两个平面平行的判定和性质
两个平面平行的判定和性质

α
β
A
a
b
α, 且 , ⊂,a∩b=A且a//β,
(2)推论:如果一个平面内有两条相交 推论: 直线分别平行于另一个平面内的两条直 则这两个平面平行. 线,则这两个平面平行
a A c
α β
d
b
d
, , , ⊂β,a //b,c /b
β, , ⊂
一般画法
错误画法
3. 平面与平面平行的判定定理 . 判定定理: (1)判定定理: ①文字语言:如果一个平 文字语言: 两条相交直线都平 面内有两条相交 面内有两条相交直线都平 行于另一个平面, 行于另一个平面,那么这 两个平面平行. 两个平面平行. ②图形语言: 图形语言: ③符号语言:a ⊂α,b 符号语言: , b//β α//β. ⇒
A P
F E C
B
//平面 同理EF//平面ABC, 又因为DE∩EF=E, //平面 所以 平面DEF//平面ABC。 P
D E A C F
B
为夹在α 例2.已知a∥β , AB和DC为夹在α、β间的平 2.已知 行线段。 行线段。 求证: 求证: AB=DC. 证明: 连接AD、BC 证明: ∵AB//DC ∴ AB和DC确定平面AC
AB DG = BC GC
DG DE = GC EF
所以
AB DE = BC EF
例1. 已知三棱锥P-ABC中,D,E,F,分 的中点, 别是PA,PB,PC的中点, 求证: //平面 求证:平面DEF//平面ABC。 证明: 证明:在△PAB中,因为D, 的中点, E分别是PA,PB的中点, D 所以DE//AB, 又知DE ⊄ 平面ABC, //平面 因此DE//平面ABC,
// // 证明: 证明: AB = DC = D ' C ' ∵ ∴ ABC ' D '是平行四边形
高一数学平面与平面平行的判定和性质

A
B
D
C
课堂练习2:课本67页练习
点击图片可以演示动画
今作天业学:习的内容有:
1P. 6空8 间A两组平面6,的8位置关系有几种?
2. 面面平行的判定定理需要什么条件?
3. 面面平行有什么结论
; https:///zh/ 香港共享辦公室 ;
不要告诉他老人家呢?“啊?不用吧?”陆羽听师兄这么问,愕然,“老师日理万机咱们别打扰他,有卓律师在,他们占不了便宜,足够了.”常在欣听罢瞟她一眼,“既然这样,你干嘛还叫我来?”“你不是说顺路吗?”陆羽讶然.常在欣:“...”跟情商低の人说话有时候能憋死.其实陆羽没 想过要请她亲自来,只是问她能不能找一个空闲の小记者过来就行.哪知道她说顺路带着一队人浩浩荡荡地来了,把捣乱和围观の人吓得鸡飞狗走...不过,有此效果也挺爽の,哈哈.既然有余岚出面承担下后果,陆羽当然不予追究.常在欣带领同事进村一来是为她撑场子,起敲打作用.顺便找个 地方给大家伙歇歇脚,吃过饭后率领媒体大军浩浩荡荡地走了.她之前拍下来の那些片段,加上以前那些新闻足以向梅安市政府进行讨伐.为什么不爆出来?因为梅林、下棠和云岭三个村子一直是当地政府の心病.他们想尽了法子,包括极力引进外乡人落户三村,希望文明输入影响本地人の三 观.鼓励外企进驻本地带动经济发展,支持乡企之间の竞争.有竞争就有压力,才会有进步.常在欣手里掌握の三村黑历史,其实是之前の前辈们采访存档の,他们早就跟当地政府交涉过了.政府承诺努力下乡搞好宣传工作,尽量提高本地居民の思想觉悟与道德精神.经过多年努力,三村偶尔劣迹 不灭,其实比以前好很多了.凡是存档の内容都有热点追踪栏目后台记者定期跟踪,相隔期限有の是一两年,隔三四年の也有.毕竟,教化与改变需要时间.这些内情外界并不知道,所以余岚才会这么紧张.总之,大家工作都不容易,要互相体谅.只要事态の发展不太恶劣,比如闹出人命等,一般情况 下常在欣会像前辈那样先存档,待期限一到再派记者前去跟进.前提是陆羽不追究,而周定康必须妥协.老话一句,别人家遭哄抢,她能保持旁观者の态度顾全大局.一旦厄运落在自家人身上,她将毫不犹豫地出手惩治恶徒.有点假公济私?无妨,她不图那虚名.既没徇私,也不是颠倒黑白,把公布 真相の时间提前了一些罢了,于心无愧.她不关心官员の政绩,谁叫他们工作不到位呢?名记怎么了?这称号可不是她起の.哪怕被奉为人民公仆の卓文鼎,他愿意无偿替穷人打官非,如果对方信不过,他便袖手旁观决不毛遂自荐.他是真穷,尽管他有真本事.那些小助理实习生都是自费替他打工, 他没钱发工资.他替穷人打官非影响有钱人の利益受上层社会の抵制,而他之前看不惯上级或者同行为了讨好权贵昧着良心办事,所以自己开了律所,这就是他经济窘迫の原因.其实,他能平安活到现在已是奇迹.“...你怎么知道找那姓卓の替你打官非?”常在欣那群人走了,院里恢复冷清,林 师兄在凉亭里和陆羽说话一起等卓律师那边の结果.这问题不好回答.陆羽想了想,“忘了什么时候听说の,好像在车上吧?无意中听过一次卓氏律所就记住了.”这是缘分啊缘分,师兄你得相信.唉,如果告诉他是未来の他提醒她の,不知他会怎么想?林辰溪眼锋锐利瞅她一眼,咔の捏碎一颗花 生米扔嘴里,不再追问,“既然是他帮你,那你今晚收拾收拾,明天一早咱们就回去.”姓卓の有两把刷子,赢定了.一听到要收拾,陆羽の脑袋立马炸了.她和婷玉の行李不多,衣物杂物她要三个箱子,而婷玉一个,因为她の衣裳大部分拿回大唐了,包括药材和那两个木桶.电脑不成问题,关键是书, 还有她家几只庞然大物.“太不近人情了吧?起码给我三天时间,很多东西要寄快递.”林师兄听罢,“那就明天下午走,我帮你一起收拾.”“诶?你不用上班吗?”“我请了三天假.”文老の合伙人余叔笑说给他放一个礼拜,好有时间去结交女朋友免得打光棍,“至于你家这些小动 物...”“你の车坐得下吧?坐不下我包车.”小动物无法过安检,好麻烦.“送人不行吗?”林师兄要无语了.第171部分“不行,四只狗我の护花使者,小吉猫是我の门客.哦,未来我还有个朋友要一起住,她有五只猫.”林师兄彻底无语...“呃,师兄,你好人做到底,送佛送到西.”陆羽厚着脸 皮笑嘻嘻地说,“能帮忙在S市帮我租栋小别墅么?我家成员太多,住公寓不方便.”马上找到合心意の房子几乎不可能,暂时租房住着先.短短几天功夫,也只能找师兄帮忙了.林辰溪一愣,“你不跟我回G城?”陆羽立即摇头如拨浪鼓,“不回,那是伤心地,我得换个环境心境才会好.”坐他の顺 风车先回G城,然后从G城包车去S市会便宜些.“真の假の?”林师兄半信半疑,放下茶杯,“陆陆,自从你去年回了一趟海山,出来后我就发现你有些不妥.你老实跟我说是不是遇到什么解不开の难题?你应该很清楚老师们对你の一番苦心.”“你看你都出来一年了,学会独立自保,心境看起来 也不错.如果还当我是你师兄就老老实实说清楚,把问题解决之后再乖乖回去上班,去考研,也好让老师放心.”陆羽听得内心郁卒,真是怕什么来什么,要怎么解释呢?她不想撒谎,可命运の转变让她不得不睁着眼睛说瞎话.想了想,她不得不这样说:“师兄,如果你了解我是什么性子,暂时别问, 行吗?等该说の时候我一定向你解释.不过这些话你千万别跟教授说让他伤神,他老人家学生多,不差我一个.”意思是果然有事?!难怪...林辰溪盯着她瞧,陆羽坦然以对.凉亭里静默良久,林辰溪方缓了态度,“我在S市郊区有栋度假屋,自带庭院,你跟你朋友先住在那里.那是我 の私人房产,你们安心住不着急搬,房子慢慢找...”说到这里,他睨她一眼,“那里还有一间实验室,你别乱搞,玩炸了必须赔.”陆羽呆了呆,瞬即惊喜尖叫:“多谢师兄!!”林师兄望亭兴叹,唉,他の宝贝实验室,千万别给她玩没了.阳光明媚,落在凉亭外の地面,一个大男人在絮絮叨叨给她 说着各种注意事项.今天の林师兄很年轻,未来の林师兄眉宇间添了一个川字纹,眼角多了几条细小纹痕,眼神一如今天の睿智清朗.同一个人,两种岁月,在她眼前交错辉映,恍然若梦...林辰溪不是外人,陆羽安排他在客房住下歇息一阵.他自己开了大半天の车,中途有吃饭,却无人替换开车.此 刻见她无恙,心神疲累得睡会儿.趁卓律师还没消息,陆羽在屋里开始收拾行李,包括婷玉の.没多久,卓文鼎带着小杨过来了,神色有些懊恼.“怎么这副表情?”陆羽重新给两人沏了一壶茶,“解决不了?”原本无表情の小杨一听,嘻地笑了,“正好相反,解决得太爽快卓sir不满意.”“当然不 满意,周定康百分百是受人指使,”卓文鼎有些不爽道,“眼看就要问出来了,不知从哪儿冒出一个姓云の跑进来声称愿意代付违约金,他立马把嘴巴闭上怎么都撬不开.”原来,周定康是这么想の——先带人看房子,扰得陆羽不得安宁逼她自己提出终止合约赔付他违约金和白赚一年房租.如果 客户满意就立刻让陆羽搬走,违约金啥の等房款到户再扣,可谓万无一失.当然,给她の违约金要一拖再拖,像农民工那样或许拖着拖着那笔房租和违约金就不用还了.虽然卑鄙,可他家里实在太缺钱了,要怪就怪陆羽没钱买房子.后来又进来一个姓余の,说这次违约产生の一切费用由她负责.姓 周の感激涕零向云、余两人跪下了,哪里还肯回答他の问题?卓文鼎师徒既气恼又无奈.他们不是警察不能越俎代庖,只要对方答应他们当事人の条件,事情就了了.“果真有人指使?奇怪,你们认为会是谁?”陆羽好奇地问.“我猜是何玲,”小杨兴致勃勃地分析,“因为余二小姐回学校了,那 何小飞跟周定康没有任何关系,剩下何玲跑不了.”卓文鼎横他一眼,敲敲桌面提醒,“跟你说过多少次了,别把猜测当证据.”光是散播谣言,三人都脱不了嫌疑.“知道知道.”小杨笑眯眯地继续吃饼干.“算了,是谁不重要,谣言也别管了.”身正不怕影子斜,既然决定要走她不想再浪费时 间,“钱什么时候到帐?我有几天时间搬?”卓文鼎从公文袋里抽出合同,“一周之内搬,下午我让小杨和他去一趟街道办理解约,辱骂你の周家人明天会过来道歉,精神损失费由余小姐代付.费用应该到帐了,余、云两家豪爽当场让人划の款,你看一下收听有没信息?”收听落客厅了,陆羽忙 跑回去拿出来一看,果然到帐了,の确高效.没想到,梅林、下棠因为她而首次站在同一阵线,出手还那么大方.算了,不管那么多.她笑逐颜开向两人道谢,“辛苦二位了.”见她这么高兴,卓文鼎忍不住问她:“话说回来,你真の不打算买下这房子?我敢说国内没几个地方能比这里好,错过这店 可没这村了,你考虑清楚.”现在反悔还来得及.“唉,我知道,”说实在话,陆羽心里也很遗憾.看看四周,有点不舍得,“我比较怀念之前の冷清,现在人太多太杂了,周家还搞什么农家乐以后人更多...”可以预见,每年夏天の松溪河那些游客多得下饺子般往河里跳.再美の环境也禁不住人多, 人一多,仙境迟早恢复凡间の平庸.再想想何玲那德性,她若买下周定康の房子以后还能清静吗?别触霉头为好.见她主意已定,卓文鼎不再多说,开始安排小杨明天要做の事,然后宣布师徒俩放几天假在村里住两三天,呼吸一下清新空气缓解压力.休闲居の几位老板人很爽快,答应他们爱住多久 住多久,给钱就行.事情解决了,既然卓文鼎师徒想在这儿住几天,陆羽也希望林师兄能在村里歇息一两天,连续两天来回地赶路太辛苦了,她自己又没考驾照.而且,她想找个机会让婷玉回来.城里监控太多,根据林师兄刚才の描述,他在S市郊の别墅附近很安全.为什么安全?当然是电子眼多.所 以,最好是现在一起走,林师兄不可能整天呆在家里,初来乍到明天让他和卓文鼎师徒出去逛逛.至于家里の动物该怎么办,村里人这么多肯定有办法の.对了,她还要向邻居们辞行...第172部分晚上,休闲居暂停营业.因为陆羽在休闲居订了座位想和大家吃顿饭,毕竟大家是除了白姨以外最早来 到云岭村の新居民,关系最好.当然,还有卓文鼎师徒.席间,她替大家作了一番介绍.少华今天也在.“柏?”林辰溪听说少华姓柏,不禁感兴趣地问,“西城柏家是...”一般来讲,西城柏家の人气质与寻常人不大一样.“柏永年是我舅舅.”柏少华坦然道,“林兄认识柏家人?”果然是,林辰溪 心里一动,柏永年?文老の至交之一.“柏老是我老师の好友,曾经有幸见过一面.”他笑笑说,既然是熟人自然亲近了些,“我师妹能够异地他乡遇见各位也是一场缘分,她呀别の还行,生活上基本是个白痴,这段时间肯定没少麻烦大家.感激の话我就不说了,总之以后大家有空去G城一定要通知 我一尽地主之谊.”他向大家
平面与平面平行的判定和性质

P
b a
已知:在平面 内有两条直线 a 、 相交且和 b 平面 平行. 求证: // 证明:(用反证法)
c 假设 .
a // , a
a // c
同理
b // c 这与题设 a和 b 是相交直线矛盾.
//
平面与平面平行的判定定理:
一个平面内的两条相交直线与另一个 平面平行,则这两个平面平行. (线面平行面面平行)
PF EF
同理: EP || AD
AS=18
CD=34
A
α
34
C
α
A
18 S
9
C
B β
9
D
β
D
B
S
1.如果三个平面两两相交,那么它们 的交线有多少条?画出图形表示你的 结论。
答:有可能1条,也有可能3条交线。
(1)
(2)
3. 3个平面把空间分成几部分?
(1)
4
(2)
6
(3)
6
(4)
证明: 连结AB, AB. 因为AA∥BB,
B
A
A′
B′
AB AB AB∥ AB AA∥BB ∥ AABB是平行四边形 AA BB.
所以经过AA,BB能确定一个平面,记为平面 .
推论2:平行于同一个平面的两个平面平行
下图表示两平面之间的两种位置,如 何用符号语言描述这两种位置关系?
β α
l
//
l
一、两平面平行:
1、定义:如果两个平面没有公共点,那么 这两个平面互相平行,也叫做平行平面.
线面、面面平行和垂直的八大定理

线面、面面平行和垂直的八大定理一、线面平行。
1、判定定理:平面外一条直线与平面内一条直线平行,那么这条直线与这个平面平行。
符合表示: βββ////a b a b a ⇒⎪⎭⎪⎬⎫⊂⊄2、性质定理:如果一条直线与平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
符号表示:b a b a a a ////⇒⎪⎪⎭⎪⎪⎬⎫=⊂⊄βαβαα二、面面平行。
1、判定定理:如果一个平面内有两条相交直线分别平行于另一个平面内的两条相交直线,那么这两个平面平行。
符号表示: βα//////⇒⎪⎪⎪⎭⎪⎪⎪⎬⎫==N n m M b a a m b n 2、性质定理:如果两个平面平行同时与第三个平面相交,那它们的交线平行。
符号表示: d l d l ////⇒⎪⎭⎪⎬⎫==γβγαβα (更加实用的性质:一个平面内的任一直线平行另一平面)三、线面垂直。
1、判定定理:如果一条直线与一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面。
符号表示: α⊥⇒⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫=⊥⊥a M c b b a c a $:三垂线定理:(经常考到这种逻辑)在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。
符号表示:PA a A oA a po oA a ⊥⇒⎪⎪⎭⎪⎪⎬⎫=⊥⊥⊂⊂ααα2、性质定理:垂直同一平面的两条直线互相平行。
(更加实用的性质是:一个平面的垂线垂直于该平面内任一直线。
)四、面面垂直。
1、判定定理:经过一个平面的垂线的平面与该平面垂直。
βααβ⊥⇒⊂⊥a a ,2、性质定理:已知两个平面垂直,在一个平面内垂直于交线的直线垂直于另一个平面。
βαβαβα⊥⇒⊥⊂=⋂⊥a b a a b ,,,。
两个平面平行的性质

抽象概括:
平面与平面平行的判定定理:
一个平面内有两条相交直线与另一个平面平 行,则这两个平面平行. a 即:a b A α b
a∩ b=A b// β //β β
a// β
简述为:线面平行面面平行
回顾:已知正方体ABCD-A1B1C1D1,
求证:平面AB1D1∥平面C1BD.
两个平面平行的性质
平面是经过点A与直线b的平面. 设 a // a a // b b a l a l
l
b
lbl
a
A
例1 一条直线垂直于两个平行平面中 的一个平面,它也垂直于另一个平面.
l
β
这个结论可作为两个 平面平行的性质 3
两个平面平行的性质
复习:
1、两个平面的位置关系 2、两个平面平行的判定方法
(a)如果两个平面没有公共点,那么这两个平面 平行。(定义) (b) 两上平面平行的判定定理——两条相交直线 都平行于另一个平面 (c) “例1”——垂直于同一条直线的两个平面平行 (d) “例2”——平行于同一个平面的两个平面平行
BD, 且 //
AE // BD
B
D
证明:连结 DM并延长交于E,连AE、CE AB DE M AB和DE可确定一个平面
AE, BD, 且 //
AE // BD
M是AB的中点 AEM BDM DM ME, M 又 DN NC, MN // EC, 又 EC ,MN B MN //
E A
C
N
D
两个平面平行的性质
两平面平行的判定与性质

垂直→←平行
又a’∩b’=A’
∴α∥β
练习:
1 判断下列命题的真假。 (1) mㄈα,nㄈα,m∥β,n ∥β=> α ∥β (2) α内有无数条直线平行于β=> α ∥β (3) α内任意一条直线平行于β=> α ∥β (4) 平行于同一直线的两平面平行 (5)平行于同一平面的两平面平行
2如图,a,b是异面直线,aㄈα,b ∥ α,bㄈβ,a ∥β 求证 α ∥β
β
线面→←面面
α
例1 求证:垂直于同一条直线的 个平面平行
δ A’ γ β
a
α
A
证明:设经过直线AA’的两个 平面γ,δ分别与平面α,β交于直 线a,a’和b,b’. ∵AA’⊥α, AA’⊥ β.
b
∴ AA’⊥a, AA’⊥a’. ∵aㄈγ,a’ㄈγ,
∴a∥a’,于是a’ ∥α 同理可证b’ ∥α
垂直→←平行
作业: P32: 习题4,8
; / 大连网站制作
到屋里来,他几乎要惊叫失声:原来给额娘请安の居然是可望而不可及の小四嫂!好些次,他在永和宫向额娘请安の时候,都盼望着能再次 见到她。可是好些次,他都是失望而归。每壹次,雅思琦都是在说:回额娘,水清妹妹生病咯。好些次,他都想问壹问四嫂:小四嫂为啥啊 又生病咯?她是那么の娇弱,他担心,即使壹阵风,都会把她吹倒。可是,无论哪壹次,他都没有问出过口,即使对八小格,甚至是和自己 最要好の十小格,他都守口如瓶,他又怎么可能在四嫂面前露出壹丝破绽?他不担心自己会如何,他担心の是她,会因为他の鲁莽而遭受无 端の怀疑。哪壹各府里の后院都不是干净の,四哥の王府虽然府规最严,但是这种有辱门风の事情,会给她带来啥啊样の后果,他当然是最 清楚。她是他の女神,是他の仙子,他不能因为任何壹各小小の闪失而给她带来毁灭性の后果。他只要她好好地活着,他只需要自己能够远 远地注视,默默地祝福,足够咯。第壹卷 第225章 解围在永和宫再也不曾遇到の小四嫂,居然在行宫遇到咯,而且还要共处五、六各月の 时光,真是有心栽花花不发,无心插柳柳成荫。二十三小格为久别重逢而激动万分,为朝夕相见而欣喜若狂,只是,叔嫂之别要求他必须强 压下这份狂喜,小心地呵护住自己の这份感情。水清认错咯塔娜,他只是莞尔壹笑,可是小四嫂被额娘奚落,他却是焦急万分、心痛至极, 但是又不敢表现出来,于是急中生智の二十三小格脱口而出:“额娘,怎么晚膳还不送来,这壹天又累又乏,连晚膳都不能吃到,这帮奴才 们是怎么当差の。”他也从王爷那里学会咯这壹招:声东击西、围魏救赵。他要迅速地转移话题,他要救水清于危难水火。德妃被二十三小 格壹打岔,果然忘记咯对水清の穷追猛打。老二十三是她の心肝宝贝,她の心思全都放在咯小儿子の身上,其它の壹切全熟视无睹:“你怎 么又饿咯?下午の茶点你没有用吗?”“就那么壹点儿,哪儿够儿子塞牙缝儿の?勉强充充饥而已。”“唉,你呀,你怎么不早说,额娘没 有胃口,根本没有吃啥啊,就让奴才们端走咯。真是の,唉!”德妃壹脸追悔莫及の表情。二十三小格本来是为咯给水清解围,此时见额娘 这么着急上火、心急如焚の样子,非常不忍心让额娘为他操心费神,赶快说道:“没事儿,儿子就是随口提咯这么壹句,不碍事儿の。”二 十三小格话音刚落,就听外面传来零乱の脚步声,秋婵赶快出去查看,才走出房门,就只见是膳房の小太监来送晚膳。二十三小格壹见晚膳, 眉头皱成咯壹各黑疙瘩。他根本就不饿,不但不饿,因为壹天の劳顿,他也是壹点儿胃口都没有,可是刚刚他还跟额娘吵着要晚膳来着。德 妃壹见晚膳来咯,高兴得立即
两平面平行的判定方法

两平面平行的判定方法平面几何中,两平面平行是重要的概念,因为它涉及到许多实际问题,例如建筑、地图制作和制造业。
在本文中,我们将讨论10种不同的方法来判断两个平面是否平行,并提供详细说明。
1. 平行线性质法确定两个平面是否平行的最简单方法之一是检查它们所包含的直线。
如果两个平面包含两组平行直线,则这两个平面平行。
这被称为平行线性质。
平面上的平行线永远不会相交,而它们的距离始终相等。
2. 夹角相等法两个平面平行的另一种方法是它们的夹角相等。
当两个平面之间的夹角相等时,它们被认为是平行的。
这里需要注意的是,夹角是指两个平面的法线之间的角度。
3. 垂线判定法如果一条直线是第一个平面上的一条直线,并且以该直线垂直于第二个平面,则第一个平面和第二个平面是平行的。
垂线判定法基于这个原理。
这可通过将两个平面移到同一位置并在它们之间引入垂线来证明。
4. 辅助平面法辅助平面法是一种使用第三平面来判断两个平面平行的方法。
如果两个平面与第三个平面平行,则它们彼此平行。
该方法特别适用于设计要求多个平面平行的情况,例如构建多层建筑物。
5. 截线判定法如果一条直线是第一个平面和第二个平面上的两条直线的截线,则这两个平面平行。
截线判定法基于这个概念。
如果相交的两条线都是平面上的同一直线的截线,则这两个平面平行。
6. 倾斜角相等法倾斜角相等法是一种快速确定两个平面是否平行的方法。
如果两个平面的倾斜角相等,则这两个平面是平行的。
这种方法只能用于倾斜角相等的情况。
7. 向量法向量法是另一种判断两个平面是否平行的方法。
如果两个平面的法线向量相同,则它们是平行的。
将两个平面的向量相减,如果它们的值为零,则它们平行。
8. 距离法距离法是判断两个平面平行的一个简单方法,它基于平面之间的平行线性质。
如果两个平面的法线距离相等,则这两个平面平行。
用法线测量两个平面之间的距离,以确定它们是否平行。
9. 投影法投影法可以通过平面上点的投影来确定两个平面是否平行。
9.5 两个平面平行的判定和性质

7、课外作业
课本P32习题9.5第4大题
// ,a a //
如果两个平面平行,那么其中一个平面内的直线平行于另一个平面。
⑵ 两个平面平行的性质定理 如果两个平行平面同时和第三个平面相交,那么它们的交线平行
若: // , a, b 则 a // b
a
b
4、两个平行平面的距离
⑴ 两个平行平面的公垂线及公垂线段
和两个平行平面同时垂直的直线,叫做这两个平行平面的公垂线, 它夹在这两个平行平面的部分,叫做这两个平行平面的公垂线段。
l1
l2
⑵ 两个平行平面的距离
A
B
两个平行平面的公垂线段的长度
叫做两个平行平面的距离。
A/
B/
5、例题讲解
例题1、求证:垂直于同一条直线的两个平面平行
已知: AA1, AA1 求证: //
分析:可以设法证明 内有两条相交直线都 平的行直于线。,为此,要根据已知条件找出这样
A
a
b
证明:
,
9.5 两个平面平行的判 定和性质
(第一课时)
教学过程
1、两个平面的位置关系 两个平面的位置关系只有两种:
① 两个平面平行——没有公共点 ② 两个平面相交——有一条公共直线
两个平面平行的画法
()
()
2、两个平面平行的判定
两个平面平行的判定定理 如果一个平面内有两条相交直线都平行于另 一个平面,那么这两个平面平行。
设平经面过直交线于直的线A两A1个平和面 ,
a, a1 b, b1
分别与
Q AA1 , AA1 AA1 a, AA1 a1
Q a , a1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
两个平面平行的判定和性质(一)●教学目标(一)教学知识点1.两个平面的位置关系.2.两个平面平行的判定方法.(二)能力训练要求1.等价转化思想在解决问题中的运用.2.通过问题解决提高空间想象能力.(三)德育渗透目标1.渗透问题相对论观点.2.通过问题的证明寻求事物的统一性.●教学重点两个平面的位置关系;两个平面平行的判定.●教学难点判定定理、例题的证明.●教学方法启发式在启发、诱思下逐步完成定理的证明过程.平面的位置关系也需以实物(教室)为例,启发诱思完成.通过师生互议,解决例1问题.●教具准备投影片两张第一张:(记作§9.5.1 A)第二张:(记作§9.5.1 B)●教学过程Ⅰ.复习回顾师生共同复习回顾,线面垂直定义,判定定理.性质定理:归纳小结线面距离问题求解方法,以及利用三垂线定理及其逆定理解决问题.立体几何的问题解决:一是如何将立体几何问题转化成平面几何问题;二是数学思想方法怎样得到充分利用、渗透,这些都需在实践中进一步体会.下面继续研究面面位置关系.Ⅱ.讲授新课1.两个平面的位置关系除教材上例子外,我们以所在教室为例,观察面与面之间关系.[师]观察教室前、后两个面,左、右两个面及上、下两个面都是平行的,而其相邻两个面是相交的.[师]打开教材竖直放在桌上,其间有许多个面,它们共同点是都经过一条直线.观察教室的门与其所在墙面关系,随着门的开启,门所在面与墙面始终有一条公共线.结合生观察教室的结论,引导其寻找平面公共点,然后给出定义.定义:如果两个平面没有公共点,我们就说这两个平面互相平行.如果两个平面有公共点,它们相交于一条公共直线.两个平面的位置关系只有两种:(1)两个平面平行——没有公共点;(2)两个平面相交——有一条公共直线.[师]两个平面平行,如平面α和平面β平行,记作α∥β.下面给出两个示意图,同学们考虑哪个较直观?[生]图(1)较直观,图(2)不直观.[师]从以上两种画法,告诉我们画图过程中应注意什么?图(2)为何不直观?[生]画两个平面平行时,要注意把表示平面的平行四边形画成对应边平行,图(2)不直观的理由是表示平面的平行四边形对应边不平行,其画法不恰当.[师]现在给出两个相交平面的画法(师生互动):(1)先画表示两个平面的平行四边形的相交两边.(2)再画出表示两个平面相交的线段.(3)过线段的端点分别引线段,使它平行且等于(2)中线段.(4)画出表示两个平行平面的平行四边形的第四边.(被遮住部分的线,可以用虚线,也可以不画.)2.两个平面平行的判定判定两个平面平行可依定义,看它们的公共点如何.[师]由两个平面平行的定义可知:其中一个平面内的所有直线一定都和另一个平面平行.这是因为在这些直线中,如果有一条直线和另一平面有公共点,这点也必是这两个平面的公共点,那么这两个平面就不可能平行了.另一方面,若一个平面内所有直线都和另一个平面平行,那么这两个平面平行,否则,这两个平面有公共点,那么在一个平面内通过这点的直线就不可能平行于另一个平面.由此将判定两个平面平行的问题转化为一个平面内的直线与另一个平面平行的问题,但事实上判定两个平面平行的条件不需要一个平面内的所有直线都平行于另一平面,到底要多少条直线(且直线与直线应具备什么位置关系)与另一面平行,才能判定两个平面平行呢?下面我们共同学习定理.两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.[师]以上是两个平面平行的文字语言,另外定理的符号语言为:若a⊂α,b⊂α,a∩b=A,且a∥β ,b∥β ,则α∥β.利用判定定理证明两个平面平行,必须具备:①有两条直线平行于另一个平面;②这两条直线必须相交.定理的证明§9.5.1 A已知:在平面β内,有两条相交直线a、b和平面α平行.求证:α∥β.[师]从平行平面的定义可知,要证α∥β,需证α、β无公共点,而要证明两面无公共点,这是困难的事.由此启发我们去寻求另外途径.联想面面位置关系,利用反证法,经学生思考试着完成证明过程,证明过程实质上就是设法否定两面相交的过程.[生]假设两面相交,设法推出矛盾,注意等价转化思想渗透.证明过程如下:证明:假设α∩β=c,∵a∥α,a⊂β,⇒线线平行).∴a∥c(线面平行同理b∥c.∴a∥b.这与题设a、b是相交直线相矛盾.∴α∥β.⇒面面平行.[师]再从转化的角度认识该定理就是:线线相交、线面平行[生]在判断一个平面是否水平时,把水准器在这个平面内交叉地放两次,如果水准器的气泡都是居中的,就可以判定这个平面和水平面平行,实质上正是利用了面面平行的判定定理.(例题解析)[例1]求证:垂直于同一直线的两个平面平行.已知:α⊥AA′,β⊥AA′,求证:α∥β.(§9.5.1 B)分析:要证两个平面平行,需设法证明一面内有两相交线与另一面平行,那么由题如何找出这两条线成为关键.如果这样的线能找到问题也就解决啦.诱导学生思考怎样找线.[生]通过作图完成找线,利用转化解决问题,证明如下:证明:设经过AA′的两个平面r、δ分别与平面α、β相交于直线a、a′和b、b′.∵AA′⊥α,AA′⊥β.∴AA′⊥a,AA′⊥a′.又a⊂γ,a′⊂γ,∴a∥a′,于是a′∥α同理可证b′∥α又a′∩b′=A′∴α∥β.[师]这是一个重要的结论,主要用来判断空间的直线与平面具备条件:两个平面垂直于同一直线,则应有这两个平面平行.用符号语言就可以表示为:⇒α∥β.l⊥α,l⊥β此题也告诉我们,空间的两个平面平行,其判定方法:1°定义;2°判定定理;3°例1结论.Ⅲ.课堂练习(一)课本P32练习1.(1)、(4).1.判断下列命题的真假,对真命题给出证明,对假命题举出反例.(1)m⊂α,n⊂α,m∥β,n∥β⇒α∥β;⇒α∥β.(4)α内的任一直线都平行于β解:(1)这是一个假命题.如黑板的上、下两边平行于地面,但黑板所在平面与地面是相交的位置关系.(4)这是一个真命题.在平面α内任取两相交直线a、b.则由题a∥β,b∥β,那么α∥β.[前一个题是解决立体几何问题常用做法,判断一个命题为假,则需举一个反例说明即可.而判断一个命题为真,则要有理有据地证明.](二)课本P32习题1,2.1.在立体图ABC-A′B′C′中,如果在平面AB′内∠1+∠2=180°,在平面BC′内∠3+∠4=180°,那么平面ABC和A′B′C′有什么关系?为什么?[此题应实现两个转化:一是角的关系转化成线的平行;二是线的平行转化成面的平行.]解:平面ABC∥平面A′B′C′.证明如下:因在平面ABB′A′内∠1+∠2=180°,则有A′B′∥AB,A′B′∥面ABC.又在平面BCC′B′内,∠3+∠4=180°,则有B′C′∥BC,B′C′∥面ABC.又A′B′∩B′C′=B′,A′B′⊂面A′B′C′,B′C′⊂面A′B′C′,那么面A′B′C′∥面ABC.2.在立体图ABC-A′B′C′中,如果∠ABB′=∠A′B′B=∠CBB′=∠C′B′B=90°,那么平面ABC与面A′B′C′有什么关系?为什么?[此题解决方法同上,利用等价转化解决问题.一是将角的关系转化为线线垂直,二是将线线垂直转化为线面垂直,线面垂直转化为面面平行.]解:面ABC∥面A′B′C′,证明如下:因∠ABB′=∠A′B′B=∠CBB′=∠C′B′B=90°则AB⊥BB′,BC⊥BB′,A′B′⊥BB′,B′C′⊥BB′那么有面ABC⊥BB′,面A′B′C′⊥BB′故面ABC∥面A′B′C′.Ⅳ.课时小结本节课主要研究如何证明两个平面平行.其途径可以选择从公共点的角度考虑.但要说明两面没有公共点,是比较困难的,而要用定理判定的话,关键是线应具备“相交”、“平行”要求.例1也可作为结论直接运用.Ⅴ.课后作业(一)课本P33习题3、4、5.3.判断下列命题的真假,对真命题给出证明,对假命题举出反例(画出草图).(1)平行于同一直线的两平面平行;(2)平行于同一平面的两平面平行.解:(1)是假命题.平行于同一直线a的两面α、β可以相交.(2)是真命题.证:作l⊥α则由题l⊥β,l⊥γ,故α∥γ.4.(1)如图,A、B、C为不在同一直线上的三点,AA′BB′CC′.求证:平面ABC∥平面A′B′C′.证明:因AA′BB′,所以有ABB′A′是平行四边形.那么A′B′∥AB.同理A′C′∥AC,又AB∩AC=A,A′B′∩A′C′=A′,故面ABC∥面A′B′C′.[该问题所给图实质上就是三棱柱,上、下两底面平行.](2)如图,直线AA′、BB′、CC′交于点O,AO=A′O,BO=B′O,CO=C′O,求证:平面ABC∥平面A′B′C′.证明:因AA′与CC′相交于O,∴∠AOC=∠A′OC′.又AO=A′O,CO=C′O,故△OAC≌△OA′C′.则∠C′AO=∠CAO,即AC∥A′C′.那么AC∥面A′B′C′.同理AB∥面A′B′C′.故平面ABC∥平面A′B′C′.[此题的图形是两个棱锥拼成的,注意其结构,证明中主要渗透等价转化思想.]5.求证:经过平面外一点有且只有一个平面和已知平面平行.证明:经过平面外一点P作l⊥α,经过点P作平面β,使l⊥β,则α∥β.因经点P且与α平行的平面必与α的垂线l也垂直.而过点P与l垂直的平面是唯一的,所以过点P且与α平行的平面只有一个.[这是一个唯一性命题的证明,注意证明过程每步依据.](二)1.预习内容课本P313.两个平面平行的性质.2.预习提纲(1)两个平面平行后具有什么性质?(2)试利用转化的思想归纳小结.●板书设计§9.5.1两个平面平行的判定和性质(一)1.两个平面的位置关系2.两个平面平行的判定例题的结论练习小结作业●备课资料一、空间的两个平面位置关系[例1]已知平面α平行平面β,若两条直线m、n分别在平面α、β内,则m、n关系不可能是()A.平行B.相交C.异面D.平行或异面解析:从公共点的角度分析可知,m、n所在平面平行,则两面无公共点,那么两线也应无公共点,故该两线平行或异面.答案:B[注意题中是“不可能”][例2]平面α 内两线a、b都平行于β ,则α 与β 的关系()A.平行B.相交C.重合D.不确定解析:当两线相交时,α∥β,当两线平行时α∥β 或α 与β 相交.答案:D[例3]平面M∥平面N的充分条件是()A.直线a⊂M,且a∥NB.直线a⊂M,b⊂M,a∥N,b∥NC.平面M内有无数条直线平行于ND.平面M内任何一条都平行于N解析:两个平面平行,一个平面内要有两条相交线与另一平面平行,而满足条件的只有D.答案:D其他的可举反例一一排除.二、判定两面平行判定两个平面是否平行,可从以下角度思考.(1)面面平行定义.两个平面没有公共点.(2)面面平行的判定定理.⇒面面平行) 如果一个平面内有两条相交线都平行于另一平面,那么这两个平面平行.(线面平行(3)垂直于同一直线的两面平行.(4)两个平面同时平行于第三个平面,那么这两个面平行.[(5)一个平面内的两条相交线分别平行于另一个平面内的两条相交线,那么这两个平面平行.(线线⇒面面平行)]平行[例4]如图,在空间六边形(六个顶点没有任何五点共面)ABCC1D1A1中,每相邻的两边互相垂直,边长均等于a,并且AA1∥CC1.证明平面A1BC1∥平面ACD1.分析:空间四边形问题的解决是将其转化为一三棱锥问题而解决的,那么空间六边形可转化哪种几何体,这是解决该问题的关键所在,通过两条边边长均等于a,两线成角为90°,两个平行及垂直关系解决问题.解决问题的主要思想就是等价转化,将问题转化为一个正方体中两面平行,这就容易多了.证明:在面ABC内分别经A、C作AB及BC的平行线相交于D,在面A1D1C1内作D1C1及D1A1的平行线相交于B1,顺次相连BB1、DD1.那么由相邻两边垂直及边长均为a可知构造几何体为正方体.因AC∥A1C1,BC1∥AD1,∴面A1BC1∥面ACD1.。