经典无源音调控制电路

合集下载

最简易声控电路(声控灯,声控开关,声控门铃)

最简易声控电路(声控灯,声控开关,声控门铃)

欢迎阅读声控灯1这里有个电路,通过调节电位器的大小,可以调节时间。

可以参考哦声控灯2时间、亮度可调声控灯3三极管VT3状态。

经电容 管×270×间。

下图,R1,R2,VT1构成放大电路,后面的构成单稳电路和开关。

下图声控电路,同样是放大然后是单稳电路,只是这里用的是定时IC ,双稳态声控电路,拍一下亮,再拍一下灭,如此循环。

本电路主要由音频放大电路和双稳态触发电路组成。

Q1和Q2组成二级音频放大电路,由MIC 接受的音频信号经C1耦合至Q1的基极,放大后由集电极直接馈至Q2的基极,在Q2的集电极得到一负方波,用来触发双稳态电路。

R1、C1将电路频响限制在3kHz 左右为高灵敏度范围。

电源接通时,双稳态电路的状态为Q4截止,Q3饱和,LED1不亮。

当MIC 接到控制信号,经过两级放大后输出一负方波,经过微分处理后负尖脉冲通过D1加至Q3的基极,使电路迅速翻转,LED1被点亮。

当MIC 再次接到控制信号,电路又发生翻转,LED1熄灭。

如果将LED 回路与其它电路连接也可以实现对其它电路的声控。

欢迎阅读本电路采用直流5V 电压供电,LED 熄灭时整机电流为3.4 mA , LED 点亮时整机电流为8.8mA 。

吹熄蜡烛IC :1. 上电LED _Y 仿蜡烛灯闪,LED _B 长亮2. 对MIC 头吹气可熄灭LED ,再吹一次LED 亮,如此循环3. 调节MIC 头的偏制电阻R2可改变MIC 头的灵敏度,电阻越大,MIC 头灵敏度越低,静态电流越小。

电阻参考范围30K -100K 。

以下是拍手电路,拍一下手灯亮,再拍一下灯灭。

(此电路笔者已验证)声控门铃:利用以下电路作为门铃时,不需在门前安装按钮开关,来客只需叩一下大门,门铃便会发声。

电路如图所示。

电V1、对C2提供振荡,=60;V2。

场效应管音调电路

场效应管音调电路

场效应管音调电路
嘿,朋友们!今天咱来聊聊场效应管音调电路。

这玩意儿啊,就像是音乐世界里的魔法盒子,能让声音变得超级有趣!
你想想看,场效应管就像是一个特别厉害的音乐魔法师,它能掌控着声音的各种变化。

通过它,我们可以调节音调,让声音或高或低,就好像在声音的山峰和山谷间自由穿梭。

比如说,你想要让音乐听起来更加明亮欢快,那就可以通过场效应管音调电路把音调调高一些,哇,那感觉就像阳光一下子洒了进来,整个氛围都变得不一样了!要是想营造出一种深沉神秘的感觉呢,就把音调调低,仿佛进入了一个充满秘密的洞穴。

这可不像我们平时调音量大小那么简单哦,这是对声音本质的一种改变呢!就好像给声音化了个妆,让它呈现出不同的风格和魅力。

而且啊,制作场效应管音调电路也不是什么特别难的事儿。

只要你有耐心,有一些基本的电子知识和工具,就能自己动手打造属于你的音乐魔法盒子啦!
你可以找些合适的场效应管,再搭配上其他的电子元件,就像厨师挑选食材一样精心挑选。

然后呢,按照正确的方法把它们连接起来,就像是搭积木一样,一点一点搭建出你的音乐城堡。

在这个过程中,可别小看了每一个小元件哦,它们都有着自己的重要作用呢!少了谁都可能让整个魔法失效。

这就好像一辆汽车,哪怕只是少了一个螺丝钉,都可能跑不起来呀,对吧?
当你完成了自己的场效应管音调电路,接上音响或者其他设备,打开音乐的那一刻,哇,那种成就感简直爆棚!你会觉得自己就像是个伟大的发明家,创造出了独一无二的音乐奇迹。

所以啊,朋友们,别犹豫啦!赶紧动手试试吧,让场效应管音调电路为你的音乐之旅增添更多的精彩和乐趣!难道你不想感受一下自己创造的音乐魔法吗?。

无源蜂鸣器常规驱动电路设计

无源蜂鸣器常规驱动电路设计

一种低成本无源蜂鸣器的设计在实际的应用中,虽然有源蜂鸣器控制简单,缺陷是成本比较高,在潮湿的环境用久了,容易损坏。

而无源蜂鸣器弥补了有源蜂鸣器缺点,但问题是无源蜂鸣器需要PWM驱动。

在系统的设计中,微控制器的PWM资源往往是比较紧张的,同时使用PWM驱动也加大了软件开发的难度。

接下来笔者将引领大家学习如何设计一个无需PWM也能驱动无源蜂鸣器的低成本电路。

1.1 无源蜂鸣器常规驱动电路图1 无源蜂鸣器常规驱动电路如图1所示,此图为无源蜂鸣器的常规驱动电路。

需要在输入端输入一定频率PWM的信号才能使蜂鸣器发声。

为了解放PWM资源,实现简单控制,必须如有源蜂鸣器一样提供一个振荡电路。

而有源蜂鸣器主要使用LC振荡,如果要实际搭建此电路,电感参数比较难控制,而且成本高。

此时,自然会想到简易的RC振荡,而由三极管构成的RC多谐振荡电路显然是一个不错的选择。

1.2 三极管多谐振荡电路图2 三极管多谐振荡电路三极管多谐振荡的通用电路如图2所示。

这个电路起振的原理主要是通过电阻与电容的充放电使三极管交替导通。

首先,在电路上电时,分别通过R1与R4对电容C1与C2进行充电。

由于三极管元件的参数不可能完全一致,可以假设三极管Q1首先饱和导通,由于电容两端的电压不能突变,Q2的B极此时变成负压,Q2截止,Vo端输出高电平;C1通过R2进行充电,当C2的电位使BE极正向偏置时,Q2导通,Vo端输出低电平;同理C2电容两端电压不能突变,Q1的B极电压变为负压,此时Q1截止。

这样循环往复,使在Vo端输,一定频率的方波信号。

如图3所示,笔者使用示波器截取了Q1与Q2的B极和E极的波形,可以发现与上面的分析是吻合的。

图3 多谐振荡电路充放电波形从以上的分析可以看出,Vo的输出信号频率受到R2与C1,R3与C2充放电速度的控制。

假设,以Q2的C极作为信号的输出,R2与C1的充电时间T1决定了输出信号高电平时间,而R3与C2的充电时间T2决定了信号输出低电平时间。

TDA2822超重低音耳机放大器

TDA2822超重低音耳机放大器

这不是一款普通的耳机放大器,我在它前级加入低音提升电路后,可以让你使用耳机听到高保真的音响效果,特别是重低音效果,逼真感很强以至于用它听的时间长了会让人感到头晕,使用它必须得注意:你的耳机要能经得住低音的考验!
电路原理图(点击放大)
该电路中,前级采用无源衰减式音调控制电路,后级是用小功放芯片TDA2822M做的功率放大器,以便更强劲地驱动耳机。

电路元件除了C5-C8这四个电容使用电解电容外,其它小电容全部使用涤纶电容。

按照如上的电路,高低音均提升近10DB。

为了增大低音成分的比例,建议大家把R3和R4短路掉,以减小高音提升量,这时从耳机中出来的声音也更加柔和。

如果还要增大低音提升量,可以减少C3和C4的取值。

使用这个超重低音耳机放大器大家必须了解一些问题:
1、耳机的素质,喜欢听低音的朋友,一定不能只在电路上下功夫,耳机的作用更大,一个好的耳机能将电路产生的音频信号淋漓尽致地发挥,听感也更加自然。

而有些耳机本不具备很宽的频率响应,再怎么提升音源的低音成分都听不到很明显的效果,这种耳机不要使用。

再者,有些国产耳机在低音增强时明显失真了,此时如果长时间在很强低音的情形下,势必会损伤耳机。

2、不要过分追求低音效果,毕竟是耳机不是音响,不能采取像重低音放大器那样的分频放大法,电路能有10DB的提升量就足矣。

3、不要使用大音量,对听力是相当有害的。

作品实物图:
原创作品如转载,请注明:转载自萬用電路板 [ / ]。

RC型音调控制电路分析

RC型音调控制电路分析

扩音机RC型音调控制电路分析在高传真扩音机的前置级中,为什么通常要加入音调控制电路呢?我们知道,一般语言和音乐,在重放音时所需的频率范围是不同的。

语言放音的频率范围为100赫至几千赫,交响乐放音的频率范围则应大于40~14000赫,这样它们对放大电路的频响要求就不一样。

再加上放音环境条件有差异,每个人在听觉上习惯爱好也不同,所以在扩音机电路中常常需要加入音调控制电路,用它来按实际要求突出或减弱高音区或低音区,以期改善音质。

常用音调控制电路有两种: 一种是衰减型RC音调控制电路,另一种是反馈型音调控制电路。

本文先谈谈第一种。

RC型音调控制电路高音调整原理电路图见图1,图中W1 为高音控制电位器。

因为C3 、C4 的容量大于C1、C2 的容量,因此对高频信号而言,C3 、C4 可视为短路。

于是高音调整电路可简化为图2。

当W1 活动臂移至最上端A点时,因为W1 阻值远远大于R2,W1 、C2 支路可视为开路,所以图2可等效为图3a。

又因C1对低音和中音来讲,可视为开路,所以在频率比较低时,V2 /V1 =R2 /(R1 +R2 )。

图3a对高频来讲,C1 的容抗很小,高频信号可以顺利通过,因此,相对于低音来说,高音的音量提高了。

当频率高到一定程度时,C1 可视为短路,V2 就几乎等于 V1 了。

图3b为图3a 电路的提升特性,图3b中的实线为控制特性的精确值,虚线代表近似值。

高音开始转折的频率fH1 =1/2πC1R1,由此点开始,频率每升高一倍,信号的提升量增大6分贝左右;fH2为特性由提升转入平坦的转折频率,fH2 =(R1+R2 )/2R1R2C1 。

如果设R1=10R2,则当f=10fH1 时,频率增大10倍,电压的传输比将相对提高20分贝(10倍)。

当W1 的活动臂移至最下端B点时,高音衰减最大,情况如下:由于W1 阻值较大,阻止了高音通过W1 、C1支路, W1 、C1 支路可视为开路。

然而,由于C3 、C4对高音可视为短路,因此不管W2 的活动臂置于什么位置,其等效电路均可画成图4a形式。

几种高品质音调电路

几种高品质音调电路

几种高品质音调电路功放系统中无论是低档还是高档机,除了音量控制外都有音调控制电路,在一些低档机厂家为节省成本,其音调部分仅采用阻容式,当音调调节时往往使得高低音相互干扰,而且缺乏力度和清晰感,听起来非常浑浊杂乱,听久了令人烦燥不安,这些机子弃之又觉浪费,但用之又不满意,如果有动手能力的话,很有必要花几十元对其动动手术(摩机)–––––制作一款高品质的音调板来替换原机音调部分。

下面就向广大发烧友介绍几款品质极佳的音调电路供爱好者选择。

其中以 LM4610N、LM1036N最佳,LM4610N是在LM1036N的基础上增加了3D音场效果处理功能的新一代发烧精品,笔者建议首选LM4610N。

图1是由2块NE5532N组成的高中低音音调及音量控制电路(图中仅画一声道,另一声道完全一样),原理为:信号经IC1(作缓冲放大及隔离作用,避免负载与信号源之间的影响)进入由电阻电容组成的三个频率均衡网络,即高音、中音、低音的频率,当调节RP1–––RP3相应的低中高频就会相应地进入由IC2及其反馈电路组成的反相放大器电路,调节RP1–––RP3就是提升或衰减了高中低音,从而实现了音频调节作用。

需要说明一点是所采用的NE5532N必须是正宗品,如美国大S的、飞利浦的,这样才使行本电路的信噪比、动态范围、瞬态响应和控制效果均达到相当高水准。

(欲获更高的水准NE5532N 可换为NE5535N、OP275、AD827JN等精品运放,当然价格就高一点了)。

图2是采用二阶RC有源二分频电路,该电路由2块NE5532N构成(图中仅画一声道,另一声道相同),图中IC1A与IC1B分别组成低通与高通滤波器,完成音频信号的分割,再分别送到高低音音量控制电位器再分别进入高低音功放电路去推动高音喇叭和低音喇叭。

利用该电路的缺点是要多增加一对功板电路及增多一组接线柱。

相对来说需要多花点钱,但采用前级分频的优点却是非常明显的:①改善了低音音质;②兼顾了高低音扬声器的发声效率;③解决了以住电路中高低音扬声器联接时存在的阻抗不匹配问题;④音调调节的动态范围明显变大。

高低音调节电路

高低音调节电路

所谓音调控制就是人为地改变信号里高、低频成分的比重,以满足听者的爱好、渲染某种气氛、达到某种效果、或补偿扬声器系统及放音场所的音响不足。

这个控制过程其实并没有改变节目里各种声音的音调(频率),所谓“音调控制”只是个习惯叫法,实际上是“高、低音控制”或“音色调节”。

高保真扩音机大都装有音调控制器。

然而,从保证信号传送质量来考虑,音调控制倒不是必须的。

一个良好的音调控制电路,要有足够的高、低音调节范围,但又同时要求高、低音从最强到最弱的整个调节过程里,中音信号(通常指1000赫)不发生明显的幅度变化,以保证音量大致不变。

所谓提升或衰减高、低音,都是相对于中音而言的。

先把中音作一个固定衰减(或加深负反馈)然后让高音或低音衰减小一些(或负反馈轻一些),就算是得到提升。

因此,为了弥补音调控制电路的增益损失,常需增加一到两级放大电路。

音调控制电路大致可分为两大类:衰减式和负反馈式。

衰减式音调控制电路的调节范围可以做得较宽,但因中音电平要作很大衷减,并且在调节过程中整个电路的阻抗也在变。

所以噪声和失真大一些。

负反馈式音调控制电路的噪声和失真较小,但调节范围受最大负反馈量的限制,所以实际的电路常和输入衷减联合使用,成为衰减负反馈混合式。

1.衰减式音调控制电路。

典型电路如图:衰减式音调控制典型电路高音、低音分开调节:C1、C2、W1构成高音调节器,R1、R2、C3、C4、W2构成低音调节器。

W1旋到A点时高音提升,旋到B点时高音衰减。

W2旋到C点时低音提升,旋到D点时低音衰减。

组成音调电路的元件值必须满足下列关系:(1)R1≥R2;(2)W1和W2的阻值远大于R1、R2;(3)与有关电阻相比,C1、C2的容抗在高频时足够小,在中、低频时足够大;而C3、C4的容抗则在高、中频时足够小,在低频时足够大。

C1、C2能让高频信号通过,但不让中、低频信号通过;而C3、C4则让高、中频信号都通过,但不让低频信号通过。

只有满足上述条件,衰减式音调控制电路才有足够的调节范围,并且W1、W2分别只对高音、低音起调节作用,调节时中音的增益基本不变,其值约等于R2/R1。

用LM1875制作的无源电子分频电路(转载)

用LM1875制作的无源电子分频电路(转载)
R7\R13\R14的阻值是2.5K还是25K?
பைடு நூலகம்25k图方便的话用22k-24k都可以,
因为25k不是标准值,而且业余条件下元件精度很难控制,所以不严格要求
实际以听音为准.
不错,简单易试,收下了[em03]
做过,当时用的是2030,只是感觉功率太小了。[em01]
2006-10-9 22:19
CUW4ugDN.jpg(91.16 KB)
用LM1875制作的无源电子分频电路(转载)
滤波器和功放集成块合二为一,线路简洁,性能不俗可用任何功率运放从廉价的2030 2040 2050 1875 3886 4780 7294 7293都可以
数值 KTjCLawX.jpg(38 KB)
上世纪八十年代超流行的电子分频+功率放大一体化线路
简洁实用,音染小。
上世纪八十年代超流行的电子分频+功率放大一体化线路
2006-10-9 22:15
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

经典无源音调控制电路
左手665收藏时间:2015-3-9 9:50
虽然现在大部分人对音调控制电路弃之不用,不过个人认为由于听音环境不可能尽善尽美,音调控制电路秉承高保真的原则,在某些时候还是会起到画龙点睛的作用的,在制作功放时可以加一个后级直通开关来切换是否启用音调控制,这样就能兼顾各种场合与音源了。

目前大多采用反馈式电路,虽然提升效果较为明显,但是带来的音质损耗也是较大的,为发烧友所摒弃。

而最“古老”的无源式音调控制电路由于没有反馈带来的失真,所以音质更能真实的还原。

左手665收藏时间:2015年3月9日9:50。

相关文档
最新文档