47相似三角形的性质(1)学案(无答案)-四川省成都南开为明学校九年级数学上册

合集下载

初中数学初三数学上册《相似三角形的性质》教案、教学设计

初中数学初三数学上册《相似三角形的性质》教案、教学设计
初中数学初三数学上册《相似三角形的性质》教案、教学设计
一、教学目标
(一)知识与技能
1.理解相似三角形的定义及性质,掌握相似三角形的判定方法。
2.能够运用相似三角形的性质解决实际问题,如求线段长度、角度大小等。
3.学会使用相似三角形的相关定理进行证明,提高逻辑推理能力。
4.掌握相似变换的概念,了解其在现实生活中的应用。
(二)过程与方法
1.通过观察、实践、探索,引导学生发现相似三角形的性质,培养他们的观察能力和动手操作能力。
2.通过小组合作、讨论交流,培养学生的团队合作意识和解决问题的能力。
3.运用类比、归纳等数学思想,帮助学生建立知识体系,提高他们的逻辑思维能力。
4.设计丰富的例题和练习,巩固所学知识,提高学生的解题技巧。
1.重点:相似三角形的定义、性质及判定方法,相似变换的应用。
2.难点:相似三角形性质的证明过程,以及将相似三角形性质应用于解决实际问题。
(二)教学设想
1.创设情境,导入新课
-通过展示生活中常见的相似图形,如地图、照片等,引发学生对相似三角形的兴趣。
-提问方式引导学生回顾已学的全等三角形知识,为新课的学习做好铺垫。
作业要求:
1.学生应在规定时间内独立完成作业,注重作业质量,提高解题效率。
2.作业完成后,认真检查,确保答案正确、书写规范。
3.积极参与课堂讨论,与同学分享解题思路和心得。
4.遇到问题及时向老师请教,不断提高自己的数学素养。
在教学过程中,教师应关注学生的个体差异,因材施教,充分调动学生的积极性,引导他们主动参与课堂活动。同时,注重培养学生的数学思维和解决问题的能力,为他们的终身学习奠定基础。
二、学情分析
本章节的学习对象为初三学生,经过前两年的数学学习,他们已经掌握了平面几何的基本知识和技能,具备了一定的逻辑推理和问题解决能力。在此基础上,学生对相似三角形的性质这一章节内容的学习将面临以下挑战:

4.7相似三角形的性质(1)经典导学案

4.7相似三角形的性质(1)经典导学案

九年级数学(上)导学案姓名:班级:日期:§4.7相似三角形的性质(1)【学习内容】相似三角形的性质(P106-P108页)【学习目标】经历探索相似三角形中对应线段比值与相似比的关系的过程,理解相似三角形的性质。

利用相似三角形的性质解决一些实际问题.【自研课】定向导学(15分钟)对子间等级评定:★(五星评定)对子间提出的问题:。

的比例建造了模型房梁△A B C,CD和C D分别是它们E【今日作业】(时段:午自习,时间20分钟)一填空:1、如果两个相似三角形对应边的比为3∶5 ,那么它们对应高之比是 、对应角平分线之比是 、对应中线之比是 。

2、在△ABC 中,AB=AC ,∠A=36°,∠B 的平分线交 AC 于D , △BCD ∽△____。

3、△ABC ∽△A 1B 1C 1,,AB=4,A 1B 1=12,则它们对应边上的高的比是 ,若BC 边上的中线为1.5,则B 1C 1上的中线A 1D 1=_______ 。

4、在△ABC 中,BC=54cm ,CA=45cm ,AB=63cm ,若另一个与它相似的三角形的最短边长为15cm ,则最长边为_____5、在Rt △ABC 中,CD 是斜边AB 上的高,若BD=9,DC=4,则AD=_____,BC=_____ 二、解答题:6、△ABC ~△'''C B A ,AD 和''D A 是它们的对应角平分线,已知AD =8cm ,''D A =3cm ,求△ABC 与△'''C B A 对应高的比。

7、如图,小明自制了一个小孔成像装置,其中纸筒的长度为15cm 。

他准备了一支长为20cm 的蜡烛,想要得到高度为5cm 的像,蜡烛应放在距离纸筒多远的地方CD OBA8、如图,在△ABC 中,AB =5,D,E 分别是边AC 和AB 上的点,且∠ADE=∠B,DE =2,求BC AD 的值EDCBA9、如图,AD 是△ABC 的高,点P,Q 在BC 边上,点R 在AC 边上,点S 在AB 边上,BC =60CM,AD =40CM,四边形PQRS 是正方形 (1)△ASR 与△ABC 相似吗?为什么?(2)求正方形PQRS 的边长ED QP R SCBA今天我知道了:我发现了: 我学会了: 【教师寄语】《新课堂,我展示,我快乐,我成功》-------。

九年级数学上册《相似三角形的性质》优秀教学案例

九年级数学上册《相似三角形的性质》优秀教学案例
小组合作是本节课的重要教学策略。我将根据学生的知识基础、性格特点等,合理分组,确保每个小组的实力相当。在小组合作中,引导学生相互讨论、交流,共同完成学习任务。通过小组合作,培养学生的团队协作能力、沟通能力和解决问题的能力,同时使学生在互动中相互启发,提高学习效果。
(四)反思与评价
在教学过程中,我将重视学生的反思与评价。在每个环节结束后,引导学生对自己的学习过程进行反思,总结自己在知识掌握、方法运用、合作交流等方面的优点和不足。同时,鼓励学生积极参与课堂评价,对同伴的表现给予肯定和建议,培养他们客观、公正、真诚的评价态度。
此外,我还将结合学生的反思与评价,对课堂教学进行总结,针对学生的共性问题进行讲解和指导,以提高教学效果。通过反思与评价,使学生认识到自己的进步与不足,激发他们的学习动力,培养他们自主、持续发展的能力。
四、教学内容与过程
(一)导入新课
在导入新课环节,我将首先展示一些生活中的图片,如建筑物的立面图、摄影作品中的构图等,让学生观察并发现其中的相似三角形。通过这一环节,让学生感受到相似三角形在现实生活中的广泛应用,激发他们的学习兴趣。接着,提出问题:“这些图形之间有什么共同特征?它们之间有什么关系?”引导学生思考,为新课的学习做好铺垫。
(二)讲授新知
1.相似三角形的定义:通过引导学生回顾已学的全等三角形概念,自然而然地引出相似三角形的定义。强调相似三角形的对应角相等、对应边成比例的特点,并用实例进行解释。
2.相似三角形的判定:介绍AA、SSS、SAS三种判定方法,结合具体图形进行讲解。通过讲解和举例,让学生掌握这些判定方法,并能够运用到实际问题中。
3.设计丰富的教学活动,如实物演示、动手操作、数学游戏等,让学生在实际操作中体验数学知识的形成过程,培养学生的实践操作能力。

九年级数学 相似三角形的性质(教案、导学案)

九年级数学 相似三角形的性质(教案、导学案)

27.2相似三角形27.2.2 相似三角形的性质【知识与技能】1. 理解并掌握相似三角形及相似多边形的周长和面积性质;2. 能够运用相似三角形及相似多边形的周长和面积性质解决相关问题.【过程与方法】经历将多边形问题转化为三角形问题进行探究的过程,进一步增强学生领会转化的思想方法.【情感态度】通过对性质的发现和论证过程,感受数学活动中充满着探索,提高学习热情,增强探究意识.【教学重点】理解并能运用相似三角形及相似多边形的周长和面积性质.【教学难点】探索证明相似多边形面积性质的过程.一、情境导入,初步认识问题(1)如果△ABC∽△A B C''',则它们之间有哪些性质?(2)如果两个多边形相似,那么这两个多边形又有怎样的性质呢?不妨说说看,并与同伴交流.【教学说明】以上两个问题可由学生口答,既是对前面学过知识的回顾,又是学习相似三角形及相似多边形的性质的铺垫.教师在学生回答过程中,在黑板上可写出关系式:(1)AB BC ACkA B B C A C===''''''(2)2311212231n nn nA A A AA AA A A A A A--===''''''11nnA AkA A=='',为后面证明相似三角形及相似多边形周长的比作准备.)二、思考探究,获取新知问题 1 你能根据刚才的性质探索出相似三角形和相似多边形周长之间各有怎样的特征?【教学说明】让学生依据黑板上所给出的两个等式来探索新的结论,在学生自主探索过程中,教师应在黑板上画出能够相似的△ABC 和△ABC,及相似的多边形A112nA A A'''最后师生共同探索出结论,并给出证明过程.问题2如图,△ABC∽△A B C''',相似比为k且AD,A D''分别是△ABC 与△A B C'''对应边长的高线,求ADA D''的值,并说明理由.问题3如图,△ABC∽△A B C''',相似比为k则△ABC与△A B C'''的面积之间有什么关系,说说你的理由.【教学说明】问题2为解决问题3作好了铺垫.教师可让学生自主探究问题2的结论,得出相似三角形对应高线之比等于相似比的结论.这里既要用到相似三角形性质又要用到相似三角形的判定,教师要作好诱导.由问题2的解决来探索问题3就顺理成章了 .问题4如图,四边形ABCD与四边形A B C D'''',相似比为k那么它们的面积之比又如何?谈谈你的看法.【教学说明】可先让学生在小组中进行交流,尽量找出解决问题的方法,与此同时,教师可设置以下问题来帮助学生:你能直接表示出图中两个四边形的面积吗?如果不能,是否可连接对角线AC和AC,,用三角形的面积来表示四边形的面积呢?这样设问起到画龙点睛作用,问题便迎刃而解,最后教师可在黑板上展示说理过程,从而得出:相似四边形面积的比等于相似比的平方.问题5 类似地,相似多边形面积之比是否也等于相似比的平方呢?【教学说明】引导学生将两个相似多边形用类似于问题4的方法转化成若干个三角形,从而得出结论.三、运用新知,深化理解1. 判断:(1)一个三角形的各边长扩大为原来的5倍,这个三角形的周长也扩大为原来的5倍.( )(2)—个四边形的各边长扩大为原来的9倍,它的面积扩大为原来的9倍.()2.△ABC∽△A B C''',它们的周长分别为60和 72,且 AB =15,B’C’=24,试求 BC,AC, A'B',A'C’的长.性质相似三角形周长之比等于相似比;相似多边形周长之比等于相似比.1.相似三角形对应高线之比等于相似比.2.相似三角形面积之比等于相似比的平方.相似多边形面积之比等于相似比的平方.3.在一张复印出来的纸上,一个多边形的一条边由原图中2cm变成了6cm,这次复印的放缩比例是多少?这个多边形的面积发生了怎样的变化?4.如图,在△ABC和△DEF 中,AB =2DE,AC=2DF,∠A=∠D,△ABC的周长为 24,面积为125,求△DEF的周长和面积.【教学说明】所选四道小题都可直接运用相似三角形和相似多边形的周长与面积性质进行判断说明,难度不大,学生可自主完成,教师巡视,发现问题,及时指导,让每个学生都学有所得.在完成上述题目后,教师引导学生完成创优作业中本课时的“名师导学”部分.【答案】1. (1)√ (2)× 2.BC=20,AC=25 ,A’B'=18,A’C’=30.3.这次复印的放缩比例是1:3,这个多边形的面积放大了 9倍.四、师生互动,课堂小结1.在探索相似多边形面积之比等于相似比的平方时,采用了怎样的思想方法,谈谈你的认识.2.请总结一下相似三角形和相似多边形的性质.1.布置作业:从教材P54〜56习题27. 2中选取.2. 课外思考:(1)蛋糕店制作两种圆形蛋糕,一种半径是15cm,一种半径是30cm,如果半径为15cm的蛋糕够2个人吃,那么半径为30cm的蛋糕,够几个人吃(假设两种蛋糕的高度相同)?(2)如图,在△ABC中,DE∥FG∥BC, D、F在AB边上,E、G在AC边上,且 DE、FG将△ABC的面积三等分,若AB=10,试求AD,DF的长.(3)完成创优作业中本课时的“课时作业”部分.本课时的教学过程中,首先提出问题让学生回答,这有助于学生回顾有关知识,接着教师提出问题并让学生自主探索形成初步认识,最后师生共同归纳结论. 在上述教学过程中,教师要充分调动学生的积极性,自主探究,体会发现和解决问题的乐趣.27.2.2 相似三角形的性质一、新课导入1.课题导入问题1:相似三角形有什么性质?问题2:三角形中有各种各样的几何量,除了三条边的长度、三个内角的度数外,还有高、中线、角平分线的长度,以及周长、面积等.如果两个三角形相似,那么除边、角外的其他几何量之间有什么关系呢?这节课我们研究相似三角形的性质(板书课题) .2.学习目标(1)知道三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比.(2)知道相似三角形对应线段的比等于相似比.(3)知道相似三角形面积的比等于相似比的平方.3.学习重、难点重点:相似三角形性质.难点:相似三角形的周长比、面积比与相似比的关系的应用.二、分层学习1.自学指导(1)自学内容:教材P37.(2)自学时间:6分钟.(3)自学要求:完成探究提纲.(4)探究提纲:②求对应中线的比.AD AB k A D A B ==''''③求对应角平分线的比.AD AB k A D A B ==''''④相似三角形对应高的比、对应中线的比与对应角平分线的比都等于相似比. ⑤相似三角形对应线段的比等于相似比.⑥相似三角形的周长比等于相似比.2.自学:学生参照自学指导进行自学.3.助学(1)师助生:①明了学情:关注学生能否理清证明思路.②差异指导:根据学情分类指导.(2)生助生:小组内相互交流、研讨.4.强化:相似三角形对应高的比、对应中线的比、对应角平分线的比、周长的比、对应线段的比都等于相似比.1.自学指导(1)内容:教材P38.(2)自学时间:8分钟.(3)自学方法:完成自学参考提纲.(4)自学参考提纲:①探索相似三角形的面积比与相似比之间的关系.设△ABC 与△A′B′C′的相似比为k ,分别作△ABC 和△A′B′C′的对应高AD,A′D′.则AD= k A′D′,BC= k B′C′. ∴S △ABC =12BC·AD=12× k B′C′· k A′D′= k 2 S △A′B′C′, ∴2ABC A B C S k S ∆∆'''= . 相似三角形的面积比等于 相似比的平方 .②教材P38例3,如图,在△ABC 和△DEF 中,AB=2DE,AC=2DF,∠A=∠D.若△ABC 的边BC 上的高为6,面积为125,求△DEF 的边EF 上的高和面积.先证△ABC ∽△DEF ,并求得相似比.再运用相似三角形对应高的比等于相似比,求边EF 上的高;运用相似三角形的面积比等于相似比的平方求面积.③你的解答是:∵AB AC DE DF==2,∠A=∠D, ∴△ABC ∽△DEF,∴边EF 上的高为3,S △DEF =14S △ABC =35. ④判断题(正确的画“√”,错误的画“×”).a.一个三角形的各边长扩大为原来的5倍,这个三角形的角平分线也扩大为原来的5倍.(√)b.一个三角形的各边长扩大为原来的9倍,这个三角形的面积也扩大为原来的9倍.(×)⑤在一张复印出来的纸上,一个三角形的一条边由原图中的2 cm 变成了6 cm,放缩比例是多少?这个三角形的面积发生了怎样的变化?放缩比例3∶1;面积是原来的9倍.2.自学:学生参照自学指导进行自学.3.助学(1)师助生:① 明了学情:了解学生自学提纲中四个题目的完成情况.②差异指导:根据学情进行针对性指导.(2)生助生:小组交流、研讨.4.强化(1)相似三角形面积的比等于相似比的平方.(2)点3名学生口答自学参考提纲中第④、⑤题,并点评.三、评价1.学生学习的自我评价:这节课你学到了哪些知识?有哪些收获和不足?2.教师对学生的评价:(1)表现性评价:从学生课堂的注意力,小组协作和回答问题的情况等方面进行评价.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思).本课时的教学过程中,首先提出问题让学生回答,这有助于学生回顾有关知识,接着老师提出问题并让学生自主探索形成初步认识,最后师生共同归纳,得出结论:相似三角形对应高的比、对应中线的比、对应角平分线的比、周长的比、对应线段的比都等于相似比,面积比等于相似比的平方.在上述教学过程中,教师要充分调动学生的积极性,自主探究,体会发现和解决问题的乐趣.一、基础巩固(70分)1.(10分)如果两个相似三角形对应边的比为3∶5 ,那么它们的周长的比3∶5 ,面积的比为9∶25 .2.(10分)如果两个相似三角形面积的比为1∶9 ,那么它们的对应高的比为1∶3 .3.(10分)两个相似三角形对应边上的中线长分别是6 cm和18cm,若较大三角形的周长是42 cm ,面积是12 cm2,则较小三角形的周长为14 cm,面积为43cm2.4.(10分)如图,平行于BC的直线DE把△ABC分成面积相等的两部分,则AD AB =22.5.(10分)△ABC中的三条中位线围成的三角形周长是15 cm,则△ABC的周长为(C)A.60 cmB.45 cmC.30 cmD.152cm6.(20分)如图,△ABC与△A′B′C′相似,AD,BE是△ABC的高,A′D′,B′E′是△A′B′C′的高,求证:AD BE A D B E=''''.证明:∵△ABC∽△A′B′C′,∴AD ABA D A B='''',BE ABB E A B='''',∴AD BEA DB E=''''.二、综合应用(20分)7.(20分)如图,△ABC是一块锐角三角形的材料,边BC=120 mm,高AD=80 mm,要把它加工成正方形零件,使正方形的一边QP落在BC边上,另两个顶点E,F分别在AC,AB边上,求这个正方形零件的边长.解:设高AD与EF交于N点,正方形零件边长为x mm.∵EF∥BC,∴△AFE∽△ABC.∴8012080,EF AN x x CB AD-==即.解得x=48.∴正方形零件的边长为48 mm.三、拓展延伸(10分)8.(10分)如图,△ABC中,AB=8,AC=6,BC=9.如果动点D以每秒2个单位长度的速度从点B出发沿边BA向点A运动,此时直线DE∥BC,交AC于点E.记x秒时DE的长度为y,写出y关于x的解析式,并画出它的图象.解:经过x秒后,BD=2x,AD=8-2x. ∵DE∥BC,∴△ADE∽△ABC.∴AD DE AB BC=,即8289x y-=,即y=-94x+9(0≤x≤4).。

九年级数学上册《相似三角形的性质》教案、教学设计

九年级数学上册《相似三角形的性质》教案、教学设计
(三)学生小组讨论,500字
在学生小组讨论环节,我会将学生分成若干小组,每组4-6人。给出以下讨论题目:
1.请列举出相似三角形的性质,并尝试用简洁的语言解释每个性质。
2.请举例说明相似三角形在实际问题中的应用。
3.你认为相似三角形的性质与全等三角形的性质有哪些联系和区别?
要求学生在小组内进行充分讨论,分享各自的观点和想法。在此过程中,我会巡回指导,关注学生的讨论进度,适时给予提示和引导。
2.培养学生运用几何图形描述和分析问题的能力,提高他们的逻辑思维和推理能力。
3.引导学生将相似三角形的性质应用于实际生活,培养他们的应用意识和创新能力。
(二)教学难点
1.相似三角形性质的推导和证明,尤其是其中的比例关系和角度关系。
2.学生在解决实际问题时,如何将相似三角形的性质灵活运用。
3.培养学生合作交流能力,提高他们在团队中的参与度和贡献度。
2.相似三角形的性质:详细讲解相似三角形的性质,如对应角相等、对应边成比例等,并结合实际例子进行解释。
3.相似三角形的判定方法:介绍判定相似三角形的方法,如AA、SSS、SAS等,并通过典型例题进行讲解。
4.相似三角形的应用:展示相似三角形在实际问题中的应用,如测量、设计等,让学生体会几何知识在实际生活中的价值。
(五)总结归纳,500字
在总结归纳环节,我会从以下几个方面进行:
1.知识点回顾:引导学生回顾本节课所学的相似三角形的定义、性质、判定方法及应用。
2.学习方法总结:让学生总结自己在学习相似三角形过程中的心得体会,分享有效的学习方法。
3.情感态度与价值观:强调几何知识在实际生活中的重要性,激发学生学习几何的兴趣和热情。
1.学生对相似三角形定义的理解程度,以及对相似性质的认识和运用能力。

2023-2024学年北师大版九年级数学上册教案:4.7 相似三角形的性质

2023-2024学年北师大版九年级数学上册教案:4.7 相似三角形的性质

2023-2024学年北师大版九年级数学上册教案:4.7 相似三角形的性质一. 教材分析北师大版九年级数学上册第4章《相似三角形》是学生在掌握了三角形的基本概念、三角形的分类、三角形的内角和定理等知识的基础上,进一步研究相似三角形的性质。

相似三角形是中学数学中的重要内容,是解决实际问题和进一步学习几何的基础。

本节内容通过引导学生探究相似三角形的性质,培养学生的观察能力、推理能力和解决问题的能力。

二. 学情分析九年级的学生已经具备了一定的几何知识,对三角形的基本概念、三角形的分类、三角形的内角和定理等知识有了一定的了解。

但是,学生对相似三角形的性质的认识还比较模糊,需要通过实例和操作来进一步理解和掌握。

三. 教学目标1.让学生通过观察、操作、推理等过程,掌握相似三角形的性质。

2.培养学生的问题解决能力和几何思维能力。

3.培养学生的团队合作意识和交流表达能力。

四. 教学重难点1.掌握相似三角形的性质。

2.能够运用相似三角形的性质解决实际问题。

五. 教学方法1.引导发现法:通过引导学生观察、操作、推理等过程,让学生自主发现相似三角形的性质。

2.案例分析法:通过分析具体的案例,让学生理解并掌握相似三角形的性质。

3.小组合作学习:让学生在小组内进行讨论、交流,培养团队合作意识和交流表达能力。

六. 教学准备1.教学课件:制作教学课件,展示相似三角形的性质。

2.教学素材:准备一些相似三角形的图片和案例,用于分析和讲解。

3.练习题:准备一些练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)通过展示一些相似三角形的图片,引导学生观察并思考:这些三角形有什么共同的特点?让学生初步感知相似三角形的性质。

2.呈现(10分钟)利用课件展示相似三角形的性质,引导学生通过观察、操作、推理等过程,发现相似三角形的性质。

教师讲解并引导学生总结出相似三角形的性质。

3.操练(10分钟)让学生分成小组,每组选取一个相似三角形的案例,运用所学的性质进行分析和解答。

相似三角形的性质(一)导学案

相似三角形的性质(一)导学案

B课题:§27.2.2-1相似三角形的性质(一)学习目标:1.掌握相似三角形的性质的对应高、对应中线、对应角平分线的比存在的等量关系。

2.进一步巩固三角形相似的判定定理,并能进行相应性质的推导。

3.能熟练运用三角形相似的性质进行量的计算。

4.培养学生分析问题、解决问题的综合能力。

学习过程:一、巩固复习知识点:___________________________的两个三角形相似;________________________的两个三角形相似;_________________________的两个三角形相似。

如图,P是AB上一点,补充下列条件: ⑴∠ACP=∠B; ⑵∠APC=∠ACB;⑶BCPCACAP=;⑷ABACACAP=.其中一定能使△ ACP∽△ABC的是( )A. ⑴⑵⑶⑷B. ⑴⑵⑶C. ⑶D.⑴⑵⑷二、合作探究小五师傅利用一张铁皮,按照比例尺为3:4的图纸制作三角形零件,如果根据图纸上的△ABC可以得到三角形零件△A′B′C′.解决下面的问题:1.ACCACBBCBAAB'''''',,各等于多少?2. △ABC与△A′B′C′相似吗?若相似,相似比是多少?3.若AD和A′D′分别是边BC和B′C′上的高,=''DAAD?4. 若AE和A′E′分别是∠BAC和∠B′A′C′的平分线,=''EAAE?5. 若BF和B′F′分别是边AC和A′C′上的中线,=F'BBF'?6.通过上面的计算,你能发现什么规律吗?CEBAE'C'B'A'F'C'B'A'CFBACDBA三、课堂检测1.判断:⑴相似三角形的对应边的比值相等( ) ⑵相似三角形角平分线的比等于高线的比( ) ⑶若△ABC ∽△A 1B 1C 1的对应中线AD :A 1D 1=k,则边AB :A 1B 1=k( )2.若△ABC ∽△A 1B 1C 1,对应角平分线AD :A 1D 1=1:4,那么这两个相似三角形的对应中线的比为________;对应高线的比为_________;相似比为_________。

《相似三角形的性质(1)》教学设计与反思

《相似三角形的性质(1)》教学设计与反思

《相似三角形性质》教学反思篇1《相似三角形的性质》是北师大版九年级上册第四章第七小节内容。

本节课的教学重点是探索相似三角形的性质并能用相似三角形的性质解决简单的实际问题。

实际上就是在了解相似三角形基本性质和判定方法的基础上,进一步研究相似三角形的特性,以完成对相似三角形的全面研究。

这节课我以合作探究的形式展开,让学生探究发现结论,体验成功的乐趣,培养学生探究问题的科学态度,促进创造性思维的发展。

通过学生独立思考、小组交流、学生展示、师生共评等环节,让学生在学习探究中,体会、理解、掌握相似三角形对应中线的比、对应高的比、对应角平分线的比都等于相似比。

并通过教师设问,学生大胆猜想,分组交流讨论,类比得出相似三角形对应线段的比等于相似比这一结论。

在此基础上,让学生趁热打铁,适时训练,在“我来抢答”环节中,设置了不同层次的问题,以使不同层次的同学都能获得应用知识的快乐,激发学生的学习热情,特别是练习第3题,涉及到了分类讨论的思想,使学生在学习的同时渗透数学的思想与方法,为学生的终身学习打下基础。

学以致用环节中,我对教材稍作处理,所增添的题为后面二次函数的学习做好铺垫,在作业的设计上体现了分层布置,同时课外作业主要是为了拓展学生的思维,提高学生思考问题、分析问题、解决问题的能力,同时进一步体会分类讨论的数学思想。

本节课总体上学生的学习积极性高,参与率高,而且学生能做到在自己独立思考的基础上,与同伴交流互动,大胆发言,小结部分也能对照目标进行自查。

但是在今后教学中,特别是在学生活动中,教师还是应该给学生稍微留出相对宽松的时间和空间,多让学生去展示,学会去放手,让学生自身在经历中成长,在交流中获知和进步。

《相似三角形性质》教学反思篇2我在上《相似三角形的性质》这节课时,先复习全等三角形的性质:全等三角形的对应角相等;对应边相等;对应中线、对应角平分线、对应高线相等;周长相等;面积相等。

根据全等三角形是特殊的相似三角形,诱导学生们在类比中,猜想相似三角形的性质,同学们积极性很高,抢着猜,猜完后,我又重点对三角形中的中线、角平分线、高线、周长、面积在相似三角形中与相似比的关系进行了讲解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1课4.7相似三角形的性质(1)
班级: 姓名: 小组: 评价:
【学习目标】
1、通过探究一能准确说出相似三角形的对应高之比等于相似三角形的相似比。

2、通过探究二能准确说出相似三角形的对应角平分线,中线之比等于相似三角形的相似比。

3、通过小组合作学习,能够正确运用相似三角形性质的进行计算。

【重难点】
1、明白相似三角形对应高的比,对应角平分线的比和对应中线的比与相似比的关系.
2、熟练运用相似三角形对应高的比,对应角平分线的比和对应中线的比等于相似比
【导学流程】
★基础感知
1.复习:
(1)什么叫相似三角形?相似比指的是什么?
(2)全等三角形是相似三角形吗?全等三角形的相似比是多少?
(3)相似三角形的判定方法有哪些?
2.阅读教材P106-107页的内容,然后完成下面的填空:
(1)相似多边形对应边的比叫做.
(2)相似三角形的对应角,对应边.
(3)相似三角形对应高的比,对应的比,对应的比都等于相似比
★小组探究
1. 探究一:如图,△ABC和△A′B′C′是两个相似三角形,相似比为k,其中AD、A′D′分别为问题记录
BC 、B′C′边上的高,那么,AD 和A′D′之间有什么关系?
归纳结论:相似三角形对应高的比 相似比.
2、探究二:△ABC∽△A ′B′C′,AD 、A′D′分别是△ABC 和△A′B′C′边上的中线,AE 、A′E′分别是△ABC 和△A′B′C′的角平分线,且AB ∶A ′B ′=k ,那么AD 与A′D′、AE 与A′E′之间有怎样的关系?
归纳结论:相似三角形对应角平分线的比、对应中线的比都等于 ★知识迁移
1、相似三角形对应边的比为2:3,那么相似比为 ,对应角的角平分线的比为 。

2、两个相似三角形的相似比为1:4,则对应高的比为 ,对应角的角平分线的比为 。

3、如图,AD 是△ABC 的高,AD=h ,点R 在AC 边上, 点S 在AB 边上,SR ⊥AD ,垂足为E 当SR=
21BC 时,求DE 的长。

如果SR=3
1
BC 呢?。

相关文档
最新文档