用来缩小电子束光斑尺寸。
第三个聚光镜是弱透镜,具有较长的焦距,在该透镜下方放置样品可避免磁场对二次电子轨迹的干扰。
<3>扫描线圈其作用是提供入射电子束在样品表面上以及阴极射线管内电子束在荧光屏上的同步扫描信号。
改变入射电子束在样品表面扫描振幅,以获得所需放大倍率的扫描像。
扫描线圈试扫描点晶的一个重要组件,它一般放在最后二透镜之间,也有的放在末级透镜的空间内。
<4>样品室样品室中主要部件是样品台。
它出能进行三维空间的移动,还能倾斜和转动,样品台移动范围一般可达40毫米,倾斜范围至少在50度左右,转动360度。
样品室中还要安置各种型号检测器。
信号的收集效率和相应检测器的安放位置有很大关系。
样品台还可以带有多种附件,例如样品在样品台上加热,冷却或拉伸,可进行动态观察。
近年来,为适应断口实物等大零件的需要,还开发了可放置尺寸在Φ125mm以上的大样品台。
信号检测放大系统其作用是检测样品在入射电子作用下产生的物理信号,然后经视频放大作为显像系统的调制信号。
不同的物理信号需要不同类型的检测系统,大致可分为三类:电子检测器,应急荧光检测器和X射线检测器。
在扫描电子显微镜中最普遍使用的是电子检测器,它由闪烁体,光导管和光电倍增器所组成。
当信号电子进入闪烁体时将引起电离;当离子与自由电子复合时产生可见光。
光子沿着没有吸收的光导管传送到光电倍增器进行放大并转变成电流信号输出,电流信号经视频放大器放大后就成为调制信号。
这种检测系统的特点是在很宽的信号范围内具有正比与原始信号的输出,具有很宽的频带(10Hz-1MHz)和高的增益(105-106),而且噪音很小。
由于镜筒中的电子束和显像管中的电子束是同步扫描,荧光屏上的亮度是根据样品上被激发出来的信号强度来调制的,而由检测器接收的信号强度随样品表面状况不同而变化,那么由信号监测系统输出的反营养品表面状态的调制信号在图像显示和记录系统中就转换成一幅与样品表面特征一致的放大的扫描像。
三、扫描电子显微镜的工作原理SEM的工作原理是利用细聚焦电子束在样品表面逐点扫描,与样品相互作用产行各种物理信号,这些信号经检测器接收、放大并转换成调制信号,最后在荧光屏上显示反映样品表面各种特征的图像。
在扫描电镜中,电子枪发射出来的电子束,经三个电磁透镜聚焦后,成直径为几个纳米的电子束。
末级透镜上部的扫描线圈能使电子束在试样表面上做光栅状扫描。
试样在电子束作用下,激发出各种信号,信号的强度取决于试样表面的形貌、受激区域的成分和晶体取向。
设在试样附近的探测器把激发出的电子信号接受下来,经信号处理放大系统后,输送到显像管栅极以调制显像管的亮度。
由于显像管中的电子束和镜筒中的电子束是同步扫描的,显像管上各点的亮度是由试样上各点激发出的电子信号强度来调制的,即由试样表面上任一点所收集来的信号强度与显像管屏上相应点亮度之间是一一对应的。
因此,试样各点状态不同,显像管各点相应的亮度也必不同,由此得到的像一定是试样状态的反映。
从以上的SEM原理我们可以知道,它与TEM的主要区别:1)在SEM中电子束并不像TEM中一样是静态的:在扫描线圈产生的电磁场的作用下,细聚焦电子束在样品表面扫描。
2)由于不需要穿过样品,SEM的加速电压远比TEM低;在SEM中加速电压一般在200V 到30 kV范围内。
3)样品不需要复杂的准备过程,制样比较简单。
3.2 扫描电子显微镜的主要特点及图像衬度一、扫描电子显微镜主要特点(一)特点1、分辨本领高;2、放大倍率变化范围大;3、景深大,图像立体感强;4、试样制备简单;5、可以通过电子学的方法有效控制和改善图像质量;6、可以同时进行微观形貌观察、微区成分分析和晶体结构分析。
(二)主要性能参数放大率与普通光学显微镜不同,在SEM中,是通过控制扫描区域的大小来控制放大率的。
如果需要更高的放大率,只需要扫描更小的一块面积就可以了。
放大率由屏幕/照片面积除以扫描面积得到。
所以,SEM中,透镜与放大率无关。
场深在SEM中,位于焦平面上下的一小层区域内的样品点都可以得到良好的会焦而成象。
这一小层的厚度称为场深,通常为几纳米厚,所以,SEM可以用于纳米级样品的三维成像。
作用体积电子束不仅仅与样品表层原子发生作用,它实际上与一定厚度范围内的样品原子发生作用,所以存在一个作用“体积”。
作用体积的厚度因信号的不同而不同:欧革电子:0.5~2纳米。
次级电子:5λ,对于导体,λ=1纳米;对于绝缘体,λ=10纳米。
背散射电子:10倍于次级电子。
特征X射线:微米级。
X射线连续谱:略大于特征X射线,也在微米级。
工作距离工作距离指从物镜到样品最高点的垂直距离。
如果增加工作距离,可以在其他条件不变的情况下获得更大的场深。
如果减少工作距离,则可以在其他条件不变的情况下获得更高的分辨率。
通常使用的工作距离在5毫米到10毫米之间。
成象次级电子和背散射电子可以用于成象,但后者不如前者,所以通常使用次级电子。
表面分析特征X射线、背散射电子的产生过程均与样品原子性质有关,所以可以用于成分分析。
但由于电子束只能穿透样品表面很浅的一层,所以只能用于表面分析。
表面分析以特征X射线分析最常用,所用到的探测器有两种:能谱分析仪与波谱分析仪。
前者速度快但精度不高,后者非常精确,可以检测到“痕迹元素”的存在但耗时太长。
二、扫描电子显微镜的图像衬度扫描电镜像衬度主要是利用样品表面微区特征的差异,在电子束作用下产生不同强度的物理信号,导致阴极射线管荧光屏上不同的区域不同的亮度出现,获得衬度。