最新定积分的简单应用测试题

合集下载

定积分的简单应用__平面图形的面积

定积分的简单应用__平面图形的面积

的面积。
y
y=x-2
解:阴影部分面积
2
S=S1+S2.
S1由y= x ,y= - x , 1
x=1围成:
s1 s2
o 12
4
x
S2由y= x,y= x-2 , -1
x=1围成:
-2 x=1
y2
x=
1
s1
[
0
x (
x )]dx,
4
s2
[
1
x (x 2)]dx,
1
4
s 0 2 xdx 1 ( x x 2)dx.
例 1 计算由两条抛物线 y2 x和 y x2所围成的
图形的面积.

y y
x x2
x
0及x
1
两曲线的交点 O(0,0) B(1,1)
y
y2 x
B
C y x2
D
o
Ax
S S曲梯形OABC - S曲梯形OABD
1 xdx 1 x2dx
0
0
S
1
(
0
x - x2 )dx
2 3 x3 1 3 x 2 3 0
9 2
学习小结: 求在直角坐标系下平面图形的面积步骤: 1.作图象; 2.求交点的横坐标,定出积分上、下限; 3.确定被积函数,用定积分表示所求的面积, 特别注意分清被积函数的上、下位置; 4.用牛顿-莱布尼茨公式求定积分.
课外练习
作业:课本 P67 A 组 T2
y x4
4
y 2x
2 S1
S2 y x 4
S1
8
2
S 2S1 S2 2 0
8
2xdx ( 2
2x x 4)dx

定积分的应用练习题

定积分的应用练习题

题型1.由已知条件,根据定积分的方法、性质、定义,求面积2.由已知条件,根据定积分的方法、性质、定义,求体积内容一.微元法及其应用二.平面图形的面积1.直角坐标系下图形的面积2.边界曲线为参数方程的图形面积3. 极坐标系下平面图形的面积三.立体的体积1.已知平行截面的立体体积2.旋转体的体积四.平面曲线的弦长五.旋转体的侧面积六.定积分的应用1.定积分在经济上的应用2.定积分在物理上的应用题型题型I微元法的应用题型II求平面图形的面积题型III 求立体的体积题型IV 定积分在经济上的应用 题型V 定积分在物理上的应用自测题六解答题4月25日定积分的应用练习题一.填空题1. 求由抛物线线x x y 22+=,直线1=x 和x 轴所围图形的面积为__________2.抛物线x y 22=把圆822≤+y x 分成两部分,求这两部分面积之比为__________3. 由曲线y x y y x 2,422==+及直线4=y 所围成图形的面积为 4.曲线331x x y -=相应于区间[1,3]上的一段弧的长度为 5. 双纽线θ2sin 32=r 相应于22πθπ≤≤-上的一段弧所围成的图形面积为 . 6.椭圆)0,0(1sin 1cos b a t b y t a x ⎩⎨⎧+=+=所围成的图形的面积为二.选择题1. 由曲线22,y x x y ==所围成的平面图形的面积为( ) A .31 B . 32 C . 21 D . 23 2. 心形线)cos 1(θ+=a r 相应于ππ2≤≤x 的一段弧与极轴所围成的平面图形的面积为( )A .223a π B . 243a π C . 283a π D . 23a π 3. 曲线2xx e e y -+=相应于区间],0[a 上的一段弧线的长度为 ( )A . 2a a e e -+B . 2a a e e -- C .12++-a a e e D .12-+-aa e e 4. 由曲线2,0,===y x e y x 所围成的曲边梯形的面积为( )。

定积分及其应用练习 带详细答案

定积分及其应用练习 带详细答案

定积分及其应用题一 题面:求由曲线2(2)y x =+与x 轴,直线4y x =-所围成的平面图形的面积. 答案:323.变式训练一题面:函数f (x )=错误!的图象与x 轴所围成的封闭图形的面积为( ) A.错误! B .2 C .3D .4答案:D. 详解:画出分段函数的图象,如图所示,则该图象与x 轴所围成的封闭图形的面积为错误!×2×2+∫错误!02cos x d x =2+2sin x 错误!=4.变式训练二 题面:由直线y =2x 及曲线y =3-x 2围成的封闭图形的面积为( ) A .2错误! B .9-2错误! C.错误!D 。

错误!答案: 详解:注意到直线y =2x 与曲线y =3-x 2的交点A ,B 的坐标分别是(-3,-6),(1,2),因此结合图形可知,由直线y =2x 与曲线y =3-x 2围成的封闭图形的面积为错误!(3-x 2-2x )d x =错误!错误!=3×1-错误!×13-12-错误!错误!=错误!,选D.题二 题面:如图所示,在边长为1的正方形OABC 中任取一点P ,则点P 恰好取自阴影部分的概率为( ).A .14B .错误!C .错误!D .错误!变式训练一题面:函数f (x )=sin(ωx +φ)的导函数y =f ′(x )的部分图象如图所示,其中,P 为图象与y 轴的交点,A ,C 为图象与x 轴的两个交点,B 为图象的最低点.若在曲线段ABC 与x 轴所围成的区域内随机取一点,则该点在△ABC 内的概率为________.答案:错误!. 详解:设A(x0,0),则ωx0+φ=错误!,∴x0=错误!-错误!.又y=ωcos(ωx+φ)的周期为错误!,∴|AC|=错误!,C错误!。

依题意曲线段错误!与x轴围成的面积为S=-∫错误!-错误!+错误!错误!-错误!ωcos(ωx+φ)d x=2。

∵|AC|=πω,|y B|=ω,∴S△ABC=错误!.∴满足条件的概率为错误!.变式训练二题面:(2012•福建)如图所示,在边长为1的正方形OABC中任取一点P,则点P恰好取自阴影部分的概率为()A.B.C.D.答案:C.详解:根据题意,正方形OABC的面积为1×1=1,而阴影部分由函数y=x与y=围成,其面积为∫01(﹣x)dx=(﹣)|01=,则正方形OABC中任取一点P,点P取自阴影部分的概率为=;故选C.金题精讲题一题面:(识图求积分,二星)已知二次函数y=f(x)的图象如图所示,则它与x轴所围图形的面积为().A.错误!B.错误!C.错误!D.错误!答案:变式训练一题面:如图求由两条曲线y =-x 2,y =-错误!x 2及直线y =-1所围成的图形的面积.答案:错误!。

(完整版)定积分练习题

(完整版)定积分练习题

一、选择题1. 设连续函数f (x )>0,则当a <b 时,定积分⎠⎛a bf (x )d x 的符号( ) A .一定是正的 B .一定是负的C .当0<a <b 时是正的,当a <b <0时是负的D .以上结论都不对解析: 由⎠⎛a bf (x )d x 的几何意义及f (x )>0,可知⎠⎛a b f (x )d x 表示x =a ,x =b ,y =0与y =f (x )围成的曲边梯形的面积.∴⎠⎛ab f (x )d x >0.答案:A 2. 若22223,,sin a x dx b x dx c xdx ===⎰⎰⎰,则a ,b ,c 的大小关系是( )A .a <c <bB .a <b <cC .c <b <aD .c <a <b解析:a =13x 3 |20=83,b =14x 4 |20=4,c =-cos x |20=1-cos2,∴c <a <b . 答案:D3. 求曲线y =x 2与y =x 所围成图形的面积,其中正确的是( )A .S =⎠⎛01(x 2-x )d xB .S =⎠⎛01(x -x 2)d xC .S =⎠⎛01(y 2-y )d yD .S =⎠⎛01(y -y )d y[答案] B[解析] 两函数图象的交点坐标是(0,0),(1,1),故积分上限是1,下限是0,由于在[0,1]上,x ≥x 2,故函数y =x 2与y =x 所围成图形的面积S =⎠⎛01(x -x 2)d x .4.11(sin 1)x dx -+⎰的值为( )A. 2B.0C.22cos1+D. 22cos1- 【答案】A 【解析】[][]1111(sin 1)cos (cos11)cos(1)12x dx x x --+=-+=-+----=⎰5. 由曲线22y x x =+与直线y x =所围成的封闭图形的面积为 ( )A .16B .13C .56D .23【答案】 A由22,x x x +=解得两个交点坐标为(-1,0)和(0,0), 利用微积分的几何含义可得封闭图形的面积为:23201111111((2)()|().32326S x x x dx x x --=-+=--=--=⎰ 二、填空题6. 已知f (x )=⎠⎛0x(2t -4)d t ,则当x ∈[-1,3]时,f (x )的最小值为________.解析: f (x )=⎠⎛0x(2t -4)d t =(t 2-4t )| x 0=x 2-4x =(x -2)2-4(-1≤x ≤3),∴当x =2时,f (x )min =-4.答案: -47. 一物体以v (t )=t 2-3t +8(m/s)的速度运动,在前30 s 内的平均速度为________. 解析:由定积分的物理意义有:s =3020(38)t t dt -+⎰=(13t 3-32t 2+8t )|300=7890(m).∴v =s t =789030=263(m/s).答案:263 m/s 三、解答题8.求下列定积分:(1)⎠⎛12⎝⎛⎭⎫x -x 2+1x d x ;(2)(cos e )d x x x π-⎰+;(3)⎠⎛49x (1+x )d x ;(4)⎠⎛0πcos 2x 2d x .解析: (1)⎠⎛12⎝⎛⎭⎫x -x 2+1x d x =⎠⎛12x d x -⎠⎛12x 2d x +⎠⎛121x d x =x 22| 21-x 33| 21+ln x |21=32-73+ln 2=ln 2-56. (2)(cos e )d x x x π-⎰+=00cosxd e d x x x ππ--+⎰⎰=sin x ||0-π+e x 0-π=1-1eπ. (3)⎠⎛49x (1+x )d x =⎠⎛49(x 12+x )d x =⎪⎪⎝⎛⎭⎫23x 32+12x 249=23×932-23×432+12×92-12×42=4516. (4)⎠⎛πcos 2x 2d x =⎠⎛0π1+cos x 2d x =12x |0π+12sin x |0π=π2.9. 已知函数f (x )=x 3+ax 2+bx +c 的图象如图:直线y =0在原点处与函数图象相切,且此切线与函数图象所围成的区域(阴影)面积为274,求f (x ).解:由f (0)=0得c =0, f ′(x )=3x 2+2ax +b . 由f ′(0)=0得b =0, ∴f (x )=x 3+ax 2=x 2(x +a ),由∫-a 0[-f (x )]d x =274得a =-3. ∴f (x )=x 3-3x 2.10.已知f (x )为二次函数,且f (-1)=2,f ′(0)=0,⎠⎛01f (x )d x =-2. (1)求f (x )的解析式;(2)求f (x )在[-1,1]上的最大值与最小值. 解析: (1)设f (x )=ax 2+bx +c (a ≠0), 则f ′(x )=2ax +b .由f (-1)=2,f ′(0)=0,得⎩⎪⎨⎪⎧ a -b +c =2b =0,即⎩⎪⎨⎪⎧c =2-ab =0.∴f (x )=ax 2+(2-a ).又⎠⎛01f (x )d x =⎠⎛01[ax 2+(2-a )]d x=⎣⎡⎦⎤13ax 3+(2-a )x | 10=2-23a =-2, ∴a =6,∴c =-4. 从而f (x )=6x 2-4.(2)∵f (x )=6x 2-4,x ∈[-1,1], 所以当x =0时,f (x )min =-4; 当x =±1时,f (x )max =2.B 卷:5+2+2一、选择题1. 已知f (x )为偶函数且61(),2f x dx =⎰则66()f x dx -⎰等于( )A .2B .4C .1D .-1解析:∵f (x )为偶函数,∴661()(),2f x dx f x dx -==⎰⎰∴6660()2() 1.f x dx f x dx -==⎰⎰答案:C2. (改编题)A . 3 B. 4 C. 3.5 D. 4.5 【答案】C【解析】2220202101102,0()2,()(2)(2)(2)|(2)|2,02232 3.5.2x x x x f x x f x dx x dx x dx x x x x ----≥⎧=-=∴=++-=++-⎨+<⎩=+=⎰⎰⎰3. 已知函数y =x 2与y =kx (k >0)的图象所围成的阴影部分的面积为92,则k 等于( )A .2B .1C .3D .4答案:C解析:由⎩⎪⎨⎪⎧y =x2y =kx 消去y 得x 2-kx =0,所以x =0或x =k ,则阴影部分的面积为 ∫k 0(kx -x 2)d x =(12kx 2-13x 3) |k 0=92. 即12k 3-13k 3=92,解得k =3. 4. 一物体在力F (x )=⎩⎪⎨⎪⎧10 (0≤x ≤2)3x +4 (x >2)(单位:N)的作用下沿与力F 相同的方向,从x=0处运动到x =4(单位:m)处,则力F (x )作的功为( )A .44B .46C .48D .50解析: W =⎠⎛04F (x )d x =⎠⎛0210d x +⎠⎛24(3x +4)d x =10x | 20+⎝⎛⎭⎫32x 2+4x | 42=46.答案:B5. 函数()x f 满足()00=f ,其导函数()x f '的图象如下图,则()x f 的图象与x 轴所围成的A .31 B .34 C .2 D .38 【答案】B【解析】由导函数()x f '的图像可知,函数()x f 为二次函数,且对称轴为1,x =-开口方向向上,设函数2()(0),(0)0,0.()2,f x ax bx c a f c f x ax b '=++>=∴==+因过点(-1,0)与(0,2),则有2(1)0,202,1, 2.a b a b a b ⨯-+=⨯+=∴==2()2f x x x ∴=+, 则()x f 的图象与x 轴所围成的封闭图形的面积为232032-22114(2)()|=2)(2).333S x x dx x x -=--=--⨯+-=⎰(- 二、填空题6.(改编题)设20lg ,0(),3,0ax x f x x t dt x >⎧⎪=⎨+≤⎪⎩⎰若((1))1,f f =则a 为 。

定积分的简单应用-定积分的物理应用

定积分的简单应用-定积分的物理应用

42 3
3
x2
|02
(2 2 3
3
x2
1 2
x2
4x)
|82
16 3
64 3
26 3
18
练习 2: 计算由曲线 y x3 6x和 y x2 所围
成的图形的面积.
解: 求两曲线的交点:
y x3 6x
y x2
y
x2
(0,0),(2,4),(3,9).
A1
0 2
(x3 6x x2 )dx
定积分在物理中的应用
1、变速直线运动的路程
设做变速直线运动的物体运动的速度v=v(t)≥0, 则此物体在时间区间[a, b]内运动的距离s为
b
s a v(t)dt
v
v v(t)
t
Oa
b
例: 一辆汽车的 速 度 时间曲 线 如图 1.7 3所示.求汽车在 这1min 行驶的路程.
v /m/ s
2.一物体以速度 v(t) 2t 2 (m/s)作直线运动,媒质的
阻力 F(N)与速度 v(m/s)的关系为 F 0.7v2 ,试求在 时刻 t 0 (s)到 t 2 (s)这段时间内阻力做的功.
解:媒质的阻力为 F 0.7v2 = 2.8t4
取一小段时间t,t △t
这一小段时间内阻力做的功为△W Fv△t ∴在时刻 t 0 (s)到 t 2 (s)这段时间内阻力做的
用下,沿着r轴方向从r=a到r=b(a<b),求电场
力对它所作的功。
解:
由题意,所求功为
q
•o
a•
1
•r• •

• •b
r
w
b a
kq r2 dr

定积分练习题+答案

定积分练习题+答案

x
arctan(cos x) 2
04
27
8.
1 x5e x2 dx =
1
答案: 0 .
由于被积函数是奇函数.
9.设 f ( x) 是连续奇函数,且
1 f ( x)dx 1,则
0
f ( x)dx =
0
1
答案: 1
1
0
因为 f ( x) 是连续奇函数, 则 f ( x)dx f ( x)dx 0
ln(1 t)dt
9. lim 0
=(
x0 1 cos x
(A) 1
(B) 2
).
(C ) 4
(D) 8
答案: C.
sin2 x
因为 lim 0 ln(1 t)dt lim ln(1 sin2x) 2cos 2x
x 0 1 cos x
x 0
sin x
lim 2cos 2x lim ln(1 sin2x) sin2x
x 0
x 0 sin2x
sin x
2 lim sin2x 2sin x cos x 4
x 0 sin2x
sin x
18
10.设 F( x)
x 0
1 1 t2
dt
1 x 0
1 1 t2
dt
,则Biblioteka ().( A ) F(x) 0
( B ) F(x)
2
( C ) F( x) arctan x ( D ) F( x) 2arctan x
0
0
(C ) 0
( D ) 以上都不正确
二、填空题
1. lim 1 xndx = n 0
b
a
2. f ( x)dx f ( x)dx =

定积分及其应用计算题

定积分及其应用计算题
x a cos 3 t , a 0, t 0,2 。 设星形线的参数方程为 3 y a sin t ,
3
(1) 求它与 x 轴所围成的面积; (2) 求它的弧长; (3) 求它与 x 轴围成区域绕 x 轴旋转而成的旋转体的体积和 表面积. 15* 设曲线 y ax a 0, x 0 与 y 1 x 相交于点 A ,过坐标原点 O 和点 A 的直线与曲线 y ax 围成一个平面图形,问 a 为何值时,该 图形绕??轴旋转一周所得的旋转体的体积最大 ?最大体积为多 少? 16. 过点 1,0 作曲线 y x 2 的切线,该切线与上述曲线及 x 轴 围成一个平面图形 A .(1) 求 A 的面积; (2) 求 A 绕 x 轴旋转 一周所成的旋转体的体积. 17* 设函数 f x 在闭区间 0,1 上连续,在开区间 0,1 内大于零, 并满足 3a xf x f x x (a 为常数);
1 2
y a1 cos t ,
(1) 求它绕 x 轴旋转一周生成的旋转体的体积与侧面积; (2) 求它绕 y 轴旋转一周生成的旋转体的体积与侧面积. 12. 13. 14.
x 2 求曲线 y 在 0 x 2 区间段的弧长. 2 x at sin t , 求外旋轮线的方程为 0 t 2 , a 0 的弧长. y a1 cos t ,
要求汽锤每次击打桩时所做的功与前一次击打时所做的功之 比为常数 r ( 0 r 1 ).问: (1) 汽锤击打 3 次后,可将桩打进地下多深? (2) 若击打次数不限,汽锤至多能将桩打进地下多深? 广义积分问题 1. 计算
3 2 1 2
dx xx
x2 0
2
.

(完整版)定积分的简单应用测试题

(完整版)定积分的简单应用测试题

一、选择题1.如图所示,阴影部分的面积为( )A.⎠⎛ab f (x )d xB.⎠⎛ab g (x )d xC.⎠⎛ab [f (x )-g (x )]d xD.⎠⎛ab [g (x )-f (x )]d x2.如图所示,阴影部分的面积是( )A .2 3B .2- 3 C.323D.3533.由曲线y =x 2-1、直线x =0、x =2和x 轴围成的封闭图形的面积(如图)是( )A.⎠⎛02(x 2-1)d xB .|⎠⎛02(x 2-1)d x |C.⎠⎛02|x 2-1|d xD.⎠⎛01(x 2-1)d x +⎠⎛12(x 2-1)d x4.设f (x )在[a ,b ]上连续,则曲线f (x )与直线x =a ,x =b ,y =0围成图形的面积为( )A.⎠⎛ab f (x )d xB .|⎠⎛ab f (x )d x |C.⎠⎛ab |f (x )|d xD .以上都不对5.曲线y =1-1681x 2与x 轴所围图形的面积是( ) A .4 B .3 C .2D.526.比较积分值dx x e ⎰102和dx ex⎰1的大小( )A .dx x e ⎰102大于dx ex⎰1B .dx x e⎰102小于dx ex⎰1C .dx x e⎰102等于dx ex⎰1D .dx x e ⎰102和dx ex⎰1不能比较7.由曲线y =x 2,y =x 3围成的封闭图形面积为( ) A.112 B.14 C.13D.7128.求⎰-11xdx 的解( ) A .0 B .1 C .-1D .2 9.求dx x ⎰212的解() A.12 B .31 C .32D .3710.过原点的直线l 与抛物线y =x 2-2ax (a >0)所围成的图形面积为92a 3,则直线l 的方程为( )A .y =±axB .y =axC .y =-axD .y =-5ax二、填空题11.由曲线y 2=2x ,y =x -4所围图形的面积是________.12.求函数y=f(x)=x 2+1在区间[0,1]上的平均值y -________.13.由两条曲线y =x 2,y =14x 2与直线y =1围成平面区域的面积是________.14.求经过点(0,1),并且在每一点P (x,y )处的切线的斜率为2x 的曲线方程__三、计算题 15.dxdy +x 32y=x 626x 2的通解16.dx e x x⎰+104)(5 17.⎰+102)1(x x dx18.dt te t⎰-20 三、解答题 19.求方程xxy x ysin 1/=+的通解 20.计算曲线y =x 2-2x +3与直线y =x +3所围图形的面积. 21.验证:函数x x y 21+=是方程x y dx dy -=1和y(2)=23的解 22.计算曲线f(x)=4-x 2与直线g(x)=-x+2所围成图形的面积 一、 选择题(每题3分,共30分) 1、()dx x ⎰+201的定积分是 ( )A 、1B 、2C 、3D 、4 2、已知圆r y x 222=+,则圆的面积是( )A 、πrB 、πr 2C 、2πrD 、2πr 2 3、底面积为S,高为h 的棱锥的体积是( )A 、shB 、sh 21 C 、sh 31 D 、sh 41 4、曲线()x x 24-=⎰与直线g ()2+-=x x 所围图形的面积是( )A 、29 B 、 27 C 、 23D 、 255、微分方程xy dxdy2=的通解是( )A 、 exc B 、 e x c 2C 、e xD 、x e 26、dx x⎰+∞131的极限值是( )A 、1B 、2C 、3D 、4 7、反常积分⎰-axa dx22的值是( )A 、-1B 、πC 、21π D 、π23 8、如果函数)(x f 在区间[b a ,]上连续,)(x F 是)(x f 在区间[b a ,]上的任意一个原函数,那么( )A 、⎰-=ba a Fb F dx x f )()()( B 、⎰=ba a F dx x f )()( C 、⎰=ba b F dx x f )()( D 、⎰+=ba a Fb F dx x f )()()( 9、求微分方程x x y dxdy 2263=+的通解是( )A 、e x c 2B 、x e 2C 、e x c 31-+D 、e x c 32-+10、如果函数)(x f 在区间[b a ,]上连续,则)(x f 在区间[b a ,]上的积分是( )A 、⎰b a dx x f )(B 、⎰b a dy x f )(C 、⎰b a dy y f )(D 、⎰ba dx y f )( 二、填空题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题
1.如图所示,阴影部分的面积为( )
A.⎠⎛a
b f (x )d x
B.⎠⎛a
b g (x )d x
C.⎠⎛a
b [f (x )-g (x )]d x
D.⎠⎛a
b [g (x )-f (x )]d x
2.如图所示,阴影部分的面积是( )
A .2 3
B .2- 3 C.323
D.353
3.由曲线y =x 2-1、直线x =0、x =2和x 轴围成的封闭图形的面积(如图)是( )
A.⎠⎛0
2(x 2-1)d x
B .|⎠⎛0
2(x 2-1)d x |
C.⎠⎛0
2|x 2-1|d x
D.⎠⎛0
1(x 2-1)d x +⎠⎛1
2(x 2-1)d x
4.设f (x )在[a ,b ]上连续,则曲线f (x )与直线x =a ,x =b ,y =0围成图形的面积为( )
A.⎠⎛a
b f (x )d x
B .|⎠⎛a
b f (x )d x |
C.⎠⎛a
b |f (x )|d x
D .以上都不对
5.曲线y =1-1681x 2
与x 轴所围图形的面积是( ) A .4 B .3 C .2
D.52
6.比较积分值dx x e ⎰1
02

dx e
x
⎰1
的大小( )
A .dx x e ⎰1
02
大于
dx e
x
⎰1
B .dx x e
⎰1
02
小于dx e
x
⎰1
C .dx x e
⎰102
等于
dx e
x
⎰1
D .dx x e ⎰1
02

dx e
x
⎰1
不能比较
7.由曲线y =x 2,y =x 3围成的封闭图形面积为( ) A.1
12 B.1
4 C.1
3
D.712
8.求⎰-1
1xdx 的解( ) A .0 B .1 C .-1
D .2 9.求dx x ⎰2
12
的解(
) A.12 B .3
1 C .3
2
D .3
7
10.过原点的直线l 与抛物线y =x 2-2ax (a >0)所围成的图形面积为92a 3
,则直线l 的方程为( )
A .y =±ax
B .y =ax
C .y =-ax
D .y =-5ax
二、填空题
11.由曲线y 2=2x ,y =x -4所围图形的面积是________.
12.求函数y=f(x)=x 2
+1在区间[0,1]上的平均值y -
________.
13.由两条曲线y =x 2
,y =14x 2
与直线y =1围成平面区域的面积
是________.
14.求经过点(0,1),并且在每一点P (x,y )处的切线的斜率为2x 的曲线方程__
三、计算题 15.
dx
dy +x 32y=x 626x 2
的通解
16.dx e x x
⎰+1
04)(5 17.⎰+1
02
)1(x x dx
18.dt te t
⎰-2
0 三、解答题 19.求方程
x
x
y x y
sin 1/
=
+
的通解 20.计算曲线y =x 2-2x +3与直线y =x +3所围图形的面积. 21.验证:函数x x y 21
+=是方程
x y dx dy -=1和y(2)=2
3
的解 22.计算曲线f(x)=4-x 2
与直线g(x)=-x+2所围成图形的面积 一、 选择题(每题3分,共30分) 1、()dx x ⎰+2
01的定积分是 ( )
A 、1
B 、2
C 、3
D 、4 2、已知圆r y x 22
2
=+,则圆的面积是( )
A 、πr
B 、πr 2
C 、2πr
D 、2πr 2 3、底面积为S,高为h 的棱锥的体积是( )
A 、sh
B 、sh 2
1 C 、sh 3
1 D 、
sh 4
1 4、曲线()x x 2
4-=⎰与直线g ()2+-=x x 所围图形的面积是( )
A 、
29 B 、 27 C 、 23
D 、 2
5
5、微分方程xy dx
dy
2=的通解是( )
A 、 e
x
c B 、 e x c 2
C 、e x
D 、
x e 2
6、dx x
⎰+∞
1
3
1
的极限值是( )
A 、1
B 、2
C 、3
D 、4 7、反常积分⎰-a
x
a dx
2
2的值是( )
A 、-1
B 、π
C 、2
1
π D 、π2
3 8、如果函数)(x f 在区间[b a ,]上连续,)(x F 是)(x f 在区间[b a ,]上的任意一个原函数,那么( )
A 、⎰-=b
a a F
b F dx x f )()()( B 、⎰=b
a a F dx x f )()( C 、⎰=b
a b F dx x f )()( D 、⎰+=b
a a F
b F dx x f )()()( 9、求微分方程x x y dx
dy 2
263=+的通解是( )
A 、e x c 2
B 、x e 2
C 、e x c 3
1-+ D 、e x c 3
2-
+
10、如果函数)(x f 在区间[b a ,]上连续,则)(x f 在区间[b a ,]上的积分是( )
A 、⎰b
a dx x f )( B 、⎰
b a dy x f )( C 、⎰b a dy y f )( D 、⎰b
a dx y f )(
二、填空题。

(每题5分,共20分)
1、经过点(0,1),并且在每一点P (),y x 处的切线的斜率为132
-x 的曲线是
2、⎰b
a dx x kf )(=
3、比较积分值⎰1
02x e 和dx e x
⎰1
0的大小
4、函数1)(2
+==x x f y 在区间[0,1]上的平均值是
三、用定积分定义求下列定积分。

(每题4分,共20分)

5
4xdx
dx x
x ⎰-2
12
)
1(
dx e x
⎰1
2
dx x e x ⎰
⎪⎭⎫

⎛+2
1
1
dx x

-21
2
11
四、解答题。

(每题10分,共20分)
(1)、求经过点(0,1),并且在每一点P (),y x 处的切线的斜率为2x 的曲线方程。

(2)、求x xy dx
dy
42=+的通解。

五、证明题。

(10分) 证明
y
x xy
y x 2
2
)
0,0(),(lim
+→不存在。

相关文档
最新文档