仰角与俯角教案

合集下载

三角函数应用举例(1)仰角俯角

三角函数应用举例(1)仰角俯角

28.2.2解直角三角形的应用(仰角和俯角)教案
中,
D
设计意图:通过分析题意,引导学生构造直角三角形,把已知条件转化到两个直角三角形里,根据已知的边角条件,恰当地选择锐角三角函数关系,解决实际问题,让学生初步认识到解直角三角形在实际问题中的应用;同时通过
一方面让学生进一步认识到解直角三角形在实际问题中的应用,另一方面,让学生意识到通过设未知数,建立方程也是解决实际问题时常用到
处,看另一栋楼楼顶的俯角为30°,看这
BC有多高?
A
E
尽管实际问题的背景发生了变化,
C E。

九年级数学上册《俯角和仰角的问题》教案

九年级数学上册《俯角和仰角的问题》教案

俯角和仰角的问题【知识与技能】1.理解仰角、俯角的含义,准确运用这些概念来解决一些实际问题.2.培养学生将实际问题抽象成数学模型并进行解释与应用的能力.【过程与方法】通过本章的学习培养同学们的分析、研究问题和解决问题的能力.【情感态度】在探究学习过程中,注重培养学生的合作交流意识,体验从实践中来到实践中去的辩证唯物主义思想,激发学生学习数学的兴趣.【教学重点】理解仰角和俯角的概念.【教学难点】能解与直角三角形有关的实际问题.一、情境导入,初步认识如图,为了测量旗杆的高度BC,小明站在离旗杆10米的A处,用高1.50米的测角仪DA测得旗杆顶端C的仰角α=52°,然后他很快就算出旗杆BC的高度了.(精确到0.1米)你知道小明是怎样算出的吗?二、思考探究,获取新知想要解决刚才的问题,我们先来了解仰角、俯角的概念.【教学说明】学生观察、分析、归纳仰角、俯角的概念.现在我们可以来看一看小明是怎样算出来的.【分析】在Rt △CDE 中,已知一角和一边,利用解直角三角形的知识即可求出CE 的长,从而求出CB 的长.解:在Rt △CDE 中,∵CE=DE ·tan α=AB ·tan α=10×tan52°≈12.80, ∴BC=BE+CE=DA+CE ≈12.80+1.50=14.3(米).答:旗杆的高度约为14.3米.例 如图,两建筑物的水平距离为32.6m ,从点A 测得点D的俯角α为35°12′,测得点C 的俯角β为43°24′,求这两个建筑物的高.(精确到0.1m )解:过点D 作DE ⊥AB 于点E ,则∠ACB=β=43°24′,∠ADE=35°12′,DE=BC=32.6m.在Rt △ABC 中,∵tan ∠ACB=AB BC, ∴AB=BC ·tan ∠ACB=32.6×tan43°24′≈30.83(m ). 在Rt △ADE 中,∵tan ∠ADE=AE DE , ∴AE=DE ·tan ∠ADE=32.6×tan35°12′≈23.00(m ).∴DC=BE=AB-AE=30.83-23.00≈7.8(m )答:两个建筑物的高分别约为30.8m ,7.8m.【教学说明】关键是构造直角三角形,分清楚角所在的直角三角形,然后将实际问题转化为几何问题解决.三、运用新知,深化理解1.如图,一只运载火箭从地面L 处发射,当卫星达到A 点时,从位于地面R 处的雷达站测得AR 的距离是6km ,仰角为43°,1s 后火箭到达B 点,此时测得BR 的距离是6.13km ,仰角为45.54°,这个火箭从A 到B 的平均速度是多少?(精确到0.01km/s )2.如图所示,当小华站在镜子EF 前A 处时,他看自己的脚在镜中的像的俯角为45°;如果小华向后退0.5米到B 处,这时他看到自己的脚在镜中的像的俯角为30°.求小华的眼睛到地面的距离.(结果精确到0.1米,参考数据:3≈1.73)【答案】1.0.28km/s 2.1.4米四、师生互动,课堂小结1.这节课你学到了什么?你有何体会?2.这节课你还存在什么问题?1.布置作业:从教材相应练习和“习题24.4”中选取.2.完成练习册中本课时练习.。

人教版初中仰角俯角教案

人教版初中仰角俯角教案

人教版初中仰角俯角教案教学目标:1. 理解解直角三角形在实际问题中的应用。

2. 掌握与测量有关的几个概念,如仰角、俯角等。

3. 学会利用解直角三角形解决实际问题。

教学重点:1. 掌握与测量有关的几个概念。

2. 解直角三角形解决简单实际问题。

教学难点:1. 解直角三角形解决实际问题。

教学准备:1. 教材。

2. 教学PPT。

教学过程:一、导入(5分钟)1. 引导学生回顾直角三角形的相关知识,如直角三角形的定义、性质等。

2. 提问:直角三角形在实际问题中有何应用?二、新课讲解(15分钟)1. 讲解与测量有关的几个概念,如仰角、俯角等。

讲解示例:在测量时,视线与水平线所成的角中,视线在水平线之上的角叫仰角;视线在水平线之下的角叫俯角。

2. 讲解如何利用解直角三角形解决实际问题。

讲解示例:如图,两点在河的两岸,要测量这两点之间的距离。

测量者在与河同侧的河岸边选定一点,测出AB=60米,则AC等于40米。

三、课堂练习(15分钟)1. 让学生独立完成教材中的练习题。

2. 讲解练习题,引导学生巩固所学知识。

四、拓展与应用(10分钟)1. 让学生思考:如何利用仰角、俯角解决实际问题?2. 让学生举例说明,并进行讲解。

五、课堂小结(5分钟)1. 让学生总结本节课所学内容。

2. 教师进行补充和总结。

六、作业布置(5分钟)1. 让学生完成教材中的课后作业。

2. 让学生结合生活实际,寻找有关仰角、俯角的问题,并进行解答。

教学反思:本节课通过讲解与测量有关的几个概念,如仰角、俯角等,让学生掌握了与测量有关的基本知识。

同时,通过讲解如何利用解直角三角形解决实际问题,让学生学会了将实际问题转化为数学问题,并运用所学知识进行解答。

在课堂练习环节,学生独立完成练习题,巩固了所学知识。

在拓展与应用环节,学生通过举例说明了如何利用仰角、俯角解决实际问题,提高了学生的应用能力。

总之,本节课达到了预期的教学目标,学生掌握了与测量有关的几个概念,学会了利用解直角三角形解决实际问题。

九年级数学上册《仰角俯角问题》教案、教学设计

九年级数学上册《仰角俯角问题》教案、教学设计
1.分组讨论:将学生分成若干小组,针对教师提出的讨论题目进行讨论,共同探讨解决问题的方法。
2.交流分享:各小组代表汇报讨论成果,其他同学认真倾听,互相学习,共同提高。
3.教师指导:在学生讨论过程中,教师巡回指导,及时解答学生的疑问,引导学生深入探讨问题。
(四)课堂练习
在课堂练习环节,我将设计以下练习:
-设想一:通过观看建筑物、桥梁等图片,引导学生观察并描述其中的仰角、俯角,激发学生的学习兴趣;
-设想二:组织学生走出教室,实地观察校园中的仰角、俯角,增强学生的实际体验。
2.利用多媒体、教具等教学资源,帮助学生形象地理解仰角、俯角与直线、平面图形之间的关系,突破难点。
-设想一:运用Flash动画演示仰角、俯角的形成过程,使学生直观地理解两种角的定义;
1.学生对角度的认识已较为成熟,但在区分仰角与俯角时可能存在一定的困惑,需要教师引导和巩固;
2.学生的空间想象力较强,但对于将实际问题转化为数学模型的能力尚需提高,需要教师在教学过程中予以关注和指导;
3.学生在解直角三角形的实际应用中,可能会遇到计算上的困难,需要教师耐心讲解和辅导;
4.部分学生对数学学习兴趣浓厚,具有较强的自主学习能力,但也有部分学生对数学存在恐惧心理,需要教师激发兴趣和自信心;
-设想二:借助三角板、量角器等工具,让学生动手操作,加深对角度的认识。
3.设计丰富的课堂练习,巩固所学知识,提高学生解决问题的能力。
-设想一:编制与仰角、俯角相关的习题,让学生独立完成,培养其解决问题的能力;
-设想二:设置小组讨论环节,让学生在合作交流中互相学习,共同进步。
4.个性化教学,关注学生个体差异,使每个学生都能在原有基础上得到提高。
-设想一:针对不同学生的学习情况,制定个性化的学习计划,提高教学效果;

仰角与俯角-北京版九年级数学上册教案

仰角与俯角-北京版九年级数学上册教案

仰角与俯角-北京版九年级数学上册教案一、教学目标1.理解仰角和俯角的概念;2.掌握仰角和俯角的计算方法;3.熟练掌握仰角和俯角在问题中的应用。

二、教学重难点1.仰角和俯角的概念理解;2.仰角和俯角的计算方法;3.问题解决中的应用。

三、教学内容1.仰角和俯角的概念1.仰角:指从水平面向上看的角度,介于0度和90度之间。

2.俯角:指从水平面向下看的角度,介于0度和90度之间。

2.仰角和俯角的计算方法1.仰角的计算方法:tanθ=h/d,其中h表示所在位置到眼睛的高度,d表示所在位置到眼睛的水平距离。

2.俯角的计算方法:tanθ=h/d,其中h表示所在位置到眼睛的高度,d表示眼睛到所在位置的水平距离。

3.仰角和俯角在问题中的应用1.如何在地图上计算山顶的高度?2.如何在地图上计算建筑物的高度?3.如何计算人的视线高度?四、教学方法1.教师授课;2.学生自主学习和合作学习;3.组织小组讨论和分享。

五、教学步骤1.引入仰角和俯角的概念;2.讲解仰角和俯角的计算方法;3.演示仰角和俯角在问题中的应用,组织学生分组讨论和分享;4.组织学生进行练习和方法探究;5.总结巩固本节课的知识点。

六、教学评估1.配置测试题:给出图像及相关数据,要求学生计算对应的仰角和俯角;2.引导学生完成解决实际问题的探究作业;3.鼓励学生自主扩展阅读。

七、教学反思通过此次教学,帮助学生掌握仰角和俯角的概念,以及计算方法。

同时,引导学生在实际问题中发现角度计算的应用。

未来的教学中,可以通过更多的案例和实例来加强学生的应用能力,同时加强学生自主探究和合作学习的能力。

仰角俯角教学设计

仰角俯角教学设计

课题:解直角三角形应用(仰角俯角) 【【学习目标】⒈ 理解仰角俯角的含义,会运用仰角俯角解决实际问题. 【学习重点】仰角俯角的定义及应用.一、仰角与俯角的定义:在进行测量时,从低处向高处看,视线与水平线的夹角叫做仰角;在进行测量时,从高处向低处看,视线与水平线的夹角叫做俯角角.二、仰角与俯角应用:例1、如图,为了测量电线杆的高度AB ,在离电线杆22.7米的C 处,用高1.20米的测角仪CD 测得电线杆顶端B 的仰角a =22°,求电线杆AB 的高.(精确到0.1米)例2、在山脚C 处测得山顶A 的仰角为45°.问题如下:沿着水平地面向前300米到达D 点,在D 点测得山顶A 的仰角为600 , 求山高AB.变式: 沿着坡角为30 °的斜坡前进300米到达D 点,在D 点测得山顶A 的仰角为600 ,求山高AB.练习:1.如图,某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地平面控制点B 的俯角α=16°31′,求飞机A 到控制点B 的距离.(精确到1米)三、当堂练习:1.如图,AC 是操场上直立的一个旗杆,从旗杆上的B 点到地面C 涂着红色的油漆,用测角仪测得地面上的D 点到B 点的仰角是∠BDC=45°,到A 点的仰角是∠ADC=60°(测角仪的高度忽略不计)如果BC=3米,那么旗杆的高度AC= 米.2.如图,热气球的探测器显示,从热气球A 看一栋高楼顶部B 的仰角为300,看这栋高楼底部C 的俯角为600,热气球A 与高楼的水平距离为120m ,这栋高楼BC 的高度为( )A. 40 3mB. 803mC. 1203mD. 160 3B E A DC 22°2.如图,在小山的东侧A点有一个热气球,由于受西风的影响,以30米/分的速度沿与地面成75°角的方向飞行,25分钟后到达C处,此时热气球上的人测得小山西侧B点的俯角为30°,则小山东西两侧A、B两点间的距离为米.3. 如图,两建筑物的水平距离BC为18m,从A点测得D点的俯角α为30°,测得C点的俯角β为60°.则建筑物CD的高度为m(结果不作近似计算).4.如图,小明为了测量小山顶的塔高,他在A处测得塔尖D的仰角为45°,再沿AC方向前进73.2米到达山脚B处,测得塔尖D的仰角为60°,塔底E的仰角为30°,求塔高.(精确到0.1米,≈1.732)5.国家海洋局将中国钓鱼岛最高峰命名为“高华峰”,并对钓鱼岛进行常态化立体巡航.如图1,在一次巡航过程中,巡航飞机飞行高度为2001米,在点A测得高华峰顶F点的俯角为30°,保持方向不变前进1200米到达B点后测得F点俯角为45°,如图2.请据此计算钓鱼岛的最高海拔高度多少米.(结果保留整数,参考数值:=1.732,=1.414)、。

人教版数学九年级下册《例3和例4 测量——的仰角、俯角》教案

人教版数学九年级下册《例3和例4 测量——的仰角、俯角》教案

人教版数学九年级下册《例3和例4 测量——的仰角、俯角》教案一. 教材分析人教版数学九年级下册中的《测量——的仰角、俯角》一节,主要让学生掌握仰角和俯角的定义,学会用测量工具进行实际测量,并能够运用所学的知识解决实际问题。

本节内容是学生对角的测量知识的进一步拓展和应用,对于提高学生的实践能力和解决实际问题的能力具有重要意义。

二. 学情分析九年级的学生已经掌握了角的测量知识,对测量工具的使用也有一定的了解。

但是,对于仰角和俯角的概念,以及如何进行实际测量,可能还存在一定的困惑。

因此,在教学过程中,需要引导学生通过实际操作,理解和掌握仰角和俯角的定义,提高他们的实践能力。

三. 教学目标1.知识与技能:让学生掌握仰角和俯角的定义,学会用测量工具进行实际测量。

2.过程与方法:通过实际操作,培养学生的动手能力,提高他们的实践能力。

3.情感态度价值观:激发学生对数学的兴趣,培养他们运用数学知识解决实际问题的能力。

四. 教学重难点1.重点:仰角和俯角的定义,以及用测量工具进行实际测量的方法。

2.难点:如何引导学生理解仰角和俯角的概念,以及如何进行实际测量。

五. 教学方法采用问题驱动的教学方法,引导学生通过实际操作,自主学习,合作交流,从而掌握仰角和俯角的定义,学会用测量工具进行实际测量。

六. 教学准备1.教具:测量工具(如测量仪、尺子等),多媒体教学设备。

2.学具:测量工具(如测量仪、尺子等),笔记本。

七. 教学过程1.导入(5分钟)利用多媒体展示一些实际场景,如建筑工人测量高楼的仰角,登山运动员测量山峰的俯角等,引导学生思考这些场景中涉及到的数学知识。

2.呈现(10分钟)介绍仰角和俯角的定义,以及测量工具的使用方法。

通过示例,讲解如何进行仰角和俯角的测量,让学生初步了解和认识这两个概念。

3.操练(10分钟)学生分组进行实际操作,运用测量工具进行仰角和俯角的测量。

教师巡回指导,解答学生的疑问,帮助学生掌握测量方法。

九年级数学上册《仰角与俯角》教案、教学设计

九年级数学上册《仰角与俯角》教案、教学设计
5.掌握仰角与俯角在生活中的应用,提高解决实际问题的能力。
(二)过程与方法
1.利用情境导入法,通过生活中的实例引出仰角与俯角的概念,激发学生的学习兴趣;
2.采用直观演示法,通过实物模型、图片等展示仰角与俯角,帮助学生形成直观的认识;
3.运用任务驱动法,设计丰富的教学活动,让学生在探究、实践过程中掌握仰角与俯角的性质和应用;
(3)运用量角器、三角板等工具,测量并记录身边的仰角与俯角,分析它们的特点。
2.选做题:
(1)探究题目:在三角形中,如何求解未知仰角与俯角?请给出解题步骤并举例说明;
(2)拓展题目:结合其他学科知识,探讨仰角与俯角在物理学、工程学等领域的应用。
作业要求:
1.认真完成必做题,选做题可根据自己的兴趣和实际情况进行选择;
2.作业过程中,注意书写规范,保持卷面整洁;
3.遇到问题,及时与同学、老师沟通交流,提高解决问题的能力;
4.作业完成后,认真检查,确保无误。
作业批改与反馈:
1.教师将及时批改作业,给予评价和指导;
2.针对作业中出现的共性问题,教师在课堂上进行讲解和解答;
3.鼓励学生互相批改作业,取长补短,共同提高;
5.采用分层教学策略,针对不同学生的学习需求,设计难易程度不同的练习题,使每个学生都能在原有基础上得到提高。同时,注重课后辅导,及时解答学生的疑问。
6.强化课堂小结,通过师生互动、生生互动,总结本节课所学知识,形成知识体系。
7.注重评价与反馈,采用多元化评价方式,关注学生在知识掌握、能力提升、情感态度等方面的全面发展。
c.教师点评,强调重点、难点,纠正错误;
d.布置课后作业,巩固所学知识。
五、作业布置
为了巩固本节课所学知识,提高学生对仰角与俯角的理解和应用能力,特布置以下作业:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教学设计- 1 - 25.3 解直角三角形——仰角与俯角苏州市彩香中学数学团队教学目标:一、知识与技能.1、进一步掌握解直角三角形的方法;2、比较熟练的应用解直角三角形的知识解决与仰角、俯角有关的实际问题;3、培养学生把实际问题转化为数学问题的能力。

二、过程与方法.1、在课堂中渗透数形结合的数学思想,让学生感受到生活中处处有数学;
2、加强解直角三角形的两种基本图形的训练;
3、让学生相互探讨,能够应用解直角三角形的知识解决与仰角、俯角有关的实际问题。

三、情感、态度与价值观.1、积极参与数学活动,对数学产生好奇心.培养学生独立思考问题的习惯;2、在数学活动中获得成功的体验,锻炼克服困难的意志,建立自信心;3、渗透数学来源于实践又反过来作用于实践的观点,培养学生生活中应用数学的意识。

教学重点:一、能够灵活应用边与边、角与角、边与角的关系解直角三角形二、要求学生善于将某些与仰角、俯角有关的实际问题中的数量关系,归结为直角三角形元素之间的关系,从而利用所学知识把实际问题解决。

解决措施:在课堂中渗透数形结合的数学思想,培养学生的学习兴趣,加强解直角三角形的两种基本图形的训练。

教学难点:一、把实际问题转化为数学问题的能力的培养,二、灵活应用解直角三角形的知识、仰角、俯角等知识解决综合的实际问题解决措施:通过例题讲解与配套练习加以巩固。

教学设计思路:为充分发挥教师的主导作用和学生的主体作用,让学生在整个教学活动中始终处于主动探索的积极状态,根据本课特点我将课堂结构设计如下:1、概念的介绍;2、简单例题的导入(把解题格式呈现给学生);3、从同一个点观测不同物体(讲练同步);
4、从不同点观测同一物体(讲练同步);
5、从不同点观测不同物体及实际问题的应用。

(让学生自己探究)理论依据:知识的建构主义理论教学设计- 2 - 教学过程:(一)回忆知识1.解直角三角形指什么2.解直角三角形主要依据什么?
(1)勾股定理:a 2 +b 2 =c 2 (2)锐角之间的关系:∠A+∠B=90°(3)边角之间的关系斜边的对 A sin 边 A 斜边的 A cos 邻边 A 边边的邻 A 的对 A tan
A 对边邻边的A 的A cot A (二)新授概念1.仰角、俯角当我们进行测量时,在视线与水平线所成的角中,视线在水平线上方的角叫做仰角,在水平线下方的角叫做俯角。

(教学时,可以让学生仰视灯或俯视桌面以体会仰角与俯角的意义.) 2.导入:试一试1:如图,某飞机于空中A处探测到目标C,此时飞行高度AC=1200 米,从飞机上看地平面控制点B的俯角α=30°,求飞机A到控制点B距离。

(让学生自己寻求辅助线的两种方法)A解:DA A
B B B
C 解:(略,让学生自己构造图形)试一试2 .如图,为了测量椰子树的高度AB,在离椰子树20 米的C处,用高1.25 米的测角仪CD测得椰子树顶端B的仰角α=30°求椰子树AB的高(保留根号)图19.4.4 A B C
D 教学设计- 3 - C B A D 例1:热气球的探测器显示,从热气球看一栋高楼顶部的仰角为30°,看这栋高楼底部的俯角为60°,热气球与高楼的水平距离为120m,这栋高楼有多高? 解:(略,让学生自己构造图形)练习一:建筑物BC上有一旗杆AB,由距BC 40m 的D处观察旗杆顶部A的仰角为50°,观察底部B的仰角为45°,求旗杆的高度。

(精确到0.1m) sin50°=0.766,cos50°=0.643,tan50°=1.192 练习二:如图,测得两楼之间的距离30 米,从楼顶点A 观测点D 的俯角为30°,观测点C 的俯角为45°,求这两幢楼的高度?(保留根号)让学生自己构图,探索发现两种辅助线的方法:B C 30米A D F 30°45°
E B C 30米A D
F 30°45°E A B C D E F 30°45°30米A B C D 30米A α=30°β=60°120米B C D 教学设计- 4 - E A C B D 30°60°例2 :如图, 在上海黄埔江东岸,矗立着亚洲第一的电视塔“东方明珠”,某校学生在黄埔江西岸B 处,测得塔尖D 的仰角为45°,后退340m到 A 点测得塔尖D 的仰角为30°,设塔底C 与A、B在同一直线上,试求该塔的高度。

(保留根号)练习三:在山顶上D处有一铁塔,在塔顶B处测得地面上一点A的俯角α=60°,在塔底D测得点A的俯角β=45°,已知塔高BD=30 米,求山高CD。

C A 解:(三)能力提高动动脑?如图,测量楼房AC的
楼顶上的电视天线AE 的高度,在地面上一点B测得楼顶A仰角为30°,前进15 米到D,测得天线顶端E 的仰角为60°已知楼高AC为15 米,求天线AE 的高度?(重在推理过程)(四)总结与扩展(请学生总结)本节课通过两个例题的讲解,要求同学们:1)了解仰角、俯角概念;2)会构造直角三角形,将实际问题转化为数学问题,从而得到解决实际问题;3)熟练运用两种基本图形解直角三角形。

(五)布置作业。

相关文档
最新文档