最新圆单元的知识整理

合集下载

圆的认识单元知识整理

圆的认识单元知识整理

圆的认识单元知识整理-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN2 圆的认识单元知识整理1. 圆的认识(1)直径是圆中所有线段中最长的一条。

(2)半径和直径的关系:同一个圆里,直径是半径的两倍,半径是直径的一半。

(3)在同一个圆里,有无数条半径,所有半径的长度都相等。

(4)在同一个圆里,有无数条直径,所有直径的长度都相等。

(5)画圆时,圆规针尖固定的一点是圆心,圆规两脚之间距离是半径。

圆心确定圆的位置,半径确定圆的大小。

(6)圆是轴对称图形,有无数条对称轴,对称轴就是直径所在的直线。

(7)正方形里最大的圆:圆心是对角线交点,半径是正方形边长的一半。

(8)长方形里最大的圆:圆心是对角线交点,半径是长方形宽的一半。

2. 圆的周长(1)圆周率:任何一个圆的周长除以它直径的商都是一个固定的数,我们把它叫做圆周率,用字母π表示。

π是一个无限不循环小数,π≈3.14。

(2)圆的周长=圆周率×直径=圆周率×半径×2(C =πd 或C =2πr )(3)半圆的周长=圆周长的一半+直径( C 半圆= πd ÷2+d ,C 半圆= πr +2r(4)常用数据(略,自己背诵)(5)同一个圆里,圆的周长是直径的π倍,圆的周长是半径的2π倍。

3. 圆的面积(1) 圆面积公式的推导过程的面积相等;长方形的长相当于圆周长的一半,宽相当于圆的半径。

因为:长方形面积=长×宽,所以:圆面积=πr ×r=πr 2。

即:S=πr 2。

要求圆的面积只要知道圆的半径或者知道圆的半径的平方。

4. 半圆的面积是圆面积的一半。

S 半圆=πr 2÷2 (求半圆面积一定要除以2)C=πr+2r=5.14r=2.57d容易与半圆周长相混淆的是圆周长的一半,πd ÷2 或者直接用πr5. 大小两个圆比较,半径的倍数=直径的倍数=周长的倍数, 面积的倍数=半径的倍数26. 周长相等的平面图形中,圆的面积最大;面积相等的平面图形中,圆周长最短。

人教版九年级数学第二十四章《圆》单元知识点总结

人教版九年级数学第二十四章《圆》单元知识点总结

人教版九年级数学第二十四章《圆》单元知识点总结1.弦弦:连结圆上任意两点的线段叫做弦. 直径:经过圆心的弦叫做直径.弦心距:圆心到弦的距离叫做弦心距.2.弧:圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作,读作“圆弧AB”或“弧AB”.①半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆;②优弧:大于半圆的弧叫做优弧;③劣弧:小于半圆的弧叫做劣弧.3.同心圆与等圆圆心相同,半径不等的两个圆叫做同心圆.圆心不同,半径相等的两个圆叫做等圆.同圆或等圆的半径相等.4.等弧在同圆或等圆中,能够完全重合的弧叫做等弧.5、弧、弦、圆心角的关系(1)圆心角定义如图所示,∠AOB的顶点在圆心,像这样顶点在圆心的角叫做圆心角.(2)定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.推论:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦也相等.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等.6、圆周角(1)圆周角定义:像图中∠AEB、∠ADB、∠ACB这样的角,它们的顶点在圆上,并且两边都与圆相交的角叫做圆周角.(2).圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.(3).圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交.(2)圆周角定理成立的前提条件是在同圆或等圆中.7.圆内接四边形:(1)定义: 圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.(2)性质:圆内接四边形对角互补,外角等于内对角(即它的一个外角等于它相邻内角的对角).8.弦、弧、圆心角、弦心距的关系:在同圆或等圆中,弦,弧,圆心角,弦心距等几何量之间是相互关联的,即它们中间只要有一组量相等,(例如圆心角相等),那么其它各组量也分别相等(即相对应的弦、弦心距以及弦所对的弧也分别相等)。

《圆》章节知识点总结

《圆》章节知识点总结

《圆》章节知识点总结一、圆的概念集合形式的概念:1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。

二、垂径定理(重点)垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称知2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD中任意2个条件推出其他3个结论。

几何表示法: 推论1:(1)在⊙O 中,∵AB 是直径 AB CD ⊥∴CE DE = 弧BC =弧BD 弧AC =弧AD(2):在⊙O 中,∵AB CD ⊥ CE DE = ∴AB 是直径 弧BC =弧BD 弧AC =弧AD(3):在⊙O 中,∵AB 是直径 弧BC =弧BD (或弧AC =弧AD )∴AB CD ⊥ CE DE = 弧AC =弧AD (或弧BC =弧BD )三、圆心角、弧、弦、弦心距之间的关系圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。

此定理也称知1推3定理,即上述四个结论中,只要知道其中的1个相等,则可以推出其它的3个结论,①AOB DOE ∠=∠;②AB DE =;③OC OF =;④ 弧BA =弧BD 几何表示法:在⊙O 中,∵AOB DOE ∠=∠∴AB DE = OC OF = 弧BA =弧BDB(重点)圆心角定理和推论可概括为:同圆或等圆中,两个圆心角、两条弧、两条弦、两条弦心距中有一组量相等,它们所对的其余各组量也相等。

圆的知识点归纳总结大全

圆的知识点归纳总结大全

圆的知识点归纳总结大全一、圆的定义。

1、以定点为圆心,定长为半径的点组成的图形。

2、在同一平面内,到一个定点的距离都相等的点组成的图形。

二、圆的各元素。

1、半径:圆上一点与圆心的连线段。

2、直径:连接圆上两点有经过圆心的线段。

3、弦:连接圆上两点线段(直径也是弦)。

4、弧:圆上两点之间的曲线部分。

半圆周也是弧。

(1)劣弧:小于半圆周的弧。

(2)优弧:大于半圆周的弧。

5、圆心角:以圆心为顶点,半径为角的边。

6、圆周角:顶点在圆周上,圆周角的两边是弦。

7、弦心距:圆心到弦的垂线段的长。

三、圆的基本性质。

1、圆的对称性。

(1)圆是轴对称图形,它的对称轴是直径所在的直线。

(2)圆是中心对称图形,它的对称中心是圆心。

(3)圆是旋转对称图形。

2、垂径定理。

(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。

(2)推论:平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。

平分弧的直径,垂直平分弧所对的弦。

3、圆心角的度数等于它所对弧的度数。

圆周角的度数等于它所对弧度数的一半。

(1)同弧所对的圆周角相等。

(2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。

4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。

5、夹在平行线间的两条弧相等。

6、设⊙O 的半径为r ,OP=d 。

7、(1)过两点的圆的圆心一定在两点间连线段的中垂线上。

(2)不在同一直线上的三点确定一个圆,圆心是三边中垂线的交点,它到三个点的距离相等。

(直角三角形的外心就是斜边的中点。

)8、直线与圆的位置关系。

d 表示圆心到直线的距离,r 表示圆的半径。

直线与圆有两个交点,直线与圆相交;直线与圆只有一个交点,直线与圆相切; 直线与圆没有交点,直线与圆相离。

29、平面直角坐标系中,A (x 1,y 1)、B (x 2,y 2)。

则AB=221221)()(y y x x -+- 10、圆的切线判定。

圆的知识点归纳总结大全

圆的知识点归纳总结大全

圆的知识点归纳总结大全一、圆的定义。

1、以定点为圆心,定长为半径的点组成的图形。

2、在同一平面内,到一个定点的距离都相等的点组成的图形。

二、圆的各元素。

1、半径:圆上一点与圆心的连线段。

2、直径:连接圆上两点有经过圆心的线段。

3、弦:连接圆上两点线段(直径也是弦)。

4、弧:圆上两点之间的曲线部分。

半圆周也是弧。

(1)劣弧:小于半圆周的弧。

(2)优弧:大于半圆周的弧。

5、圆心角:以圆心为顶点,半径为角的边。

6、圆周角:顶点在圆周上,圆周角的两边是弦。

7、弦心距:圆心到弦的垂线段的长。

三、圆的基本性质。

1、圆的对称性。

(1)圆是轴对称图形,它的对称轴是直径所在的直线。

(2)圆是中心对称图形,它的对称中心是圆心。

(3)圆是旋转对称图形。

2、垂径定理。

(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。

(2)推论:平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。

平分弧的直径,垂直平分弧所对的弦。

3、圆心角的度数等于它所对弧的度数。

圆周角的度数等于它所对弧度数的一半。

(1)同弧所对的圆周角相等。

(2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。

4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。

5、夹在平行线间的两条弧相等。

6、设⊙O 的半径为r ,OP=d 。

7、(1)过两点的圆的圆心一定在两点间连线段的中垂线上。

(2)不在同一直线上的三点确定一个圆,圆心是三边中垂线的交点,它到三个点的距离相等。

(直角三角形的外心就是斜边的中点。

)8、直线与圆的位置关系。

d 表示圆心到直线的距离,r 表示圆的半径。

直线与圆有两个交点,直线与圆相交;直线与圆只有一个交点,直线与圆相切; 直线与圆没有交点,直线与圆相离。

29、平面直角坐标系中,A (x 1,y 1)、B (x 2,y 2)。

则AB=221221)()(y y x x -+- 10、圆的切线判定。

圆的概念知识点总结

圆的概念知识点总结

圆的概念知识点总结一、基本概念1. 圆的定义圆是一个平面上的一个点到另一个点距离相等的所有点的集合。

这个距离被称为圆的半径。

2. 圆的元素圆的元素有两个,一个是圆心,一个是半径。

圆心是圆的中心点,而半径是从圆心到圆上的任意一点的距离。

3. 圆的属性圆的属性有几个重要的特点,比如圆半径、圆心、圆直径、圆周长、圆面积等。

二、圆的相关公式1. 圆的周长圆的周长是指圆的边界长度,它可以通过公式2πr来计算,其中r表示圆的半径,π表示圆周率,它的值约为3.14。

2. 圆的面积圆的面积是指圆内部的部分,它可以通过公式πr^2来计算,其中r表示圆的半径。

3. 圆的直径圆的直径是指圆的两个相对的边界之间的距离,它可以通过圆的半径乘以2来计算。

4. 圆的弧长圆的弧长是指圆周上的一部分长度,它可以通过圆的半径乘以弧度来计算。

5. 圆的扇形面积圆的扇形面积是指圆的一部分面积,它可以通过圆的半径乘以弧长除以2来计算。

6. 圆的切线圆的切线是指与圆相切的一条直线,在接触点处与圆相切且与圆的半径垂直。

三、圆的相关定理1. 圆的同位角定理同位角是指平行线与一条直线相交时所成的对应角,对应角相等,角的度数相等。

2. 圆的相交角定理相交角是指两个相交直线所成的四个角,相邻角相等。

3. 圆的正切定理圆内一点的切线长度等于这个点到圆心的距离乘以切点到切线之间的夹角的正切值。

4. 圆的切线定理切于圆上的直线与半径的夹角等于直线与半径的切线夹角的一半。

5. 圆的弦切定理圆内一点的切线长的平方等于这个点到圆心的距离的平方减去弦长的平方。

四、圆的相关性质1. 圆的切线垂直定理相切于同一个圆的两条切线相互垂直。

2. 圆心角和弦定理圆心角是指以圆心为端点的两条半径所成的角,它的度数等于其所对的圆周弧所对的圆心角。

3. 圆的切线与半径定理切于圆的切线和该圆上的半径垂直。

4. 圆的内切定理在一个三角形中,内切圆的半径等于周长与半周长之差。

以上就是关于圆的基本概念、公式、定理和性质的一些知识点总结,希望对大家有所帮助。

圆形全章知识点总结

圆形全章知识点总结

圆形全章知识点总结
圆的基本概念
- 圆是平面上一组与给定点距离相等的点的集合。

- 圆心是给定点,距离等于半径的点集合。

- 圆的直径是通过圆心并且两端都在圆上的线段,其长度等于
半径的两倍。

圆的性质
1. 圆上的任意点到圆心的距离都相等,这个距离就是圆的半径。

2. 圆的直径是圆上任意两点间的最长的线段。

3. 圆的弦是圆上的线段,且两端都在圆上。

4. 圆的切线是与圆只有一个交点的线段。

5. 圆的弧是圆上的一部分,弧的长度与弧所对应的圆心角的弧
度数是成正比的。

6. 圆的扇形是由一条半径和一条弧构成的部分,扇形的面积与
所对应的圆心角的弧度数是成正比的。

圆的公式
1. 圆的周长公式:C = 2πr,其中C代表周长,r代表半径,π是一个常数,取值大约为3.。

2. 圆的面积公式:A = πr²,其中A代表面积,r代表半径,π是一个常数,取值大约为
3.。

常见圆相关术语
- 圆心角:以圆心为顶点的角,其两边是圆上的弧。

- 弧长:圆上的一段弧的长度。

- 弧度:衡量弧长的单位,1弧度等于弧长与半径的比值。

以上是关于圆的基本概念、性质和公式的知识点总结,希望对你有帮助。

六年级上册数学第1单元圆知识点

六年级上册数学第1单元圆知识点

六年级上册数学第1单元圆知识点一、圆的认识。

1. 圆的定义。

- 在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆。

固定的端点O叫做圆心,线段OA叫做半径。

- 以点O为圆心的圆,记作“⊙O”,读作“圆O”。

2. 圆的各部分名称。

- 半径(r):连接圆心和圆上任意一点的线段。

- 直径(d):通过圆心并且两端都在圆上的线段。

直径是圆内最长的线段。

- 在同圆或等圆中,直径的长度是半径的2倍,即d = 2r,半径的长度是直径的(1)/(2),即r=(d)/(2)。

3. 圆的对称性。

- 圆是轴对称图形,直径所在的直线是圆的对称轴。

圆有无数条对称轴。

- 圆也是中心对称图形,圆心是它的对称中心。

二、圆的周长。

1. 圆周长的意义。

- 围成圆的曲线的长叫做圆的周长,用字母C表示。

2. 圆周率。

- 圆的周长与直径的比值是一个固定的数,叫做圆周率,用字母π表示。

π是一个无限不循环小数,π = 3.1415926·s,在实际应用中,一般取π≈3.14。

3. 圆周长的计算公式。

- 根据C=π d或C = 2π r。

三、圆的面积。

1. 圆面积的意义。

- 圆所占平面的大小叫做圆的面积,用字母S表示。

2. 圆面积的推导过程。

- 将圆平均分成若干个(偶数个)近似的等腰三角形(分的份数越多,拼成的图形越接近长方形)。

- 拼成后的长方形的长近似于圆周长的一半,即π r,宽近似于圆的半径r。

- 根据长方形面积公式S = 长×宽,得出圆的面积公式S=π r^2。

3. 圆环的面积。

- 圆环的面积S=π R^2-π r^2=π(R^2 - r^2),其中R为外圆半径,r为内圆半径。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四、圆
(一)圆的认识
1、圆的各部分名称:
圆心:画圆时固定的点叫做圆心。

用字母“O”表示。

圆心的位置决定圆的位置。

半径:从圆心到圆上任意一点的线段叫做半径。

用字母“r”表示,半径的长短决定圆的大小。

直径:通过圆心两端都在圆上的线段叫做直径,用字母“d”表示
2.圆的特征:在同一个圆里,有无数条直径,且所有的直径长度都相等。

在同一个圆里,有无数条半径,且所有的半径长度都相等。

在同一个圆里,直径是半径的2倍,半径是直径的1/2
3.轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图
形。

折痕所在的这条直线直线叫做对称轴。

圆有无数条对称轴。

每条直径所在的直线都是圆的对称轴。

半圆也是轴对称图形,只有1条对称轴。

(二)圆的周长:
1、围成圆的曲线的长,叫做圆的周长。

2、不管圆有多大,圆的周长与它的直径的比值是一个固定的数,这个数叫做圆周率,用字母“π”
表示。

圆周率是一个无限不循环小数,在计算中通常取近似值为3.14
3、圆周长的计算:
已知圆的半径,求圆的周长 C =2πr r= C÷2π= C÷2÷π
已知圆的直径,求圆周长 C =πd d= C÷π
4、半圆的周长≠圆周长的一半
已知圆的半径,求圆的周长 C =πr +2 r
已知圆的直径,求圆周长 C =πd ÷2+d
(三)圆的面积
1、把一个圆分成若干等份(偶数份),拼成一个近似的长方形(等分的份数越多,拼成的图像越接近长方形。

)长方形的长等于圆周长的一半,长方形的宽等于圆的半径
找出拼出的图形与圆的周长和半径有什么关系?
圆的半径 = 长方形的宽
圆的周长的一半 = 长方形的长
长方形面积 = 长×宽
所以:圆的面积 = 圆的周长的一半×圆的半径
S = πr × r
S圆 = πr×r = πr2
拼成的长方形的周长比圆的周长多1条直径的长度。

2、圆面积计算:
已知圆的半径,求圆的面积 S圆 =πr2
已知圆的直径,求圆面积S圆 =1
4
πd 2
已知圆的周长,求圆的面积S圆 =
C2 4π
3、在面积相等的情况下,圆的周长最短,而长方形的周长最长;
反之,在周长相等的情况下,圆的面积则最大,而长方形的面积则最小。

周长相同时,圆面积最大,利用这一特点,篮子、盘子做成圆形。

4、半圆面积=圆面积÷2
5、圆面积和正方形面积的关系
上图中:圆的面积是正方形面积的π
2
上图中:圆面积是正方形面积的
π
4
S圆= S正×π
2
S圆= S正×
π
4
S正= S圆×
2
π
S正= S圆×
4
π
(四)圆环
1、特点:(1)两个同心圆组成,(2)圆环的环宽处处相等。

2、圆环的面积:
圆环面积=大圆面积-小圆面积
大圆的半径用“R”表示,小圆的半径用“r”表示。

则R=r+环宽
S环 =πR2-πr2 =π(R2-r2)
(五)组合图形
学过的平面图形的面积计算公式:
S长=ab S□=a2 S△=ah÷(a+b)h ÷2
1π=3.14 2π=6.28 3π=9.42 4π=12.56 5π=15.7
6π=18.84 7π=21.98 8π=25.12 9π=28.26 10π=31.4
112=121122=144132=169142=196152=225162=256 172=289 182=324 192=361 202=400 施工方案审批单。

相关文档
最新文档