高分子物理实验

合集下载

高分子物理实验报告

高分子物理实验报告

高分子物理实验报告高分子物理实验报告引言:高分子物理是研究高分子材料的结构、性质和行为的学科。

本实验旨在通过实验方法,对高分子材料的一些基本性质进行探究,以加深对高分子物理的理解。

实验一:高分子材料的熔融流动性材料:聚乙烯(PE)、聚丙烯(PP)方法:将PE和PP分别切成小块,放入两个不同的容器中,通过加热使其熔化,观察其流动性。

结果:PE在加热后迅速熔化,并呈现出较大的流动性,而PP则需要较高的温度才能熔化,且流动性较小。

结论:高分子材料的熔融流动性与其分子结构有关,分子链间的相互作用力越强,熔融温度越高,流动性越小。

实验二:高分子材料的拉伸性能材料:聚酯(PET)、聚氯乙烯(PVC)方法:将PET和PVC分别切成薄片状,用拉力试验机进行拉伸测试,记录其拉伸强度和断裂伸长率。

结果:PET具有较高的拉伸强度和断裂伸长率,而PVC的拉伸强度较低,断裂伸长率也较小。

结论:高分子材料的拉伸性能与其分子链的排列方式、分子量以及交联程度等因素有关,分子链越有序,交联程度越高,拉伸强度越大,断裂伸长率越小。

实验三:高分子材料的热稳定性材料:聚苯乙烯(PS)、聚碳酸酯(PC)方法:将PS和PC分别切成小块,放入热风箱中进行热稳定性测试,记录其质量损失。

结果:PS在高温下易分解,质量损失较大,而PC在相同条件下质量损失较小。

结论:高分子材料的热稳定性与其分子链的稳定性有关,分子链越稳定,热稳定性越好,质量损失越小。

实验四:高分子材料的玻璃化转变温度材料:聚甲基丙烯酸甲酯(PMMA)、聚乙烯醇(PVA)方法:将PMMA和PVA分别切成小块,通过差示扫描量热法(DSC)测试其玻璃化转变温度。

结果:PMMA的玻璃化转变温度较高,而PVA的玻璃化转变温度较低。

结论:高分子材料的玻璃化转变温度与其分子链的自由度有关,分子链越自由,玻璃化转变温度越低。

结论:通过以上实验,我们可以看到不同高分子材料在熔融流动性、拉伸性能、热稳定性和玻璃化转变温度等方面表现出不同的特性。

高分子物理实验

高分子物理实验

南昌大学实验报告实验项目名称:_______膨胀计法测定聚合物的玻璃化转变温度______________ 学生姓名:____________ 学号:___________ 专业班级:______________ 实验类别: 基础√专业实验类型:√验证 综合 设计 创新实验要求:√必修 选修实验日期:___________ 实验成绩:________一、实验目的1. 了解膨胀计测量聚合物玻璃化温度的方法。

2. 深入理解自由体积概念在高分子学科中的重要性。

二、实验基本原理在玻璃态下,由于链段运动被冻结,自由体积也被冻结,聚合物随温度升高而发T以上,除了正常的分子生的膨胀只是由于正常的分子膨胀过程造成的,而在g膨胀过程外,还有自由体积的膨胀,因此高弹态的膨胀系数比玻璃态的膨胀系数T就要发生斜率的变化。

来得大。

若以比容对温度作图,在g三、主要仪器设备及耗材膨胀计、水浴及加热器、颗粒状尼龙6、丙三醇。

四、实验步骤1. 洗净膨胀计,烘干。

装入尼龙6颗粒至比重瓶的4/5体积。

2. 在膨胀管内加入丙三醇作为介质,用玻璃棒搅动(或抽气)使膨胀管内没有气泡。

3. 再加入丙三醇至比重瓶口,插入毛细管,使丙三醇的液面在毛细管下部,磨口接头用弹簧固定,如果管内发现有气泡要重装。

4. 将装好的膨胀计浸入水浴中,于30︒C恒定20min后,设置最高温度为60︒C,控制水浴升温速率约为1.25︒C/min。

5. 读取水浴温度和毛细管内丙三醇液面的高度,从30~55︒C每升高1︒C读数一次(升温速率控制为0.5︒C/min ),到55︒C 为止。

6. 毛细管内液面高度对温度作图。

从直线外延点求得升温速度1.25︒C/min 下尼龙6的g T 。

五、实验数据及处理结果3.33.43.53.63.73.83.94.0h /m m Tamperature /o C升温速度1.25︒C/min 下尼龙6的g T 为44︒C 。

六、思考讨论题或体会或对改进实验的建议略七、参考资料1.何平笙,杨海洋,朱平平,瞿保均. 高分子物理实验. 合肥:中国科学技术大学出版社,20022.陈义旺. 高分子物理实验补充讲义. 南昌大学,2006南昌大学实验报告实验项目名称:______________聚合物的温度-形变曲线__________________ 学生姓名:____________ 学号:___________ 专业班级:______________ 实验类别: 基础√专业实验类型:√验证 综合 设计 创新实验要求:√必修 选修实验日期:___________ 实验成绩:________一、实验目的1. 正确理解聚合物的三个力学状态和二个转变。

高分子物理实验

高分子物理实验

高分子物理实验目录实验一粘度法测定聚合物的分子量 (1)实验二聚合物熔融指数的测定 (6)实验三偏光显微镜法观察聚合物结晶形态 (10)实验四密度法测定聚乙烯的结晶度 (14)实验五膨胀计法测定聚合物的玻璃化温度 (16)实验六聚合物的差热分析及应用 (19)前言高分子科学既是基础科学也是实验科学。

实际上高分子科学就是在大量的实验基础上发展起来。

尤其是聚合物加工成型作为高分子科学中重要的分支,我校又以其作为高分子材料与工程专业的专业方向,实验技术在高分子材料的研究和教学中尤为重要。

高分子物理实验是一门综合性极强的实验课,涉及多种学科领域和相应测试方法及仪器,其实验目的一方面是学生掌握高分子物理理论知识,另一方面进一步扩大学生的知识面,帮助学生了解实验方法和仪器结构及性能,分析实验操作过程中具体影响因素,提高解决实际问题的能力。

本实验讲义主要根据教学大纲和对学生实验要求进行编写。

在实验水平上,即介绍高分子科学的传统实验方法,也尽可能介绍一些有关的新技术。

对近年来高分子科学、特别是高分子物理领域涌现的许多新方法、新技术,由于实验条件和教学时数的限制,只好舍弃。

实验一粘度法测定聚合物的分子量粘度法是测定聚合物分子量的相对方法。

高聚物分子量对高聚物的力学性能、溶解性、流动性均有极大影响。

由于粘度法具有设备简单、操作方便、分子量适用范围广、实验精度高等优点,在聚合物的生产及科研中得到十分广泛的应用。

本实验是采用乌氏粘度计测定甲苯溶液中聚苯乙烯粘度,进而测定求出PS试样分子量。

一、实验目的要求1、掌握粘度法测定聚合物分子量的实验基本方法。

2、了解粘度法测定聚合物分子量的基本原理。

3、通过测定特性粘度,能够计算PS的分子量。

二、实验原理1、粘性液体的牛顿型流动粘性流体在流动过程中,由于分子间的相互作用,产生了阻碍运动的内摩擦力,粘度就是这种内摩擦力的表现。

即粘度可以表征粘性液体在流动过程中所受阻力的大小。

按照牛顿的粘性流动定律,当两层流动液体间由于粘性液体分子间的内摩擦力在其相邻各流层之间产生流动速度梯度是(),液体对流动dv/drF/A,,,dv/dr的粘性阻力是: (1-1) 该式即为牛顿流体定律。

高分子物理实验

高分子物理实验

《高分子物理》实验指导实验一粘度法测定聚合物的分子量粘度法是测定聚合物分子量的相对方法,此法设备简单,操作方便,且具有较好的精确度,因而在聚合物的生产和研究中得到十分广泛的应用。

本实验是采用乌氏粘度计,用一点法测定苯酚—四氯乙烷溶液中涤纶树脂的分子量。

一.目的要求:通过本实验要求掌握粘度法测定高聚物分子量的基本原理、操作技术和数据处理方法。

二.基本原理根据马克—哈温克经验公式:[η]=K Mηα(1)若特性粘度[η],常数K及α值已知,便可利用上式求出聚合物的粘均分子量M η。

K、α是与聚合物、溶剂及溶液温度等有关的常数,它们可以从手册中查到。

[η]值即用本实验方法求得。

由经验公式:ηSP/C =[η] +kˊ[η]2C (2)和 lnηr/ C =[η] -β[η]2 C (3)Array可知:溶液的浓度C与溶液的比浓粘度η/C或与溶液的比浓对数粘度lnηr/C成直线SP关系(如图1),在给定体系中Kˊ和β均为常数,这样以ηSP/C对C或以lnηr /C对C作图并将其直线外推至C=0处,其截距均为[η]。

所以[η]被定义为溶液浓度趋近于零时的比浓粘度或比浓对数粘度。

式(3)中ηr称为相对粘度,即为在同温度下溶液的绝对粘度η与溶剂的绝对粘度η0之比:ηr = η /η0(4)分别为t和t0;且t0大于100秒时,则ηr= t / t0 (5)式(2)中ηsp称为增比粘度,它被定义为加入高聚物溶质后引起溶剂粘度增加的百分数,即:ηsp =(η—η0)/η0 =ηr— 1 (6)这样,只需测定不同浓度的溶液流经同一毛细管的同一高度时所需的时间t及纯溶剂的流经时间t0,便可求得各浓度所对应的ηr值进而求得各ηsp,ηsp/C及lnηr/C 值,最后通过作图得到[η]值,这种方法称为外推法。

在许多情况下,由于试样量少或要测定大量同品种的试样,为了简化操作,对于多数线型柔性高分子溶液均符合Kˊ≈1/3;Kˊ+β=1/2,则再将(2)、(3)两式联图2 乌式粘度计 立可得式:[η] = [2(ηsp —ln ηr )]1/2 / C (7)由方程(2)又可简单推导出:[η] =[(1+4K ˊηsp )1/2-1] /2 K ˊC (8)所以只要知道一个浓度下的ηr 值,便可通过(7)式求出[η];若还知道溶液的K ˊ值,便可通过(8)式求得[η]。

高分子物理化学实验

高分子物理化学实验

《高分子物理化学》课程实验实验一乳液聚合法合成聚醋酸乙烯酯一、实验目的1.了解乳液聚合的特点、体系组成及各组分的作用。

2.掌握醋酸乙烯酯的乳液聚合的基本实验操作方法。

3.根据实验现象对乳液聚合各过程的特点进行对比、认证。

二、实验原理乳液聚合是指将不溶或微溶于水的单体在强烈的机械搅拌及乳化剂的作用下与水形成乳状液,在水溶性引发剂的引发下进行的聚合反应。

聚合反应发生在增溶胶束内形成M/P(单体/聚合物〕乳胶粒,每个M/P乳胶粒仅含1个自由基,因而聚合反应速率主要取决于乳胶粒的数目,亦即取决于乳化剂的浓度。

乳液聚合能在高聚合速率下获得高分子量的聚合产物,且聚合反应温度通常都较低,特别是使用氧化还原引发体系时,聚合反应可在室温下进行。

乳液聚合即使在聚合反应后期体系粘度通常仍很低,可用于合成粘性大的聚合物,如橡胶等。

醋酸乙烯酯胶乳广泛应用于建筑纺织涂料等领域,主要作为胶粘剂、涂料使用,既要具有较好的粘接性,而且要求粘度低、固含量高、乳液稳定。

醋酸乙烯酯可进行单体聚合、溶液聚合、悬浮聚合和乳液聚合,作为涂料或胶粘剂多采用乳液聚合。

醋酸乙烯酯的乳液聚合是以聚乙烯醇和OP-10为乳化剂(烷基酚聚氧乙烯醚,M=646),过硫酸钾为引发剂,进行自由基聚合,经过链的引发、增长、终止等基元反应,生成聚醋酸乙烯酯乳胶粒,最终得到外观是乳白色的乳液。

主要的聚合反应式如下:三、实验器材1.仪器恒温水浴 1套电动搅拌器 1套温度计(O~100℃) 1支冷凝管 1支四口烧瓶(250ml) 1个滴液漏斗 1个量筒( 10ml、50ml) 各 1支烧杯( 50ml、100ml) 各 1支蒸发皿 1套2.试剂醋酸乙烯酯 40g聚乙烯醇(1799) 4gOP-10 1.5g过硫酸钾(KPS) 0.3g碳酸氢钠溶液(10%) 适量图聚醋酸乙烯酯乳液聚合装置1.四口瓶2.球形冷凝管3.温度计4.漏斗5.搅拌棒四、实验步骤1.实验装置如上图所示,四口烧瓶中装好搅拌器、回流冷凝管、滴液漏斗和温度计并固定在恒温水浴里。

高分子物理实验指导书详解

高分子物理实验指导书详解

高分子物理实验指导书合肥工业大学高分子科学与工程系2011年6月目录实验一偏光显微镜观察聚合物结晶形态⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1 实验二膨胀计法测定聚合物玻璃化温度⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 实验三粘度法测定高聚物分子量⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 实验四聚合物熔融指数的测定⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯13 实验五聚合物应力应变曲线的测定⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯17实验一偏光显微镜观察聚合物结晶形态一、实验目的了解偏光显微镜的结构及使用方法;观察聚合物的结晶形态,以加深对聚合物结晶形态的理解。

二、实验原理聚合物的结晶受外界条件影响很大,而结晶聚合物的性能与其结晶形态等有密切的关系,所以对聚合物的结晶形态研究有着很重要的意义。

聚合物在不同条件下形成不同的结晶,比如单晶、球晶、纤维状晶等等,面其中球晶是聚合物结晶时最常见的一种形式。

球晶可以长得比较大,直径甚至可以达到厘米数量级。

球晶是从一个晶核在三维方向上一齐向外生长而形成的径向对称的结构,由于是各向异性的,就会产生双折射的性质。

因此,普通的偏光显微镜就可以对球晶进行观察,因为聚合物球晶在偏光显微镜的正交偏振片之间呈现出特有的黑十字消光图形。

偏光显微镜的最佳分辨率为200nm,有效放大倍数超过500-1000倍,与电子显微镜、X射线衍射法结合可提供较全面的晶体结构信息。

球晶的基本结构单元是具有折叠链结构的片晶,球晶是从一个中心(晶核)在三维方向上一齐向外生长晶体而形成的径向对称的结构,即一个球状聚集体。

光是电磁波,也就是横波,它的传播方向与振动方向垂直。

但对于自然光来说,它的振动方向均匀分布,没有任何方向占优势。

但是自然光通过反射、折射或选择吸收后,可以转变为只在一个方向上振动的光波,即偏振光(如图1-1,箭头代表振动方向,传播方向垂直于纸面)。

a) b)图1-1 自然光和线偏振光的振动现象a) 自然光b) 线偏振光一束自然光经过两片偏振片,如果两个偏振轴相互垂直,光线就无法通过了。

高分子物理实验大纲

高分子物理实验大纲

《高分子物理》实验教学大纲课程代码:BS1004024X3课程名称:高分子物理实验实验学时:24学分: 1.5适用专业:高分子材料与工程一、实验目的与任务高分子物理实验是高分子科学体系的重要组成部分,是从事高分子科学与材料研究的最基础的实验技术,是研究和表征聚合物结构和性能关系的一门实验科学,是高分子材料与工程专业的一门专业必修课。

本课程的目的是使学生掌握测定和研究聚合物的结构、力学性能、热性能及溶液性质的方法和手段,对聚合物结构与性能之间关系获得初步认识,逐步具备一定的从事科学研究的思维方法和实验能力。

通过课程的学习使学生增加感性认识,加深理论知识的理解,提高学生的动手能力和实验技能,培养学生的科学态度和工作作风,为学生今后从事材料或相关领域的科学研究和技术开发工作打下初步基础。

二、实验主要培养的能力与技能1.使学生进一步理解高分子物理学中的一些基本概念和基本原理。

如:玻璃化温度、熔融指数、特性粘数、拉伸强度、断裂伸长率等。

2. 使学生了解聚合物结构和性能之间的关系,对晶态、非晶态、交联等聚合物结构与性能之间关系有所认识。

3. 使学生掌握测定和表征聚合物性质的一些基本方法、手段和操作,如分子量、流变行为、玻璃化转变温度、熔融指数及力学性能等。

三、实验方式与基本要求1.由指导教师讲解实验的基本要求、实验目的、基本原理、实验操作方法及注意事项。

2.分成实验小组5-10人,由学生独立操作并完成实验,记录实验数据。

每个实验时间为4学时。

3.实验数据由教师签字认可后,方可离开实验室。

4.学生根据自己的实验数据,通过了解实验基本原理和数学方程,独立地完成实验报告。

四、实验项目设置与内容提要四、实验环境要求或主要仪器设备要求万能试验机一台,偏光显微镜2台,差示扫描量热仪1台,旋转粘度计2台,熔融指数仪1台,乌氏粘度计5支,加热炉1套,恒温水浴锅5套五、考核方式与成绩评定标准1.实验过程中,教师巡视学生的实验操作情况,给出成绩。

高分子物理学

高分子物理学

高分子物理学高分子物理学是研究高分子物质的物理性质及其相互作用的学科。

高分子物质广泛存在于自然界和工业中,如塑料、橡胶、纤维素等,因此高分子物理学的研究对于材料科学和工程领域具有重要意义。

一、高分子物理学简介高分子物理学是物理学的一个分支,主要研究高分子物质的物理性质及其内部结构、动力学行为和相互作用。

高分子物质通常由数个重复单元组成,分子量较大,其性质与低分子物质有很大差异。

高分子物理学的研究对象包括高分子材料的结构、力学性能、热力学性质、电学性质等。

二、高分子物理学的研究方法高分子物理学研究常用的方法包括理论计算、实验研究和数值模拟。

理论计算是通过建立高分子物理学模型,运用物理学原理和数学方法,对高分子物质的性质进行定量描述和预测。

实验研究是通过设计合适的实验方案,利用物理学实验仪器和设备对高分子物质的性质进行测量和分析。

数值模拟是运用计算机技术,通过数值计算和模拟实验,对高分子物质的性质进行模拟和预测。

三、高分子物理学的重要性高分子物理学的研究对于材料科学和工程领域有重要意义。

高分子材料广泛应用于塑料、橡胶、纤维素等领域,对于改善人类生活和推动社会经济发展起到了重要作用。

高分子物理学的研究可以为高分子材料的设计、合成和应用提供理论依据和技术支持。

研究高分子物质的内部结构和性质有助于优化材料的性能,并开发出新型的高分子材料。

同时,高分子物理学的研究还可以揭示高分子物质的物理本质和行为规律,为其他学科的发展提供新的思路和方法。

四、高分子物理学的应用领域高分子物理学的研究成果在工程和科学领域得到了广泛应用。

在材料工程领域,高分子物理学的研究成果使得高分子材料的性能得到提升,如增加抗拉强度、耐磨性、耐候性等,满足不同领域的需求。

在能源领域,高分子物理学的研究有助于开发新型的高分子电池材料、储能材料等,为能源存储和转换提供解决方案。

在生物医学领域,高分子物理学的研究为生物材料的设计和制备提供了理论指导,如生物可降解材料、药物载体等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中国海洋大学本科生课程大纲
课程属性:公共基础/通识教育/学科基础/专业知识/工作技能,课程性质:必修、选修
一、课程介绍
1.课程描述:
《高分子物理实验》是高分子科学体系的重要组成部分,是从事高分子科学与材料研究的最基础的实验技术,是研究和表征聚合物结构和性能关系的一门实验科学,是高分子材料与工程专业的一门专业必修课。

本实验课的主要内容是使学生掌握研究和表征聚合物的结构、力学性能、电性能、热性能及溶液性质的基本方法和手段,掌握基础的相关实验技能与数据分析处理方法。

通过实验使学生能够理论结合实践,进一步加深高分子物理专业知识的理解,使学生基本掌握高分子物理实验的基本原理、操作过程、数据采集、数据分析与处理,实验知识和技能,提高学生的动手能力与实验技能,培养学生严谨的科学态度与思维方法,为后续的高分子材料与科学的相关实践和毕业设计打下基础。

2.设计思路:
本课程实验内容主要包括以下几个方面:高聚物结构的表征与分析(包括实验一、五、六、七、九、十),力学性能的表征与分析(包括实验二、三、四),电性能(实验十一、十二)及热性能(实验七与实验九涉及到了材料的热性能)。

实验中既有基本实验技能的操作,又有实验报告、数据处理分析及相应的思考题,使学生通过实验原理学习、实验操作、数据分析与讨论,掌握高分子物理结构与性能研究的基本方法与过程、操作技能、数据分析处理能力,分析解决问题能力,加深对实际科研实践的认识,提高理论知识的综合运用能力和实践能力,为后续的实验、实践和毕业设计打下基础。

- 6 -
3. 课程与其他课程的关系
先修课程:高分子化学、高分子物理。

本课程需要学习材料与化学的相关基础课程,这些课程是学习高分子化学与高分子物理的基础,因此在此不再列出。

二、课程目标
本实验课的目的是使学生掌握测定和研究聚合物的结构、力学性能、电性能、热性能及溶液性质的方法和手段,对聚合物结构与性能之间关系获得初步认识。

通过本课程的学习使学生增加感性认识,加深理论知识的理解,提高学生的动手能力和实验技能,培养学生的科学态度和工作作风。

使学生逐步具备一定的从事科学研究的思维方法和实验能力。

基本要求:
1、使学生进一步理解高分子物理学中的一些基本概念与相关理论知识。

2、使学生掌握测定和表征聚合物结构与性能的基本方法的原理、正确进行仪器操作与使用。

3、能够互相配合完成实验过程,处理实验过程中遇到的简单问题。

4、能够独立进行数据处理分析,并完成实验报告。

三、学习要求
高分子物理实验是理论基础上的实验操作技能课,有利于学生加深对基础理论的理解与实际运用,对提高学生的实验动手能力与实践能力非常重要。

另外,课程在实验室进行,因此必须严格遵守实验室的相关规章制度,保障实验过程中的实验安全与人身安全。

具体要求如下:
1、学生必须严格遵守实验室的相关规章制度,严禁违反实验室安全要求的任何行为。

2、实验前认真阅读讲义,实验前进行预习,就实验目的、原理、实验注意事项等书写预习报告。

实验必须准时,不能擅自更换实验时间。

3、实验时要认真操作,认真观察现象,做好记录。

必须准备实验记录本,所有原始记录(实验数据及现象)均记录在记录本上,不允许记在他处。

不允许篡改,编造实验数据与记录。

4、实验时,遵守操作规程,注意安全。

有与实验相关问题,及时与老师交流,未
- 6 -
经教师同意不得更改实验操作步骤。

不能高声喧哗,谈笑,从事与实验不相关行为。

5、实验报告独立完成(数据处理除外),在下一次实验时交给任课教师。

实验报告的内容包括如下:①实验名称、学生姓名、组员、班号和实验日期;②实验目的和要求;③实验原理;④实验仪器、设备与药品;⑤实验步骤;⑥实验原始记录;⑦实验数据处理与分析,⑧讨论实验指导书中提出的思考题,对实验中的异常现象需探讨原因。

另外,可以提出问题及对实验的改进意见,也可以写自己在实验中的心得与体会(非必须项)。

6、节约水电、药品,爱护仪器设备,损坏要报告老师进行登记。

由于自身操作失误造成的仪器损毁,依据学校和实验室相关规定赔偿。

非本次实验仪器设备不得乱动。

公用仪器、药品及工具用后放回原处,非经教师同意不得带出室外。

7、实验产生的废液应倒入指定的废液瓶,不得倾入水池。

实验结束后,关好水电,值日生做好清理工作。

四、教学内容
- 6 -
五、参考教材与主要参考书
1、实验教材:
张玥编,《高分子科学实验》,中国海洋大学出版社,2010,7,第一版
2、主要参考书:
[1]杨海洋,朱平平,何平笙编著,高分子物理实验,2008,10,中国科学技术大学出版
社,第二版
[2]李谷、符若文编,高分子物理实验,化学工业出版社,2015,4,第二版
[3]闫红强,程捷,金玉顺编,高分子物理实验,化学工业出版社,2012,10,第二版
六、成绩评定
(一)考核方式 E.其他:A.闭卷考试B.开卷考试C.论文D.考查E.其他(二)成绩综合评分体系:
- 6 -
附:评分标准
1、实验预习评分标准
2、实验操作评分标准
- 6 -
3、实验报告评分标准
七、学术诚信
学习成果不能造假,如考试作弊、盗取他人学习成果、一份报告用于不同的课程等,均属造假行为。

他人的想法、说法和意见如不注明出处按盗用论处。

本课程如有发现上述不良行为,将按学校有关规定取消本课程的学习成绩。

八、大纲审核
教学院长:院学术委员会签章:
- 6 -。

相关文档
最新文档