小升初数学衔接班教程
小升初数学衔接班第1讲——学法指导

初中数学学习,你准备好了吗?——小升初衔接之数学学法指导1一、学习目标通过比较小学和初中数学课程学习特点、学习方法和思维习惯的不同来解决小升初衔接阶段学生在学法上、心理上容易出现的问题,同时培养学生一些初中阶段应具备的数学能力。
二、学习重点1、认识初中数学的特点,了解在初中数学的学习过程中可能出现的问题,提前为即将开始的学习做好准备。
2、了解如何培养适合中学数学的学习方法、养成良好的学习习惯,并在后续的学习过程中自觉地以此要求自己。
三、重点讲解(一)引语1、数学学科的重要性。
2、衔接阶段会出现的问题。
(二)认识初中数学1、小学数学的特点(模仿性)在小学,由于同学们年龄较小,所以抽象思维能力较差,而模仿性较强;另一方面,小学教材中,例题类型多且全,有时老师还有补充,同学们能在课堂上见到几乎所有的题型,故同学们只要认真模仿就能学得比较好。
例1、计算:181 64.83535.17441919 +++分析:虽然此题的运算顺序应是从左到右,但是仔细观察四个加数的特点,发现第一个加数与第三个加数的和正好是一个整数,而第二个加数与第四个加数的分母相同。
因此,我们可以利用加法的交换律和结合律进行简便运算。
解:181 64.83535.17441919 +++18164.8335.175441919=+++181(64.8335.17)(544)1919=+++=100+50=150只要同学们认真听讲,一定可以模仿着解答下列问题。
练习:41 2.75310.2154 +++2、初中数学的主要内容初中数学主要包括以下内容:(1)用字母代替数:这是进一步学习变量数学的基础。
例2、猜数游戏 表演者从容地说:“你们各人可以任写一个比1大的一位数。
” 话音刚落,众人说:“写好啦!”“将你写的数减去1,再乘以5,再减去2,再乘以2。
”表演者一句一顿地交待方法。
小王写的是9,按要求,他不停地计算:918-=,8540⨯=,40238-=,38276⨯=。
小升初衔接班数学讲义

第一讲丰富的图形世界【知识要点】一、正方体的平面展开图(11 种);1.“一四一”型:6 个2.“二三一”型:3 个3.“三三”型: 1 个4.“二二二”型:1 个田字格对顶格二、几何体的三视图(正视图、左视图、俯视图);(一)已知几何体,画三视图1.正(主)视图:从左往右看(有几列,每列最高有几层),数字化写了下面;2.左视图:从里往外看(有几列,每列最高有几层),数字化写了左侧;3.俯视图:最底层(方位).如图是由一些完全相同的小立方块搭成的几何体,请画出它的三种视图.(二)已知三视图,确定几何体1.将正视图数字化写在俯视图的下面;将左视图数字化写在俯视图的左侧;2.将“ 1”所在的行或列全部填“ 1”;3.分析其它空格的可能性(最高值)如图是由一些完全相同的小立方块搭成的几何体的三种视图,那么搭成这个几何体所用的小立方块的个数是.【新知讲授】1.如图,将标号为A、 B、 C、 D 的正方形沿图中的虚线剪开后得到标号为组图形,则按 A、 B、 C、 D的顺序确定正确对应的图形顺序是 ().(A) P 、M、Q、NA B C(B)Q 、N、M、P(C)M 、P、Q、N(D) N 、Q、P、MP Q M2.在桌子上放着五个薄圆盘 , 如右图所示 . 它们由下到上放置的次序应当是(A)X ,Y, Z,W,V(B)X,W,V,Z,Y(C)Z ,V, W,Y,X(D)Z,Y,W,V,X3.在下列图形中( 每个小正方形皆相同 ) 可以是一个正方体表面展开图的是( ). P、 Q、 M、N 的四DN ( ).(A)(B)(C)(D)4.在下列图形中( 每个小正方形皆相同) 可以是一个正方体表面展开图的是().(A)(B)(C)(D)5.如右图所示的立方体,如果把它展开,可以是下列图形中的().(A)(B)(C)(D)6.正方体的平面展开图是右图,原正方体形如().(A)(B)(C)(D)7.如图所示的几何体是由六个小正方体组合而成的,它的左视图是().8.由几个小立方体搭成的一个几何体如图 1 所示,它的主(正)视图见图2,那么它的俯视图为().(A)(B)(C)(D)9.下面的几何体中,主(正)视图为三角形的是().(A)(B)(C)(D)10.如果用□表示 1 个立方体,用表示两个立方体叠加,用■表示三个立方体叠加,那么下面右图由7 个立方体叠成的几何体,从正前方观察,可画出的平面图形是().(A)(B)(C)(D)11.下图是由一些相同的小正方形构成的几何体的三视图,那么这些相同的小正方形的个数是( ).(A)4 (B)5 (C) 6 (D)712. 已知一个物体由x 个相同的正方体堆成,它的主视图和左视图如图所示,那么x 的最大值是() .(A)13 (B)12 (C)11 (D)10(第 11 题图)(第12题图)(第13题图)13.一个画家有14 个边长为1m的正方体,他在地面上把它们摆成如图所示的形式,然后他把露出的表面都涂上颜色,那么被涂上颜色的总面积为().(A)19m 2(B)21m 2(C)33m2(D)34m 214.把图中的片沿虚线折起来,便可成为一个正方体,这个正方体 4 号面的对面是_______号面 .(第 14 题图)(第15题图)(第16题图)16.把图 (1) 的正方体表面展开成图(2) 时,有—个面的 4 条棱都没有被剪开,这个面是正方形.(用字母表示).17.由一些相同的小正方体构成一个立体图形,如图是从不同的方向看这个立体图形的平面图形,则构成这个立体图形的小正方形的个数是.C 2B 1A 4主视图左视图俯视图18.如图是一个正方体木块的表面展开图. 若在正方体的各面填上数,使得对面两数之和为7,则 A 处填的数是,B 处填的数是,C 处填的数是.19.一张桌子上摆放若干碟子,从三个方向上看,三种视图如下图所示,则这张桌子上共摆放有 ________个碟子 .21. 如图都是由边长为 1 的正方体叠成的图形. 例如第( 1)个图形的表面积为 6 个平方单位,第( 2)个图形的表面积为18 个平方单位,第(3)个图形的表面积是36 个平方单位 .(1)依此规律,求第( 5)个图形的表面积是多少个平方单位?(2)第( n)个图形的表面积又是多少个平方单位?22.请在图中用阴影标出六个小正方形,它们是一个正方形的展开图(要求画法各不相同).23.如图是由一些完全相同的小立方块搭成的几何体的三种视图,分别写出搭成这个几何体所用的小立方块的个数 .(1)共用块小立方块;主视图左视图俯视图(2)共用块小立方块;主视图左视图俯视图(3)共用块小立方块;24.如图,是由一些大小相同的小正方体组成的简单的几何体的主视图和俯视图.(1)请你画出这个几何体的一种左视图;(2)若组成这个几何体的小正方体的块数为n,请你写出n的所有可能值 .第二讲线段【知识要点】一、直线、射线、线段;1.区别:直线射线线段图形几何表示直线 AB(直线 BA)射线 AB(射线 BA)线段 AB(线段 BA)同一条直线不同射线同一条线段端点没有 1 个 2 个延伸方向两端延伸一端延伸无延伸长度度量不能不能能2.关系(联系):射线、线段是直线的一部分射线:直线上一点及一旁的部分;线段:直线上两点及两点之间的部分;3 .注意:两点确定一条直线;两点确定两条射线;两点确定一条线段;二、线段的中点;1.定义:将一条线段平均分成相等的两段的点.A P B2.性质:如图, P为线段 AB的中点,则有:①PA=PB;② AB=2PA;③ AB=2PB;④ PA=1AB;⑤ PB=1AB;223.判定 P 为线段 AB的中点:注意点P 是否在线段AB上;..(注意在无图条件下区别:在直线.. AB上);三、线段的有关计算(和、差、倍、分);四、两点间的距离1.定义:连接两点间的线段的长度..;2.能用“两点之间线段最短”来解释生活中的实际问题;3.应用:判断 A、 B、 C 三点共线的方法:AB、 AC、 BC三条线段的长度满足其中两条线段的长等于第三条线段的长. 【新知讲授】O AB1.如图,下列说法不正确的是 ( ).(A) 直线 AB与直线 BA是同一条直线(B) 射线 OA与射线 OB是同一条射线2.下列图形中,能相交的是( ).CDO CAABBBBDAOCAC(A) (B) (C) (D)3.点 C 在线段 AB 上,给出下列关系:① AC+BC=AB ;② AB-AC=BC ;③ AB-BC=AC ;④ AC=BC.其中一定正确的个数是 ( ).(A)0 个(B)1个(C)2 个 (D)3个4. 点 M 在直线 AB 上,下列条件中能判断点M 为线段 AB 的中点的是 ().(A)AM= 1AB(B)AB=2BM(C)AM=BM(D)AM+BM=AB25.下面说法中不正确的是 ( ).(A) 两点之间线段最短(B)两点确定一条直线(C) 直线、射线、线段都有中点(D) 两条不同的直线相交有且只有一个交点6.下面各种情况中, A 、B 、 C 三点在同一条直线上的是 ( ).(A)AB=5cm , AC=4cm , BC=2cm(B)AB=20cm, AC=8cm , BC=15cm (C)AB=16cm , AC=10cm , BC=3cm (D)AB=13cm, AC=16cm , BC=3cm7. C 为线段 AB 延长线上的一点,且 AC=3AB ,则 BC 为 AB 的.8.已知 A 、 B 、C 在同一直线上, AB=8, BC=4,则线段 AC 的长度为. 9.已知 AB=3,AC=9,当 BC= 时,点 A 、B 、 C 在同一条直线上 .10.如图, AC=BC=a , BD=b ,则 AD=.11.如图,已知线段 AB=11,C 、D 为 AB 上的两点,且 AD=8, BC=9,则线段 CD 的长为 .aaBA C DAC D bB12.如图, B 、C 两点把线段 AD 分成 2∶ 3∶ 4 三部分, M 是 AD 的中点, MC=1,则 AD= . 13.如图,已知 B 、C 是线段 AD 上的两点, M 是 AB 的中点, N 是 CD 的中点, MN=a , BC=b ,则线段 AD=.AB M C D A M B C N D14.一质点 P 从距原点 1 个单位的 A 点处向原点方向跳动,第一次跳动到OA 的中点 A 1 处,第二次从 A 1 点跳动到 O A 1 的中点 A 2 处,第三次从 A 2 点跳动到 O A 2 的中点 A 3 处,如 此不断跳动下去,则第 n 次跳动后,该质点到原点 O 的距离为 。
小升初数学衔接班教案

小升初数学衔接班教案小升初数学衔接班教案1教学目的:认识扇形统计图的特点和作用,能看懂并能简单地分析扇形统计图所反映的情况。
教学重点:看懂并能简单地分析扇形统计图所反映的情况。
教学难点:看懂并能简单地分析扇形统计图所反映的情况。
教学过程:一、导入1、同学们喜欢什么运动项目?我们利用以前学过的知识能不能很好地表示出这些情况?2、收集和整理数据,统计全班最喜欢的各项运动项目的人数,制成条形统计图。
二、新授1、观察条形统计图,你从中得到了哪些有用的信息?2、从条形统计图中,还有哪些信息不容易表示出来?(引发学生思考,从而发现条形统计图不容易看出各部分量与总量的关系)3、生成扇形统计图。
引导学生观察从扇形统计图中,你得到了哪些游泳的数学信息?(学生甘居直观观察,发表见解)4、根据统计图上表示的情况,你对我班同学有哪些建议?5、回顾知识生成,归纳扇形统计图的特点和作用。
6、“做一做”:自主看图,说一说,你从图中得到了哪些有价值的数学信息?(分析后根据题意自主计算,全班核对)三、应用练习1、练习二十五第1题:自主看图,说一说李明同学一天的作息安排是否合理,从中你能提出哪些合理化建议。
(引导学生说说怎样安排时间才合理,才能做到劳逸结合)2、练习二十五第2题:自主看图,说一说从图中得到哪些信息,在小组内沟通。
(使学生体会到父母的辛苦和对自己的爱,激发学生对父母、对家庭的爱)四、总结学生总结、比较扇形统计图和条形统计图及折线统计图相比有何特点。
教学追记:扇形统计图的教学,我主要联系了条形统计图和折线统计图的特点,让学生通过例题看到:在表示全班人数的圆中,用扇形可以清楚地表示出最喜欢的各种运动项目的人数占全班总人数的百分比。
从而使学生真切地体会到扇形统计图的特点,并通过看图回答问题并提出问题,加深对扇形统计图特点的认识。
小升初数学衔接班教案2教学目标:1.通过学习,使学生初步认识扇形统计图的特点和作用,知道扇形统计图可以清楚地表示出各部分数量和总量之间的关系。
小升初数学衔接班第8讲

【本讲教育信息】一. 教学内容:小升初数学衔接班第8讲1.2 直线、射线、线段二. 重点、难点:掌握直线、射线、线段的有关概念、性质和表示方法;弄清直线、射线、线段的区别和联系,掌握线段的画法,会使用简单的几何语言;会利用“两点之间,线段最短”这个重要性质解决一些实际问题。
【典型例题】[例1] 判断题(用√、×标出对错)。
1. 线段是两个端点间的部分。
()2. 因为射线只有一个端点,因此有一个点就可以确定射线。
()3. 连结A、B两点就得到两点间的距离。
()4. 反向延长射线OA到B。
()5. 若线段AB=2AC,则点C是线段AB的中点。
()答案:1. ×线段的定义是直线上两点和两点间的部分,包括两点在内。
2. ×射线是由端点和方向共同确定的。
3. ×距离是量,连结A、B两点只能得到线段AB,不是距离。
4. √射线不可延长,但可反向延长。
5. ×没有明确C点在线段AB上。
[例2] 填空:如图,共有______条直线,它们是____________;共有______条射线,其中可以用图中的字母表示的射线有_____条,写出以F为一个端点的射线是_________;图中共有______条线段,其中以B为一个端点的线段是_____。
DFA EBC分析:扣紧直线、射线、线段的概念,借助于图形逐一解答。
答案:共有3条直线,它们是直线AD、直线AB、直线BF;共有16条射线,其中可以用图中的字母标示的射线有10条,以F为一个端点的射线是射线FA、射线FD、射线FB;图中共有13条线段,其中以B为一个端点的线段是线段BC、线段BD、线段BE、线段BF、线段BA.[例3] 如图,选择正确的答案()A. 射线AB与射线CD一定相交B. 直线CD与射线AB一定相交C. 射线CD与射线BA一定不相交D. 射线CD与直线AB一定相交分析:可根据其延伸方向具体操作一下答案:D[例4] 填空如图,直线AB、CD相交于点O,如图,点P在直线_____上,在直线_____外,也可以说成直线____过点P,而直线_____不过点P。
小升初数学衔接班第4讲——一元一次方程的解法(二)

小升初数学衔接班第4讲——一元一次方程的解法(二)一、学习目标1、熟练掌握一元一次方程的解法;2、根据一元一次方程的特点,灵活安排各步骤的顺序,达到简化计算的目的,初步掌握利用整体思想解方程。
二、学习重点学会观察方程特点,重点掌握去分母、去括号、移项和合并的时机和顺序,理解整体思想,为初中学习换元法做准备。
三、课程精讲1、知识回顾上一讲大家学习了一元一次方程的解法,下面我们通过例题来复习一下。
例1、解方程21101211364x x x -++-=-思路导航:解含分数系数的一元一次方程的一般步骤是:去分母、去括号、移项、合并、系数化为1。
解答:去分母,得4(21)2(101)3(21)12x x x --+=+- 去括号,得842026312x x x ---=+- 移项,得123426208x x x ---=+- 合并,得318x =,即183x = 系数化为1,得16x =点津:要养成为每一步变形找依据的习惯,不能“跟着感觉走”。
仿练:解方程322126x x x -+-=-解答:去分母,得63(32)6(2)x x x --=-+ 去括号,得69662x x x -+=-- 移项,得66692x x x ++=+- 合并,得1313x = 系数化为1,得1x =2、新知探秘知识点一 分母中含有小数的一元一次方程 例2、解方程4 1.550.8 1.20.50.20.1x x x ----=思路导航:此题分母是小数,直接用上述方法去分母不方便,需要先将其化为整数。
解答:利用分数的基本性质,原方程可化为2(4 1.5)5(50.8)10( 1.2) x x x---=-去括号,得832541012x x x--+=-移项,得412310258x x x+-=+-合并,得1327x=,即2713x=系数化为1,得1327 x=点津:在分母化整时要注意使用的依据。
例3、解方程0.150.1330200.30.110.07300.2x x x++--=+思路导航:此题有的分数的分母需要化为整数,而有的分数却需要约分以减小分母,使得解题过程得以简化。
小升初数学衔接教案讲义

第一章 有理数1.1正数和负数一、基础知识1. 像3、2、0.8这样大于0的数叫做正数。
(根据需要,有时也在正数前面加正号“+”。
)2. 像-1、-4、-0.6这样在正数前面加负号“-”的数叫做负数。
3. 0既不是正数也不是负数。
4.带有正号的数不一定是正数,同样带有负号的数不一定是负数。
二、知识题库1.将下列各数按要求分类填写5、0.56、-7、0、29、-32、100、-0.00001 其中是正数的是( ),是负数的是( )。
2.如果水位上升1.2米,记作 1.2 米;那么水位下降0.8米,记作_______米.3.甲、乙两人同时从A 地出发,如果向南走48m,记作+48m ,则乙向北走32m ,记为 ,这时甲乙两人相距m. .4.某种药品的说明书上标明保存温度是(20±2)℃,由此可知在℃---℃范围内保存才合适.5.下列说法不正确的是( )A 、0小于所有正数B 、0大于所有负数C 、0既不是正数也不是负数D 、 0可以是正数也可以是负数6.—a 一定是负数吗?7.在同一个问题中,分别用正数及负数表示的量具有的意义.8.举出2对具有相反意义的量的例子:9.某地一天中午12时的气温是7℃,过5小时气温下降了4℃,又过7小时气温又下降了4℃,第二天0时的气温是多少?10.某老师把某一小组五名同学的成绩简记为:+10,-5,0,+8,-3,又知道记为0的成绩表示90分,正数表示超过90分,则五名同学的平均成绩为多少分三、想一想1、“甲比乙大-2岁”表示的意义是()A 、甲比乙小2岁B 、甲比乙大2岁C 、乙比甲大-2岁D 、乙比甲小2岁2、某市2009年元旦的最高气温为2℃,最低气温为-8℃,那么这天的最高气温比最低气温高( )A 、-10℃B 、-6℃C 、6℃D 、10℃1.1有理数一、知识海洋1.有理数的定义:整数和分数统称为有理数(有限小数和无限循环小数都是有理数而无限不循环小数却不是有理数)2.有理数的分类:(1)按整数分数分类(2)按数的正负性分类⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数负整数负数零正分数正整数正数有理数. 【有理数】一、基础知识1.、和统称为整数;和统称为分数。
小升初数学衔接班教材讲义15讲

小升初数学衔接班教材讲义15讲主编:杨育明目录第一讲:认识有理数。
2 第二讲:数轴与相反数。
8 第三讲:数轴与绝对值。
15 第四讲:有理数的加法。
21 第五讲:有理数的减法。
27 第六讲:有理数的加减混合运算。
32 第七讲:有理数的乘法。
38 第八讲:有理数的除法。
45 第九讲:有理数的乘方。
50第十讲:有理数的混合运算。
55 第十一讲:复习有理数及其运算(一)。
59第十二讲:字母表示数。
61 第十三讲:代数式。
65 第十四讲:复习有理数及其运算(二)。
68第十五讲:期末考试检测试卷。
72第一讲:认识有理数一.学习目标:1 了解与负数是从实际需要中产生的;2 理解正数与负数的概念,并会判断一个数是正数还是负数;3 初步会用正负数表示具有相反意义的量;4 在负数概念的形成过程中,培养学生的观察,归纳与概括能力。
二.重点与难点:1.正数与负数的概念和有理数的分类 三.学习过程 ◢正数与负数同学们,到目前为止,我们学过的数有哪些呢?在小学时我们学过像1、9、3.81、12.56、32、436这样的数,在小学时,老师给我们说,它们分别是整数、小数、分数,进入初中以后,我们把像1、9、3.81、12.56、32、436这样的数叫 ;如果我们把在小学学过的整数、小数、分数前面加一个“—”,比如像这些数,-3,-2,-1,-0.58,41-......,我们把它们叫 。
为什么有正数和负数的存在呢?我们来看一下面的问题: 把下列具有相反意义的量有用线边起来:(1)收入20元 前进100米 后退100米 支出20元 高于海平面155米 亏损6万元 盈余6万元 低于海平面155米(2)零上10C ︒运出50筐梨高于海平面8848米 低于海平面392米运进80筐梨 零下5C ︒学习与归纳:①为了表示具有相反意义的量,我们通常把其中一个数前面加上 号,把另一 个数前面加上 号来进行区分;前面带 号的数叫做正数,前面 的 号经常可以省略不写,前面带 号的数叫做负数,前 面的 号不可以省略;② 既不是正数也不是负数,是正数和负数的分界点; ③ 大于零, 小于零,正数 一切负数。
(完整版)小升初衔接数学讲义(共13讲)

第一讲 数系扩张--有理数(一)一、【问题引入与归纳】1、正负数,数轴,相反数,有理数等概念。
2、有理数的两种分类:3、有理数的本质定义,能表成mn(0,,n m n ≠互质)。
4、性质:① 顺序性(可比较大小);② 四则运算的封闭性(0不作除数);③ 稠密性:任意两个有理数间都存在无数个有理数。
5、绝对值的意义与性质:① (0)||(0)a a a a a ≥⎧=⎨-≤⎩ ② 非负性 2(||0,0)a a ≥≥③ 非负数的性质: i )非负数的和仍为非负数。
ii )几个非负数的和为0,则他们都为0。
二、【典型例题解析】:若||||||0,a b ab ab a b ab+-则的值等于多少?如果m 是大于1的有理数,那么m 一定小于它的( D ) A.相反数 B.倒数 C.绝对值 D.平方已知两数a 、b 互为相反数,c 、d 互为倒数,x 的绝对值是2,求220062007()()()x a b cd x a b cd -+++++-的值。
如果在数轴上表示a 、b 两上实数点的位置,如下图所示,那么||||a b a b -++化简的结果等于( )A.2aB.2a -C.0D.2b已知2(3)|2|0a b -+-=,求b a 的值是( )例1例2 例3 例4例51、绝对值的几何意义①|||0|a a=-表示数a对应的点到原点的距离。
②||a b-表示数a、b对应的两点间的距离。
2、利用绝对值的代数、几何意义化简绝对值。
二、【典型例题解析】:(1)若20 a-≤≤,化简|2||2|a a ++-(2)若0x,化简|||2||3|||x xx x---解答:设0a,且||axa≤,试化简|1||2|x x+--解答:a、b是有理数,下列各式对吗?若不对,应附加什么条件?(1)||||||;a b a b+=+(2)||||||;ab a b=(3)||||;a b b a-=-(4)若||a b=则a b=(5)若||||a b,则a b(6)若a b,则||||a b解答:若|5||2|7x x++-=,求x的取值范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例 4:计算: 1 2 2 3 3 4 4 5 3 1 5 2 7 3 9 4
3 4 5 6 3 4 5 6
模仿练习
计算:(1 5 3 5 9 5 )(1 1 3 1 9 1 ) 99 33 11 99 33 11
加法交换律:a b b a ;
加法结合律:(a b) c a (b c) ;
乘法交换律: a b b a
乘法结合律: a b c a (b c)
乘法分配律: a (b c) a b a c 减法的性质: a b c a (b c)
思路点拨 以上的每个分数的分母正好是相邻两个自然数的积,而且分子正好是分母
两个因数的差(1),我们可以直接利用裂项公式进行裂项产生加减抵消后化繁
为简。
模仿练习
1 1 4
4
1
7
1 7 10
00
例 2:计算:975×0.25+ 9 3 76 -9.75
4
模仿练习
糖果工作室原创文档
数学
小升初衔接班教程
目录
糖果工作室原创文档
第一讲 第二讲 第三讲 第四讲 第五讲 第六讲 第七讲 第八讲 第九讲 第十讲 第十一讲 第十二讲 第十三讲 第十四讲 第十五讲
计算中的技巧 1 ·········································································· 行程问题 5 ················································································· 工程问题 8 ················································································· 图形的面积 17 ············································································· 有理数 21 ····················································································· 有理数的加减法 24 ······································································ 有理数的乘除法 28 ······································································ 有理数的乘方 科学计数法 30 ·················································· 整式 33 ·························································································· 一元一次方程 35 ··········································································· 实际问题与一元一次方程 39 ························································· 图形的初步认识 43 ········································································ 角 45 ······························································································ 相交线 平行线 51 ········································································· 平行线的性质 命题 定理 54 ·························································
除法的性质: a b c a (b c)
3、灵活运用通分和约分
4、分数、小数化成统一的形式再计算,一般是分数化成小数。
5、凑整法:运用运算定律,使式子中一些数凑成整十、整百或整千的
数再计算。我们通常是利用运算律将一些数凑成整一、整十或整百再计算。
6、分组分解法:利用交换律和结合律对式子进行分组求解,最后再综
合求解。
7、综合方法:计算比较复杂的式子时要多种方法一起用。
重难点
运算法则和运算定律与性质的掌握和应用。
易错点
第 1 页 共 47 页
糖果工作室原创文档
去括号是的变号法则,尤其是括号前是减号。
精典例题 例 1: 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1
2 6 12 20 30 42 56 72 90
第一讲 计算的技巧
糖果工作室原创文档
知识导航
我们在进行运算时,除了熟练掌握好运算法则外,还要通过观察和分析,
找出题目中数的特点,合理、有效地进行计算。整数、小数与分数四则混合运
算常用的方法、技巧如下:
1、运算法则:先乘除后加减;先算小括号,再算中括号;同级运算从左
到右依次计算。
2、运算定律与性质:
31 25 36 4 11 4.44 4 5
37 111 37 25
8
例 3: 51 2 ÷ 5 + 71 3 ÷ 7 + 91 4 ÷ 9
33 44 55
(2010 年成都育才网络班招生数学试题)
第 2 页 共 47 页
模仿练习
糖果工作室原创文档
计算: 85 1 3 71 1 6 56 1 4 (2013 年成都外国语学校本地生招生考试题)