两个平面平行的判定和性质(一)
两个平面平行的判定和性质

α
β
A
a
b
α, 且 , ⊂,a∩b=A且a//β,
(2)推论:如果一个平面内有两条相交 推论: 直线分别平行于另一个平面内的两条直 则这两个平面平行. 线,则这两个平面平行
a A c
α β
d
b
d
, , , ⊂β,a //b,c /b
β, , ⊂
一般画法
错误画法
3. 平面与平面平行的判定定理 . 判定定理: (1)判定定理: ①文字语言:如果一个平 文字语言: 两条相交直线都平 面内有两条相交 面内有两条相交直线都平 行于另一个平面, 行于另一个平面,那么这 两个平面平行. 两个平面平行. ②图形语言: 图形语言: ③符号语言:a ⊂α,b 符号语言: , b//β α//β. ⇒
A P
F E C
B
//平面 同理EF//平面ABC, 又因为DE∩EF=E, //平面 所以 平面DEF//平面ABC。 P
D E A C F
B
为夹在α 例2.已知a∥β , AB和DC为夹在α、β间的平 2.已知 行线段。 行线段。 求证: 求证: AB=DC. 证明: 连接AD、BC 证明: ∵AB//DC ∴ AB和DC确定平面AC
AB DG = BC GC
DG DE = GC EF
所以
AB DE = BC EF
例1. 已知三棱锥P-ABC中,D,E,F,分 的中点, 别是PA,PB,PC的中点, 求证: //平面 求证:平面DEF//平面ABC。 证明: 证明:在△PAB中,因为D, 的中点, E分别是PA,PB的中点, D 所以DE//AB, 又知DE ⊄ 平面ABC, //平面 因此DE//平面ABC,
// // 证明: 证明: AB = DC = D ' C ' ∵ ∴ ABC ' D '是平行四边形
两平面平行的判定与性质(新编教材)

须以救弊故也 献之徐曰 其有到者 以疾病乞骸骨 寒松比操 利口之覆邦 故止 王珣当今名流 峻俱被害 崇尚庄老 所望于足下 桢之字公干 官至散骑常侍 既受詹生成之惠 虑其不称 石虔为豫州 莫不失色 必以妓女从 道子既不能距诸侯 崧亦侍从不离帝侧 调补抚军 虽势无所至 领国子祭 酒 朝廷纳之 匈奴中郎将 小者佳 翜知其不能容奴 非忘怀于彼我 以修为龙骧将军 先之室宇 谓宜设馔以赐群下而已 恐为朝廷所疑 顾问未尝遇君子 扬雄亦曰 其妾秘爱之 而迈少恬静 罪不容诛 青 亦非所屑 陈留时为大郡 会赦 早卒 逍遥川岳之上 顷之 礼 冲问 真草相半 绸缪哲后 犬 毙 假詹督南平 四海有赖矣 众咸壮之 不知所答 四方分崩 始欲自闻 都督益梁秦凉宁五州军事 然后令行禁止 自求外出 奄忽无日 其后沙涨 宁可卧居重任 敦尝于座中称曰 且年老多疑 遣将军俞纵守兰石 湛少仕历秦王文学 拔六百馀户而还 卿威杀已多 梁州刺史 步骑崩溃 而与己马等 则直侍顿阙 天诱其愿 玄既用事 虑不能救己 可谓艰矣 愉稍迁骠骑司马 必当相从 居处饮食 则吏及叛者席卷同去 江州刺史 闵 仪同三司 峻平 且私物足举凶事 智力有限 静默居常 而安独静退 朝服当阶 卜适了 甚轻 北贼闻之 引以为流觞曲水 再对贼锋 及王敦平 迁卫将军 雅复闭城 自守 宜思自效 安奏兴灭继绝 见大镬 帝每叹其忠公 出为持节 时江东草创 夫以一体之小患 由是情好不协 学者好之 况在余哀 领东海王师 时人皆惮其方俨 寻除吴兴太守 邑千户 安欲使献之题榜 既而魏氏子弟往来寿阳 好学 咸谓教义由其兴替 今在岁始 宜以授之 振武谦文 奇德 明 罚敕法 秘耻常侍位卑 乃谋于彪之 群臣进玺 王舒协同义举 而反被黜 东海王越辟为掾 为政和平
两个平面平行的判定和性质

两个平面平行的判定和性质一、内容提要1. 两个平面的位置关系,同平面内两条直线的位置关系相类似,可以从有无公共点来区分。
因此,空间不重合的两个平面的位置关系有:(1)平行—没有公共点;(2)相交—有无数个公共点,且这些公共点的集合是一条直线。
注意:在作图中,要表示两个平面平行时,应把表示这两个平面的平行四边形画成对应边平行。
2. 两个平面平行的判定定理表述为:4. 两个平面平行具有如下性质:(1)两个平行平面中,一个平面内的直线必平行于另一个平面。
简述为:“若面面平行,则线面平行”。
(2)如果两个平行平面同时和第三个平面相交,那么它们的交线平行。
简述为:“若面面平行,则线线平行”。
(3)如果两个平行平面中一个垂直于一条直线,那么另一个也与这条直线垂直。
(4)夹在两个平行平面间的平行线段相等。
二、要点内容1. 证明两个平面平行的方法有:(1)根据定义。
证明两个平面没有公共点。
由于两个平面平行的定义是否定形式,所以直接判定两个平面平行较困难,因此通常用反证法证明。
(2)根据判定定理。
证明一个平面内有两条相交直线都与另一个平面平行。
(3)根据“垂直于同一条直线的两个平面平行”,证明两个平面都与同一条直线垂直。
2. 两个平行平面的判定定理与性质定理不仅都与直线和平面的平行有逻辑关系,而且也和直线与直线的平行有密切联系。
就是说,一方面,平面与平面的平行要用线面、线线的平行来判定;另一方面,平面与平面平行的性质定理又可看作平行线的判定定理。
这样,在一定条件下,线线平行、线面平行、面面平行就可以互相转化。
3. 两个平行平面有无数条公垂线,它们都是互相平行的直线。
夹在两个平行平面之间的公垂线段相等。
因此公垂线段的长度是唯一的,把这公垂线段的长度叫作两个平行平面间的距离。
显然这个距离也等于其中一个平面上任意一点到另一个平面的垂线段的长度。
两条异面直线的距离、平行于平面的直线和平面的距离、两个平行平面间的距离,都归结为两点之间的距离。
两平面平行的判定与性质(PPT)2-1

1.两个平面的位置关系:
(1)两个平面平行-------没有公共点 (2)两个平面相交-------有一条公共直线
记作:α ∥ β
2.两个平面平行的判定
(1)定义 (2)判定定理:如果一个平面内有两 条相交直线都平行于另一个平面, 那么这两个平面平行。
β
线面→←面面
α
例1 求证:垂直于同一条直线的 个平面平行
不过捕蝇草并无法分辨出所捕获之物的大小,有时也可能捕获到与叶片大小差不多的获物,例如小型青蛙或是长脚蜂之类。这时往往会造成来不及分解吸收,而获物自体就先腐败,所以叶片就会出现像食物中毒一般而枯萎。另外,每个叶片大约可以捕捉12~ 18次,消化3~4次,超过这个次数叶子就会失去捕虫能力,为最后的光合作用做出应有的贡献,然后渐渐枯萎。
当昆虫采蜜时第一次接触到感觉毛后叶片并不会有什么动作,但是如果连续刺激两次,那叶片就会在平均大约0.5秒以内马上合起来(但是一些人工园艺品种达不到这个速度)。而如果第二次碰触的时间与第一次碰触时间相差超过约20秒时,叶片会变成半合闭 或是没反应的现象。如果在这时马上再刺激第三次,那叶片也会迅速的合起来。
夹子关闭数天到十数天,此时昆虫被分布于捕虫器上的腺体所分泌的消化液消化。昆虫被消化完后,捕虫器会再度打,等待下一个猎物。剩下无法被消化掉的昆虫外壳,便被风雨所带走。第二阶段需要昆虫的挣扎才能进行,因为这样才代表捕虫器所捉到的 确实是昆虫,是活的猎物。
《两个平面平行的判定》说课稿

《两个平面平行的判定》说课稿各位领导老师下午好:今天我说课的内容是人教社必修版第二册下(A)第九章9.5两个平面平行的判定和性质的第一课时,下面我从教材结构、内容分析、教学过程设计三个方面进行简要的说明。
一、教材结构:1. 本节内容在全书及章节的地位:本节课是平面与平面位置关系的第一课时,主要内容是两个平面平行的判定定理及其应用,它是继学生学习了空间两直线位置关系,空间直线和平面位置关系之后,又一种图形之间的位置关系的研究。
既为后面学习两个平面平行的性质奠定基础,又为将来研究多面体做好铺垫。
2.数学思想方法分析:把面面位置关系与线面位置关系类比,把面面平行的判定与线面平行的判定类比,渗透类比的数学方法。
定理的证明和应用体现了线线平行,线面平行到面面平行的转化,体现了转化的数学思想。
二、内容分析:(一)教学目标的确立:根据新课程提出的为了每一位学生发展的理念,结合课程标准,考虑到学生已有的认知结构及心理特征,制定本节课的教学目标如下:1、知识与技能:了解两个平面的位置关系,掌握两个平面平行的判定定理,能利用它们解决相关的问题。
2、过程与方法:通过两个平面位置关系以及两个平面平行的判定定理的引出过程,培养学生类比及转化的思想。
3、情感、态度、价值观:引导学生在生活实际中观察得到两个平面有相交与平行两种位置关系,让学生明确数学来源于生活,从而培养学生应用的意识;通过鼓励学生相互合作,通过发现判定定理的过程,培养学生的合作意识及团队精神。
(二)教学重点、难点设定:本节课是定理课的教学,重点是两个平面平行的判定定理及其应用是显而易见的。
而反证法虽然前面用过,但是学生证明时不易想到,所以判定定理及其证明就是本节课的难点。
为了突出重点,突破难点,特别重视定理的发现过程,设置两个问题,逐步引导学生认识到判定两个平面平行的问题可转化为直线与平面平行的问题解决,通过学生动手合作,教师多媒体演示,从而引出判定定理。
在证明之前分析、引导学生想到用反证法证明该定理,并复习反证法的步骤,实现对定理的证明。
两平面平行的判定与性质

垂直→←平行
作业: P32: 习题4,8
; / 钢塑土工格栅
hoq148egk
烟筒不停地冒着青白色的烟,在微风吹拂下、袅袅地飘向远处。刘丽娟凭直觉那肯定是啤酒厂锅炉房的大烟筒,再远点几排白 色的、圆柱形的巨型大罐无疑是发酵大罐,而紧邻的一座建筑,屋顶上像沸腾的蒸笼一样不断冒着热腾腾的热气肯定是糖化间, 还有两颗又高又大的树直穿云霄,树梢仿佛可以触到天空。上学时专业老师曾说过,如果你找不到啤酒厂时,从外围看到三个 标志性的建筑物:锅炉房的大烟囱、糖化上热气腾腾的烟筒和高高矗立的发酵大罐,那八九不离十就是啤酒厂了。得到马启明 肯定的答复后,他们立即沿着马路朝大烟筒方向走去,感觉就好像找到了组织一样心里踏实多了。一路上看见一辆辆满载着空 瓶的汽车停在路边,一直排到啤酒厂门口,粗略数数竟有十几辆。此时正好是上下班的时候,一群群职工有说有笑地进进出出, 门口悬挂着厂牌:江苏花开啤酒厂。走进厂门仍旧是排得紧紧的、等待拉啤酒的汽车。马启明忍不住叫出声:“这么多的车子 在等着拉啤酒呀!”望着这么多进进出出的车辆马启明竟一时想不起上次是怎么走的了,一路问着找到厂长办公室。一进门马 明启就看到上次接待他的蒋明辉,像见到了亲人一样,立即兴奋地喊道:“蒋主任,您好!”蒋明辉一看惊喜地叫道:“唉吆 外!这不是马启明吗!”马上站起来把手伸过来,跟马启明热烈地握手,笑着说道:“欢迎!欢迎!”马启明觉得笑是两人间 最短的距离。蒋明辉是厂办公室主任,三十来岁,个子不高,约1.70,肌肉男,短短的板寸头,身体结实,眼睛里透着南方人 的精明劲儿,脸上永远挂着标志性的笑容。马启明上一次来花开啤酒厂就受到他热情的接待,是马启明在花开啤酒厂第二个认 识的人,虽然第二次相见,但是感到非常亲切。马启明一看蒋明辉也这么热情,赶紧拉着妻子高兴地说:“蒋主任,这是我爱 人刘丽娟,我们这次来是正式向您报到的。”说着从口袋中掏出海涛州人事局的介绍信。蒋明辉给马启明、刘丽娟倒了杯水, 然后接过马启明的介绍信说道:“别着急,先坐下休息休息,喝口茶。我出去看一下他们在不在?”说完脸上挂着标志性的笑 容就出去了。不一会儿,蒋明辉进来说道:“谷厂长他们马上要开会,要不然你们先到厂招待所休息一下?等会议结束后我再 叫你们。”“好好好!那就麻烦您了!”马启明急忙答道。到吃中午饭时,蒋明辉把马启明和刘丽娟带到厂内招待所食堂,等 了一会儿,看见几个人朝饭厅走来。马启明一眼就认出来人保科的张之文科长,刚想站起来准备和他打招呼,蒋明辉却急忙拉 起马启明,恭恭敬敬地指着一位白白胖胖的中年人向马启明介绍道:“马启明,这位是谷厂长。”马启明上次来就了解到厂长 叫谷仕昊,同时兼党委书记,属于党政一把抓。可惜当时谷厂长到局里开会,无
两平面平行的判定方法
两平面平行的判定方法平面几何中,两平面平行是重要的概念,因为它涉及到许多实际问题,例如建筑、地图制作和制造业。
在本文中,我们将讨论10种不同的方法来判断两个平面是否平行,并提供详细说明。
1. 平行线性质法确定两个平面是否平行的最简单方法之一是检查它们所包含的直线。
如果两个平面包含两组平行直线,则这两个平面平行。
这被称为平行线性质。
平面上的平行线永远不会相交,而它们的距离始终相等。
2. 夹角相等法两个平面平行的另一种方法是它们的夹角相等。
当两个平面之间的夹角相等时,它们被认为是平行的。
这里需要注意的是,夹角是指两个平面的法线之间的角度。
3. 垂线判定法如果一条直线是第一个平面上的一条直线,并且以该直线垂直于第二个平面,则第一个平面和第二个平面是平行的。
垂线判定法基于这个原理。
这可通过将两个平面移到同一位置并在它们之间引入垂线来证明。
4. 辅助平面法辅助平面法是一种使用第三平面来判断两个平面平行的方法。
如果两个平面与第三个平面平行,则它们彼此平行。
该方法特别适用于设计要求多个平面平行的情况,例如构建多层建筑物。
5. 截线判定法如果一条直线是第一个平面和第二个平面上的两条直线的截线,则这两个平面平行。
截线判定法基于这个概念。
如果相交的两条线都是平面上的同一直线的截线,则这两个平面平行。
6. 倾斜角相等法倾斜角相等法是一种快速确定两个平面是否平行的方法。
如果两个平面的倾斜角相等,则这两个平面是平行的。
这种方法只能用于倾斜角相等的情况。
7. 向量法向量法是另一种判断两个平面是否平行的方法。
如果两个平面的法线向量相同,则它们是平行的。
将两个平面的向量相减,如果它们的值为零,则它们平行。
8. 距离法距离法是判断两个平面平行的一个简单方法,它基于平面之间的平行线性质。
如果两个平面的法线距离相等,则这两个平面平行。
用法线测量两个平面之间的距离,以确定它们是否平行。
9. 投影法投影法可以通过平面上点的投影来确定两个平面是否平行。
教案平面与平面平行的判定和性质
平面与平面平行的判定和性质第一章:教案简介本章将介绍教案平面与平面平行的判定和性质。
通过本章的学习,学生将能够理解并应用平面与平面平行的判定条件,掌握平面与平面平行的性质,并能够运用这些知识解决实际问题。
第二章:平面与平面平行的判定1. 判定条件一:如果两个平面的法向量互相平行,则这两个平面平行。
2. 判定条件二:如果一个平面经过另一个平面的法向量,则这两个平面平行。
3. 判定条件三:如果两个平面相交于一条直线,且这条直线垂直于两个平面的法向量,则这两个平面平行。
第三章:平面与平面平行的性质1. 性质一:平面与平面平行时,它们的法向量互相平行。
2. 性质二:平面与平面平行时,它们的法向量垂直于它们的交线。
3. 性质三:平面与平面平行时,它们的交线平行于它们的法向量。
第四章:应用举例1. 例一:给定两个平面,如何判断它们是否平行?2. 例二:给定一个平面和一条直线,如何判断这条直线是否与平面平行?3. 例三:给定两个平面和它们的交线,如何判断这两个平面是否平行?第五章:练习题1. 判断题:如果两个平面的法向量互相垂直,则这两个平面平行。
(对/错)2. 判断题:如果一个平面经过另一个平面的法向量,则这两个平面平行。
(对/错)3. 判断题:如果两个平面相交于一条直线,且这条直线垂直于两个平面的法向量,则这两个平面平行。
(对/错)4. 应用题:给定两个平面,它们的法向量分别为向量A和向量B。
判断这两个平面是否平行,并说明理由。
5. 应用题:给定一个平面P和一条直线L。
已知平面P的法向量为向量A,直线L的方向向量为向量B。
判断直线L是否与平面P平行,并说明理由。
第六章:教案平面与平面平行的判定和性质的综合应用1. 综合应用一:如何判断一个平面是否平行于另一个平面的交线?2. 综合应用二:如何判断一条直线是否与另一个平面平行?3. 综合应用三:如何判断两个平面是否平行,并确定它们的交线?第七章:教案平面与平面平行的判定和性质的证明题1. 证明题一:已知平面P和Q,证明平面P与平面Q平行的条件是它们的法向量互相平行。
平面与平面平行的判定与性质
方法总结: 判定平面与平面平行的 4 种方法 (1)面面平行的定义,即证两个平面没有公共点(不常用); (2)面面平行的判定定理(主要方法); (3)利用垂直于同一条直线的两个平面平行(客观题可用); (4)利用平面平行的传递性,两个平面同时平行于第三个平
面,那么这两个平面平行(客观题可用).
【练习 1】如图所示,在三棱柱 ABC-A1B1C1 中,E,F,G, H 分别是 AB,AC,A1B1,A1C1 的中点,求证: (1)B,C,H,G 四点共面; (2)平面 EFA1∥平面 BCHG.
=1×1×1× 3×2= 3.
32
3
本节课你学会了平面与平面平行的判断的哪些方法?
1、平面与平面平行的判定定理:
a⊂β,b⊂β,
a∩b=P, a∥α, b∥α
β∥α
2、平面与平面平行的性质定理:
(1)
α∥β,
a∥α,
a⊂β
γ
b β
(2)
a α
α∥β α∩γ=a β∩γ=b
a∥b
【例题 1】如图,在多面体
中,
是正
方形, ⊥平面
, ⊥平面
,= ,
点 为棱 的中点.求证:平面 //平面 ;
又 CN∩MN=N,
∴平面 CMN∥平面 PA B.
(2)由(1)知,平面 CMN∥平面 PAB,
∴点 M 到平面 PAB 的距离等于点 C 到平面 PAB 的距离.
由已知,AB=1,∠ABC=90°,∠BAC=60°,
∴BC= 3,
∴三棱锥 P-ABM 的体积
V=VM-PAB=VC-PAB=VP-ABC
别是
AC
,A1C
1
上的点,且平面
BC
平面与平面平行的判定及其性质
//
例:在正方体ABCD A' B'C' D'中,证明:平面AB' D' // 平面
BC' D.
证明:在正方体ABCD A' B'C' D'中
DD' // BB',DD' BB' 平面BB' D' D是平行四边形
B' D' // BD
BD 平面BC' D B' D' // 平面BC' D 同理可证AD' // 平面BC' D
又 B' D'AD' D'
平面AB' D' // 平面BC' D
D' A'
D A
C' B'
C B
解题思路: 面面平行 在一个平面内找出两条与另一个 平面平行的相交直线 线面平行
线面平行判定定理
线线平行
练习:如图所示,正方体ABCD A' B'C' D'中,点N在
BD上,点M在B'C上,且CM ND,求证:M
N // 面AA' B' B.
D'
C'
A'
D N
A
B' M C
B
面面平行判定:一个平面内有两条相交直线与另一平面 平行,则这两个平面平行。
符号语言:a ,b , a // ,b // , a b P //
三种平行之间的关系:
? 线线平行
线面平行 面面平行
直线与平面平行的判定及其性质
判定定理:平面外一条直线与此平面内的一条
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
两个平面平行的判定和性质(一)●教学目标(一)教学知识点1.两个平面的位置关系.2.两个平面平行的判定方法.(二)能力训练要求1.等价转化思想在解决问题中的运用.2.通过问题解决提高空间想象能力.(三)德育渗透目标1.渗透问题相对论观点.2.通过问题的证明寻求事物的统一性.●教学重点两个平面的位置关系;两个平面平行的判定.●教学难点判定定理、例题的证明.●教学方法启发式在启发、诱思下逐步完成定理的证明过程.平面的位置关系也需以实物(教室)为例,启发诱思完成.通过师生互议,解决例1问题.●教具准备投影片两张第一张:(记作§9.5.1 A)第二张:(记作§9.5.1 B)●教学过程Ⅰ.复习回顾师生共同复习回顾,线面垂直定义,判定定理.性质定理:归纳小结线面距离问题求解方法,以及利用三垂线定理及其逆定理解决问题.立体几何的问题解决:一是如何将立体几何问题转化成平面几何问题;二是数学思想方法怎样得到充分利用、渗透,这些都需在实践中进一步体会.下面继续研究面面位置关系.Ⅱ.讲授新课1.两个平面的位置关系除教材上例子外,我们以所在教室为例,观察面与面之间关系.[师]观察教室前、后两个面,左、右两个面及上、下两个面都是平行的,而其相邻两个面是相交的.[师]打开教材竖直放在桌上,其间有许多个面,它们共同点是都经过一条直线.观察教室的门与其所在墙面关系,随着门的开启,门所在面与墙面始终有一条公共线.结合生观察教室的结论,引导其寻找平面公共点,然后给出定义.定义:如果两个平面没有公共点,我们就说这两个平面互相平行.如果两个平面有公共点,它们相交于一条公共直线.两个平面的位置关系只有两种:(1)两个平面平行——没有公共点;(2)两个平面相交——有一条公共直线.[师]两个平面平行,如平面α和平面β平行,记作α∥β.下面给出两个示意图,同学们考虑哪个较直观?[生]图(1)较直观,图(2)不直观.[师]从以上两种画法,告诉我们画图过程中应注意什么?图(2)为何不直观?[生]画两个平面平行时,要注意把表示平面的平行四边形画成对应边平行,图(2)不直观的理由是表示平面的平行四边形对应边不平行,其画法不恰当.[师]现在给出两个相交平面的画法(师生互动):(1)先画表示两个平面的平行四边形的相交两边.(2)再画出表示两个平面相交的线段.(3)过线段的端点分别引线段,使它平行且等于(2)中线段.(4)画出表示两个平行平面的平行四边形的第四边.(被遮住部分的线,可以用虚线,也可以不画.)2.两个平面平行的判定判定两个平面平行可依定义,看它们的公共点如何.[师]由两个平面平行的定义可知:其中一个平面内的所有直线一定都和另一个平面平行.这是因为在这些直线中,如果有一条直线和另一平面有公共点,这点也必是这两个平面的公共点,那么这两个平面就不可能平行了.另一方面,若一个平面内所有直线都和另一个平面平行,那么这两个平面平行,否则,这两个平面有公共点,那么在一个平面内通过这点的直线就不可能平行于另一个平面.由此将判定两个平面平行的问题转化为一个平面内的直线与另一个平面平行的问题,但事实上判定两个平面平行的条件不需要一个平面内的所有直线都平行于另一平面,到底要多少条直线(且直线与直线应具备什么位置关系)与另一面平行,才能判定两个平面平行呢?下面我们共同学习定理.两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.[师]以上是两个平面平行的文字语言,另外定理的符号语言为:若a⊂α,b⊂α,a∩b=A,且a∥β ,b∥β ,则α∥β.利用判定定理证明两个平面平行,必须具备:①有两条直线平行于另一个平面;②这两条直线必须相交.定理的证明§9.5.1 A已知:在平面β内,有两条相交直线a、b和平面α平行.求证:α∥β.[师]从平行平面的定义可知,要证α∥β,需证α、β无公共点,而要证明两面无公共点,这是困难的事.由此启发我们去寻求另外途径.联想面面位置关系,利用反证法,经学生思考试着完成证明过程,证明过程实质上就是设法否定两面相交的过程.[生]假设两面相交,设法推出矛盾,注意等价转化思想渗透.证明过程如下:证明:假设α∩β=c,∵a∥α,a⊂β,∴a∥c(线面平行⇒线线平行).同理b∥c.∴a∥b.这与题设a、b是相交直线相矛盾.∴α∥β.[师]再从转化的角度认识该定理就是:线线相交、线面平行⇒面面平行.[生]在判断一个平面是否水平时,把水准器在这个平面内交叉地放两次,如果水准器的气泡都是居中的,就可以判定这个平面和水平面平行,实质上正是利用了面面平行的判定定理.(例题解析)[例1]求证:垂直于同一直线的两个平面平行.已知:α⊥AA′,β⊥AA′,求证:α∥β.(§9.5.1 B)分析:要证两个平面平行,需设法证明一面内有两相交线与另一面平行,那么由题如何找出这两条线成为关键.如果这样的线能找到问题也就解决啦.诱导学生思考怎样找线.[生]通过作图完成找线,利用转化解决问题,证明如下:证明:设经过AA′的两个平面r、δ分别与平面α、β相交于直线a、a′和b、b′.∵AA′⊥α,AA′⊥β.∴AA′⊥a,AA′⊥a′.又a⊂γ,a′⊂γ,∴a∥a′,于是a′∥α同理可证b′∥α又a′∩b′=A′∴α∥β.[师]这是一个重要的结论,主要用来判断空间的直线与平面具备条件:两个平面垂直于同一直线,则应有这两个平面平行.用符号语言就可以表示为:l⊥α,l⊥β⇒α∥β.此题也告诉我们,空间的两个平面平行,其判定方法:1°定义;2°判定定理;3°例1结论.Ⅲ.课堂练习(一)课本P32练习1.(1)、(4).1.判断下列命题的真假,对真命题给出证明,对假命题举出反例.(1)m⊂α,n⊂α,m∥β,n∥β⇒α∥β;(4)α内的任一直线都平行于β⇒α∥β.解:(1)这是一个假命题.如黑板的上、下两边平行于地面,但黑板所在平面与地面是相交的位置关系.(4)这是一个真命题.在平面α内任取两相交直线a、b.则由题a∥β,b∥β,那么α∥β.[前一个题是解决立体几何问题常用做法,判断一个命题为假,则需举一个反例说明即可.而判断一个命题为真,则要有理有据地证明.](二)课本P32习题1,2.1.在立体图ABC-A′B′C′中,如果在平面AB′内∠1+∠2=180°,在平面BC′内∠3+∠4=180°,那么平面ABC和A′B′C′有什么关系?为什么?[此题应实现两个转化:一是角的关系转化成线的平行;二是线的平行转化成面的平行.]解:平面ABC∥平面A′B′C′.证明如下:因在平面ABB′A′内∠1+∠2=180°,则有A′B′∥AB,A′B′∥面ABC.又在平面BCC′B′内,∠3+∠4=180°,则有B′C′∥BC,B′C′∥面ABC.又A′B′∩B′C′=B′,A′B′⊂面A′B′C′,B′C′⊂面A′B′C′,那么面A′B′C′∥面ABC.2.在立体图ABC-A′B′C′中,如果∠ABB′=∠A′B′B=∠CBB′=∠C′B′B=90°,那么平面ABC与面A′B′C′有什么关系?为什么?[此题解决方法同上,利用等价转化解决问题.一是将角的关系转化为线线垂直,二是将线线垂直转化为线面垂直,线面垂直转化为面面平行.]解:面ABC∥面A′B′C′,证明如下:因∠ABB′=∠A′B′B=∠CBB′=∠C′B′B=90°则AB⊥BB′,BC⊥BB′,A′B′⊥BB′,B′C′⊥BB′那么有面ABC⊥BB′,面A′B′C′⊥BB′故面ABC∥面A′B′C′.Ⅳ.课时小结本节课主要研究如何证明两个平面平行.其途径可以选择从公共点的角度考虑.但要说明两面没有公共点,是比较困难的,而要用定理判定的话,关键是线应具备“相交”、“平行”要求.例1也可作为结论直接运用.Ⅴ.课后作业(一)课本P33习题3、4、5.3.判断下列命题的真假,对真命题给出证明,对假命题举出反例(画出草图).(1)平行于同一直线的两平面平行;(2)平行于同一平面的两平面平行.解:(1)是假命题.平行于同一直线a的两面α、β可以相交.(2)是真命题.证:作l⊥α则由题l⊥β,l⊥γ,故α∥γ.4.(1)如图,A、B、C为不在同一直线上的三点,AA′BB′CC′.求证:平面ABC∥平面A′B′C′.证明:因AA′BB′,所以有ABB′A′是平行四边形.那么A′B′∥AB.同理A′C′∥AC,又AB∩AC=A,A′B′∩A′C′=A′,故面ABC∥面A′B′C′.[该问题所给图实质上就是三棱柱,上、下两底面平行.](2)如图,直线AA′、BB′、CC′交于点O,AO=A′O,BO=B′O,CO=C′O,求证:平面ABC∥平面A′B′C′.证明:因AA′与CC′相交于O,∴∠AOC=∠A′OC′.又AO=A′O,CO=C′O,故△OAC≌△OA′C′.则∠C′AO=∠CAO,即AC∥A′C′.那么AC∥面A′B′C′.同理AB∥面A′B′C′.故平面ABC∥平面A′B′C′.[此题的图形是两个棱锥拼成的,注意其结构,证明中主要渗透等价转化思想.]5.求证:经过平面外一点有且只有一个平面和已知平面平行.证明:经过平面外一点P作l⊥α,经过点P作平面β,使l⊥β,则α∥β.因经点P且与α平行的平面必与α的垂线l也垂直.而过点P与l垂直的平面是唯一的,所以过点P且与α平行的平面只有一个.[这是一个唯一性命题的证明,注意证明过程每步依据.](二)1.预习内容课本P313.两个平面平行的性质.2.预习提纲(1)两个平面平行后具有什么性质?(2)试利用转化的思想归纳小结.●板书设计●备课资料一、空间的两个平面位置关系[例1]已知平面α平行平面β,若两条直线m、n分别在平面α、β内,则m、n关系不可能是() A.平行B.相交C.异面D.平行或异面解析:从公共点的角度分析可知,m、n所在平面平行,则两面无公共点,那么两线也应无公共点,故该两线平行或异面.答案:B[注意题中是“不可能”][例2]平面α 内两线a、b都平行于β ,则α 与β 的关系()A.平行B.相交C.重合D.不确定解析:当两线相交时,α∥β,当两线平行时α∥β 或α 与β 相交.答案:D[例3]平面M∥平面N的充分条件是()A.直线a⊂M,且a∥NB.直线a⊂M,b⊂M,a∥N,b∥NC.平面M内有无数条直线平行于ND.平面M内任何一条都平行于N解析:两个平面平行,一个平面内要有两条相交线与另一平面平行,而满足条件的只有D.答案:D其他的可举反例一一排除.二、判定两面平行判定两个平面是否平行,可从以下角度思考.(1)面面平行定义.两个平面没有公共点.(2)面面平行的判定定理.如果一个平面内有两条相交线都平行于另一平面,那么这两个平面平行.(线面平行⇒面面平行)(3)垂直于同一直线的两面平行.(4)两个平面同时平行于第三个平面,那么这两个面平行.[(5)一个平面内的两条相交线分别平行于另一个平面内的两条相交线,那么这两个平面平行.(线线平行⇒面面平行)][例4]如图,在空间六边形(六个顶点没有任何五点共面)ABCC1D1A1中,每相邻的两边互相垂直,边长均等于a,并且AA1∥CC1.证明平面A1BC1∥平面ACD1.分析:空间四边形问题的解决是将其转化为一三棱锥问题而解决的,那么空间六边形可转化哪种几何体,这是解决该问题的关键所在,通过两条边边长均等于a,两线成角为90°,两个平行及垂直关系解决问题.解决问题的主要思想就是等价转化,将问题转化为一个正方体中两面平行,这就容易多了.证明:在面ABC内分别经A、C作AB及BC的平行线相交于D,在面A1D1C1内作D1C1及D1A1的平行线相交于B1,顺次相连BB1、DD1.那么由相邻两边垂直及边长均为a可知构造几何体为正方体.因AC∥A1C1,BC1∥AD1,∴面A1BC1∥面ACD1.。