《固体物理》课程教学大纲
固体物理课程教学大纲

《固体物理》课程教学大纲一、《材料制备技术》课程说明(一)课程代码:08131007(二)课程英文名称:Solid State Physics(三)开课对象:物理系本科专业(四)课程性质:本课程是材料物理专业和应用物理专业的一门专业必修课。
(五)教学目的这是继大学物理以后基础且关键的一门课程。
通过本课程的学习,使学生了解晶体结构的基本描述、固体材料的宏观和微观特性,以及自由电子模型和能带理论等,掌握周期性结构固体材料的常规性质和处理方法,为以后专业课程的学习提供基础的知识。
(六)教学内容:基本内容有两大部分:一是晶格理论,二是固体电子理论。
晶格理论包括:晶体的基本结构及确定晶格结构的X光衍射方法;晶体中原子间的结合力和晶体的结合类型;晶格的热振动及热容理论;晶格的缺陷及其运动规律。
固体电子论包括:固体中电子的能带理论;金属中自由电子理论和电子的输运性质。
(七)学时数、学分数及学时数具体分配学时数:72学分数:4(八)教学方式:课堂教学(九)考核方式和成绩记载说明:考核方式为考试。
严格考核学生出勤情况,达到学籍管理规定的旷课量取消考试资格,综合成绩根据出勤情况、平时成绩和期末成绩评定,出勤情况占20%,平时成绩占20%,期末成绩占60%。
二、讲授大纲与各章的基本要求第一章晶体的几何教学要点:通过本章的教学使学生初步了解晶体几何学的基本知识,掌握晶格、晶面、晶向等基本概念,对点群和对称性有一定的了解。
教学时数:12教学内容:第一节:晶格及其周期性第二节:晶向、晶面和它们的标志第三节:晶体的宏观对称和点群第四节:晶格的对称性考核要求:1.理解单晶、准晶和非晶材料原子排列在结构上的差别(领会)2.掌握原胞、基矢的概念,清楚晶面和晶向的表示,了解对称性和点阵的基本类型(识记)3.了解简单的晶体结构(识记)4.掌握倒易点阵和布里渊区的概念,能够熟练地求出倒格子矢量和布里渊区(应用)第二章晶体的结合教学要点:了解晶体的基本结合形式,掌握原子的负电性的基本原理,能熟练计算离子晶体的结合能。
固体物理教学大纲

课程编号:011908 总学分:3学分固体物理(Solid-State Physics)课程性质:学科大类基础课适用专业:应用物理学专业学时分配:课程总学时:48学时。
其中:理论课学时:46学时(含演示学时);实验学时:0学时;上机学时:0学时;习题课学时:2学时。
先行、后续课程情况:先行课:高等数学、热力学与统计物理,;后续课:量子力学,原子物理。
教材:《固体物理学》,黄昆,韩汝琦,高等教育出版社参考书目:《固体物理学》,陆栋,上海科学技术出版社《固体物理基础》,阎守胜,北京大学出版社《固体物理简明教程》,蒋平,徐至中,复旦大学出版社一、课程的目的与任务固体物理学是应用物理和物理类各专业的一门必修基础课程,是继四大力学之后的一门基础且关键的课程,它的主要内容是研究固体的结构及组成粒子(原子、离子、电子等)之间的相互作用与运动规律,阐明固体的性能和用途,尤其以固态电子论和固体的能带理论为主要内容。
通过固体物理学的整个教学过程,使学生理解晶体结构的基本描述,固体电子论和能带理论,以及实际晶体中的缺陷、杂质、表面和界面对材料性质的影响等,掌握周期性结构的固体材料的常规性质和研究方法,了解固体物理领域的一些新进展,为以后的专业课学习打好基础。
二、课程的基本要求教学内容的基本要求分三级:掌握、理解、了解。
掌握:属于较高要求。
对于要求掌握的内容(包括定理、定律、原理等的内容、物理意义及适用条件)都应比较透彻明了,并能熟练地用以分析和计算有关问题,对于能由基本定律导出的定理要求会推导。
理解:属于一般要求。
对于要求理解的内容(包括定理、定律、原理等的内容、物理意义及适用条件)都应明了,并能用以分析和计算有关问题。
对于能由基本定律导出的定理不要求会推导。
了解:属于较低要求。
对于要求了解的内容,应该知道所涉及问题的现象和有关实验,并能对它们进行定性解释,还应知道与问题直接有关的物理量和公式等的物理意义。
三、课程教学内容绪论:了解固体的分类和固体物理学的研究内容;了解固体物理学的发展历史;了解固体物理学的研究方法。
固体物理课程教学大纲

固体物理课程教学大纲一、引言固体物理是物理学的重要分支之一,研究物质的结构、性质和相互作用。
本课程的教学旨在帮助学生建立对固体物理的基础理论和实践技能的深入理解。
通过学习本课程,学生将能够掌握固体物理的核心概念、实验技术和解决实际问题的能力。
二、课程目标1. 掌握固体物理的基础知识和理论框架;2. 熟悉固体的晶体结构和缺陷状况;3. 理解固体的电学、磁学和光学性质;4. 学习固体材料的力学行为和热传导特性;5. 培养工程实践中解决固体物理问题的能力。
三、教学内容与安排1. 第一章:晶体结构- 1.1 原子与晶体结构基本概念- 1.2 晶体的晶格结构- 1.3 晶体缺陷与点阵缺陷- 1.4 晶体的形貌与表面结构2. 第二章:固体的电学性质- 2.1 电导现象与欧姆定律- 2.2 半导体与导体- 2.3 极化与介电材料- 2.4 超导电性3. 第三章:固体的磁学性质- 3.1 磁介质与磁性材料- 3.2 磁场与磁化强度- 3.3 磁性材料的磁性行为- 3.4 磁性材料的应用与技术4. 第四章:固体的光学性质- 4.1 光的传播与折射- 4.2 光与固体材料的相互作用 - 4.3 固体的吸收与发射- 4.4 材料的光学性质与应用5. 第五章:固体的力学行为- 5.1 弹性与塑性行为- 5.2 多晶体的力学行为- 5.3 固体的蠕变现象- 5.4 特殊力学性质与应用6. 第六章:固体的热传导特性- 6.1 热传导基本原理- 6.2 热电材料与热电效应- 6.3 热导率的测量与表征- 6.4 热传导的现象与应用四、教学方法与手段1. 授课方式:采用讲授与互动相结合的方式进行课堂教学;2. 实验教学:通过实验教学,让学生更好地理解课程的概念与原理;3. 论文阅读:引导学生阅读相关领域的研究论文,拓宽知识面;4. 课程设计项目:组织学生进行课程设计项目,提高实际问题解决能力;5. 网络资源利用:推荐学生利用网络资源深入学习与研究。
固体物理课程教学大纲

固体物理课程教学大纲一、课程目标本课程旨在帮助学生全面理解和掌握固体物理学的基本概念、原理和方法,培养学生在实际问题中运用固体物理知识进行分析和解决问题的能力。
二、课程内容1. 固体物理学的基本概念1.1 固体物质的结构特点1.2 离子晶体、金属晶体和共价晶体的结构及其特征1.3 各种晶格结构的几何和物理性质2. 固体物理的热学性质2.1 热传导及固体的热导率2.2 固体的热膨胀及其应用2.3 热容与固体热力学性质2.4 固体的热导电和热辐射现象及其应用3. 固体物理的电学性质3.1 电导率与导体的性质3.2 半导体物理学基础3.3 超导体的基本原理和应用3.4 介电材料的特性和应用4. 固体物理的光学性质4.1 固体的吸收、散射和透射4.2 衍射和干涉现象及其应用4.3 光导纤维和光波导的原理和应用5. 固体物理的量子力学性质5.1 电子能带理论和晶体中的能带结构5.2 固体中的声子和声子态密度5.3 固体中的磁性和费米液体理论6. 固体物理的其他专题6.1 固体中的输运现象与能带理论6.2 固体材料的结构调控与性能优化6.3 纳米材料与纳米结构的物理特性6.4 固体物理在材料科学和工程中的应用三、教学方法1. 理论授课:通过演示、图例和实例解释固体物理学的基本概念和原理,让学生掌握科学的基本理论知识。
2. 实验教学:设计相关的实验,让学生亲自操作、观察和分析实验现象,培养学生实验动手和思维的能力。
3. 讨论与互动:组织学生讨论、合作和演示,提升学生的团队合作和表达能力。
4. 综合案例分析:引导学生关注固体物理学在实际问题中的应用,进行实际案例分析和解决方案的探讨。
四、考核方式1. 平时表现:包括课堂参与、作业提交和实验报告等。
2. 学术论文:要求学生完成一篇固体物理学相关的学术论文,包括文献综述、实验设计和数据分析等。
3. 期末考试:通过笔试形式考察学生对固体物理学知识的掌握程度和应用能力。
《固体物理学》教学大纲

《固体物理学》教学大纲
一、课程基本信息
二、课程教学目标
通过本课程的学习,使学生将能够了解固体物理学发展的基本情况,以及固体物理学对于近代物理和近代科技的发展起的作用,了解固体物理所研究的基本内容和固体物理研究前沿领域的概况,掌握固体物理学的基本概念和基本规律,掌握晶体宏观物理性质及其组成粒子之间相互作用与运动规律,并能解释晶体基本物理性质的微观机理,培养应用固体物理学理论分析和处理问题的能力。
三、理论教学内容与要求
四、考核方式
采用期末考试、平时考核的考核方式。
总成绩为100分,其中期末考试成绩占总成绩的70%,平时成绩(考核包括作业、出勤、课堂讨论等)占总成绩30%。
固体物理教学大纲

《固体物理》课程教学大纲一、课程基本信息课程编号:13103104课程类别:专业核心课程适应专业:材料物理总学时:64学时总学分:3学分课程简介:固体物理学是研究固体的结构及其组成粒子之间相互作用与运动规律的学科,也是材料物理的重要基础课程。
固体物理学研究的对象是由大量粒子组成的复杂系统。
这些大量粒子之间存在着复杂的相互作用,但同时也包含了丰富的物理现象。
对于这种复杂的系统,人们必须作近似处理,找出描述某种现象的物理本质。
这对学生的抽象、假设、创造力的培养是非常重要的。
授课教材:《固体物理学》,黄昆、韩汝琦,高等教育出版社,1988,1996年获国家科学技术进步二等奖、全国第二届优秀教材特奖参考书目:[1]《固体物理引论》,基特耳著、万纾民等译,人民教育出版社,1962年。
[2]《固体物理学》,H.E.Hall,刘志远等译,高等教育出版社,1983年。
[3]《固体物理学》,谢希德等,上海科学技术出版社,1961年。
[4]《固体物理学》,顾秉林、王喜坤,清华大学出版社,1989年。
[5]《固体物理》,徐毓龙、阎西林,西安电子科技大学出版社,1990年。
[6]《固体物理学》,陈长乐,西北工业大学出版社出版,2000年。
二、课程教育目标固体物理学是物理学中的重要分支,本课程是材料物理学的基础理论课,是物理专业及其相近专业非常重要的基础课、必修课。
课程强调对固体物理学的科学方法、物理图象的理解。
学生通过本课程的学习要求掌握固体物理学的基本概念、基本模型和方法,了解它们在各类技术中的应用,为进一步学习专业课,为毕业后从事科研和高新技术工作打下坚实的基础。
三、教学内容与要求第一章晶体结构教学重点:晶体结构,空间点阵,倒移点阵晶向、晶面指数教学难点:倒格子,晶体对称操作教学时数:10学时教学内容:一些晶格的实例,晶格的周期性,晶向、晶面和它们的标志,倒格子,晶体的宏观对称性。
教学方式:课堂讲授教学要求:(1)掌握晶体的空间点阵,晶体基矢的表达,倒易点阵,晶面、晶向的概念以及正点阵和倒移点阵的关系。
固体物理学课程教学大纲

《固体物理学》课程教学大纲一、课程说明(一)课程名称、所属专业、课程性质、学分;《固体物理学》是物理学院的主干基础课之一,是针对微电子专业的本科生开设于二年级的第二学期的专业基础课,4个学分,课堂讲授72学时。
(二)课程简介、目标与任务;固体物理学是研究固体物质的物理性质、微观结构、构成物质的各种粒子的运动形态,及其相互关系的科学。
它是物理学中内容极丰富、应用极广泛的分支学科,同时也是微电子专业本科生学习《半导体物理学》、《半导体材料》和《固体电子器件》等后续课程的基础。
本课程以点阵及晶体对称性为主线,以周期结构中的波动问题贯穿固体物理的整个教学内容。
掌握包括对点阵及晶体对称性的定义、表征和检测,以及在晶体中物质的运动规律。
在掌握知识架构的同时,对固体物理中处理多体问题的方法及其局限性有所了解,并了解一些重要概念的实验探测。
(三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接;先修课程要求:《力学》《量子物理》《热学》《热力学统计物理》先修课与后续相关课程之间的逻辑关系和内容衔接:《力学》中的处理物体运动的基本规律,尤其是振动与波动内容,是本课程第四章结合周期性晶体结构推演格波性质的基础。
《量子力学》或《量子物理》中的升降算符与谐振子的能量量子化,是提出声子(晶格振动的能量量子)的理论基础。
《量子力学》或《量子物理》中关于散射态的处理,如直角势垒和直角势阱的散射态,是学习电子声子散射和电子杂质散射的理论基础,也是学习电子在周期性势场下行为的基础。
《量子力学》或《量子物理》中关于束缚态的处理,是本课程第八章学习非本征半导体的理论基础。
《原子物理学》或《量子物理》中类氢原子的量子理论基础,原子的壳层结构,电子的自旋,是本课程第三章学习晶体结合的理论基础。
《热力学统计物理》和《热学》的基本原理,气体分子动理论,能量均分定理,内能和热容,平衡态的统计规律,是学习本课程第五章声子热学性质的基础。
【教学大纲】固体物理

《固体物理》课程教学大纲I课程实施细则一、教师信息主要研究邻域:凝聚态物理。
二、课程基本信息课程名称(中文):固体物理课程名称(英文):Introduction to Solid State Physics课程性质:□通识必修课□通识选修课□专业必修课■专业方向课■专业拓展课□实践性环节课程类别*:■学术知识类□方法技能类□研究探索类□实践体验类课程代码:12103001 12300781周学时:3总学时:48学分: 3先修课程:数学物理方法、量子力学、热力学与统计物理、矢量分析和线性代数授课对象:应用物理学、物理学(师范)本科三年级学生三、课程简介固体物理是物理系的一门专业限选课,它面向大三学生,是较为综合的课程。
固体物理学是材料和器件物理的重要理论基础,在对物理学中的较为具体的问题进行研究的过程中,它发展起来一整套科学概念、理论模型和研究方法,这些不仅对于学生获取有关学科的基础知识,而且对于培养学生科学思维,训练学生解决具体问题的能力等方面都是非常有益的。
主要内容包括:晶体结构、晶体结合、晶体振动和晶体的热学性质、能带理论、金属电子论等。
四、课程目标通过本课程的学习, 使学生学习和掌握固体的基本结构和固体宏观性质的微观本质, 学习和掌握处理微观粒子运动的理论方法,掌握运用能带理论分析晶体中电子性质的处理方法。
五、教学内容与进度安排第一章晶体结构教学内容第1章晶体结构1.1 晶体的宏观特性1.2 空间点阵1.3 晶格的周期性1.4 密堆积与配位数1.5 几种典型的晶体结构1.6 晶向指数与晶面指数1.7 晶体的宏观对称性1.8 晶体的微观对称性1.9 倒格子1.10 晶体结构的实验确定1.11 准晶教学目标了解晶体的特征、空间点阵、空间群。
掌握晶格周期性、原胞、基矢。
掌握典型的晶格结构、密堆积以及配位数计算。
掌握晶向、晶面、密勒指数。
掌握倒格子空间、倒格矢,正、倒格子基矢的变换,能够计算原胞体积、面间距。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《固体物理》课程教学大纲
课程名称:固体物理课程类别:专业必修课
适用专业:物理学考核方式:考试
总学时、学分:56 学时 3.5 学分其中实验学时:0 学时
一、课程性质、教学目标
固体物理学是应用物理和物理类专业的一门基础课程,是继四大力学之后的一门基础且关键的课程。
主要内容是固体的结构及组成粒子(原子、离子、电子等)之间的相互作用与运动规律,阐明固体的性能、用途以及其与微观图像的联系,以晶格振动、固态电子论和固体的能带理论为主要内容。
课程教学目标为:
课程教学目标1:通过固体物理学的整个教学过程,使学生理解晶体微观结构和宏观性质的联系。
课程教学目标2:熟悉固体无论晶格结构,基本键和作用,晶格振动的物理图像,固体电子论和能带理论等基本概念和物理图像。
课程教学目标3:了解固体物理领域的一些新进展,为以后的专业课和研究生阶段学习打好基础。
课程教学目标与毕业要求对应的矩阵关系
注:以关联度标识,课程与某个毕业要求的关联度可根据该课程对相应毕业要求的支撑强度来定性估计,H表示关联度高;M表示关联度中;L表示关联度低。
二、课程教学要求
本课程教学的基本结构要求:本课程以晶体结构、晶体结合、晶格振动、能带理论、金属和半导体电子理论、外场中晶体电子的运动规律为基本结构,内容有晶格周期性、晶格的对称性、晶体四种结合方式、简谐振动、声子、晶格振动的热容理论、晶格振动模式密度、布洛赫定理、弱周期场近似、紧束缚近似、能态密度、准经典运动、回旋共振、德哈斯-范阿尔芬效应、电子热容等。
执行本大纲应注意的问题:
1.注意本课程与量子力学和热统的紧密联系,尤其是注意量子力学课程进度;
2.注意讲清本课程中的基本概念和基本理论,在保持课程的科学性及系统性的基础上,应突出重点、难点,并努力反映本学科的新成就,新动向;
3.因学时有限,而内容较多,因此有一部分内容要求学生自学。
学生自学部位不占总学时,但仍然是大纲要求掌握内容。
学生自学部分,采用由教师提示,学生课后自学并提出问题,老师课后解答的方式;
4.注重学生思考问题,培养学生思维和研究精神。
必要时对重点章节,可在讲授基础上,引导学生查阅文献资料,并进行总结,写出总结报告,以培养学生综合分析问题的能力。
三、先修课程
量子力学、热力学与统计物理
四、课程教学重、难点
教学重点:晶体结构,倒格子,晶体对称性,晶体四种结合方式,一维单、双原子链,晶格振动的模式密度,晶体比热的量子理论,布洛赫定理,一维、三维近自由电子近似,紧束缚近似,电子态密度,
电子运动的准经典模型、电子在恒定电场、磁场下的运动,费米统计和电子热容量。
教学难点:倒格子,一维单、双原子链,晶体比热的量子理论,热传导和热膨胀,布洛赫定理,一维、三维近自由电子近似,紧束缚近似,电子运动的准经典模型、电子在恒定磁场下的运动,德哈斯-范阿尔芬效应,电子热容量。
五、课程教学方法与教学手段
综合运用讲授式、讨论式以及探究式等教学方法+多媒体辅助教学。
六、课程教学内容
第一章晶体结构(10学时)
1.教学内容
(1)绪论:什么是固体物理,固体物理的研究对象,固体物理范式的建立,课程的主要内容以及课程要求;
(2)晶体结构:晶格的周期性,晶向、晶面和他们的标志,倒格子,晶体的宏观对称性,点群,晶格的对称性,晶体表面的几何结构。
2.重、难点提示
(1) 重点:空间点阵和布拉菲格子的概念、密堆积和配位数的概念、倒格子的概念;
(2) 难点:布拉菲格子的概念、倒格子的概念。
第二章固体结合(6学时)
1.教学内容
离子性结合,共价结合,金属性结合,范德瓦耳斯结合,元素和化合物晶体结合的规律性。
此处学生应具备量子力学中解薛定谔方程的知识。
2.重、难点提示
(1) 重点:离子性结合、共价结合;
(2) 难点:离共价键的特性,轨道杂化的概念及其分析方法,离子晶体和分子晶体的结合能的计算。
第三章晶格振动与晶体的热学性质(12学时)
1.教学内容
简谐近似和简正坐标,一维单原子链,一维双原子链,声学波与光学波,三维晶格的的振动,离子晶体的长光学波,确定晶格振动的实验方法,局域振动;晶格热容的量子理论,晶格振动的模式密度,晶格的状态方程和热膨胀,晶格的热传导。
此处学生应具备量子力学中一维谐振子以及统计物理的知识。
2.重、难点提示
(1) 重点:一维单原子链的振动的规律、一维双原子链的振动的规律、晶格振动的量子化和声子的概念、长波近似的概念、固体比热的概念;
(2) 难点:一维双原子链的振动的规律、晶格振动的量子化和声子的概念、长波近似的概念、固体比热的概念。
第四章能带理论(10学时)
1.教学内容
布洛赫定理,一维周期场中电子运动的近自由电子近似,三维周期场中电子运动的近自由电子近似,紧束缚近似,能态密度和费米面,表面电子态。
此处学生应具备量子力学中解薛定谔方程和处理微扰,简并微扰的知识。
2.重、难点提示
(1) 重点:洛赫定理的证明、近自由电子近似和紧束缚近似的理论模型及用模型求解一维、二维晶格中电子的运动状态,绘制布里渊区的电子能带,计算态密度和费米面;
(2) 难点:洛赫定理的证明、近自由电子近似和紧束缚近似的理论模型及用模型求解一维、二维晶格中电子的运动状态。
第五章晶体中电子在电场和磁场中的运动(8学时)
1.教学内容
准经典运动,恒定电场作用下电子的运动,导体、绝缘体和半导体的能带论解释,在恒定磁场中电子的运动,回旋共振,德⋅哈斯—范⋅阿尔芬效应。
2.重、难点提示
(1) 重点:电子在电、磁场中运动(经典和量子)的物理模型和图像、有效质量的引入及物理意义,导体、绝缘体和半导体的能带论解释,回旋共振及其应用;
(2) 难点:有效质量的概念,回旋共振。
第六章金属电子论(8学时)
1.教学内容
费米统计和电子热容量,功函数和接触电势差,玻尔兹曼方程和晶格散射。
2.重、难点提示
(1) 重点:费米统计、波尔兹曼方程、电子气的费米能量和热容量的概念;
(2) 难点:波尔兹曼方程、电子热容量的概念。
第七章半导体电子论(2学时)
1.教学内容
半导体基本能带结构,半导体杂质和掺杂。
2.重、难点提示
(1) 重点:半导体基本能带特点,费米能级和金属中的不同,两种不同掺杂的基本物理图像;
(2) 难点:半导体掺杂物理图像,以及其必要性和重要性。
七、学时分配
八、课程考核方式
1.考核方式
笔试;闭卷
2.成绩构成
期末考试成绩+平时成绩
九、选用教材和参考书目
[1] 《固体物理学》,黄昆韩汝琦,高等教育出版社,2000年;
[2] 《Introduction to Solid State Physics》(Seventh Edition),Charles Kittel,John Wiley & Sons,2004;
[3] 《固体物理基础》(第二版),吴代鸣,高等教出版社,2015年;
[4] 《固体物理基础》(第一版)孙会元,科学出版社,2016年;
[5] 《固体物理基础》(第二版),阎守胜,北京大学出版社,2008年;
[6] 《固体物理》(第二版)韦丹著,清华大学出版社,2003年;
[7] 《固体物理教程》(第一版)王矜奉,山东大学出版社,2013年。