半导体测试技术第一章 第2节 电阻率测量(to student)
半导体电阻率的多种测量方法应用与注意事项

半导体电阻率的多种测量方法应用与注意事项半导体电阻率的多种测量方法应用与注意事项依据掺杂水平的不同,半导体材料可能有很高的电阻率。
有几种因素可能会使测量这些材料电阻率的工作复杂化,其中包括与材料实现良好接触的问题。
已经设计出专门的探头来测量半导体晶圆片和半导体棒的电阻率。
这些探头通常使用硬金属,如钨来制作,并将其磨成一个探针。
在这种情况下接触电阻非常高,所以应当使用四点同线(collinear)探针或者四线隔离探针。
其中两个探针提供恒定的电流,而另外两个探针测量一部分样品上的电压降。
利用被测电阻的几何尺寸因素,就可以计算出电阻率。
看起来这种测量可能是直截了当的,但还是有一些问题需要加以注意。
对探针和测量引线进行良好的屏蔽是非常重要的,其理由有三点: 1 电路涉及高阻抗,所以容易受到静电干扰。
2 半导体材料上的接触点能够产生二极管效应,从而对吸收的信号进行整流,并将其作为直流偏置显示出来。
3 材料通常对光敏感。
四探针技术四点同线探针电阻率测量技术用四个等距离的探针和未知电阻的材料接触。
此探针阵列放在材料的中央。
图4- 25 是这种技术的图示。
已知的电流流过两个外部的探针,而用两个内部的探针测量电压。
电阻率计算如下:其中:V = 测量出的电压(伏特)I = 所加的电流(安培)t = 晶圆片的厚度(厘米)k = 由探头与晶圆片直径之比和晶圆片厚度与探头分开距离之比决定的修正因数。
如图4-26 所示,更实际的电路还包括每个探针的接触电阻和分布电阻(r1 到r4)、电流源和电压表从其LO 端到大地的有限的电阻(RC 和RV)和电压表的输入电阻(RIN)。
依据材料的不同,接触电阻(r)可能会比被测电。
浙江大学半导体测试技术第一章

Optical Densitometry 利用敏感的显微光密度计测试注入前后光透过率
对照校准表绘制等高图MAPPING 无需退火,测试在注入后几分钟内可完成
§4 RESISTIVITY PROFILING
四探针法测量的方块电阻无法表征掺杂浓度的厚度分布 测量RESISTIVITY PROFILING或者进一步dopant density profiles技术有:
温度梯度主要由于测量电流引起
测量环境的温度起伏
(1.29)
(6)表面处理
表面电荷层- 钝化处理 高电阻率样品利用四探针法测量较困难
例如:薄半导体层 四探针可测量高达1010–1011 ohms/square的方块电阻,采用测量电流 10-12安培 探针可能穿破薄注入层-利用汞电极替代金属探针
测向尺寸
探针距离样品边沿位置
F1:样品厚度因子
大部分的半导体wafer测试都必须进行厚度修正。 厚度修正因子的推导可参考下面文献 样品厚度小于探针间距的条件下可给出F1表达式:
For non-conducting bottom wafer:
t:厚度 For conducting bottom wafer:
类似于Modulated Photoreflectance,两束激光 1束聚焦激光(λ =830nm)注入额外载流子 另一束探测激光(λ=980nm)测量光学反射率-推导出载流子分布 可用于监控离子注入
§3.4 Optical Densitometry
测量非半导体薄膜的离子注入 透明衬底(如玻璃)覆盖高分子膜并掺有染料 离子注入时,染料分子分解,导致颜色变黯,
四探针法对半导体的测试
电场强度可表示为:
P点电压:距离探针r
半导体测试与表征技术基础[详细讲解]
![半导体测试与表征技术基础[详细讲解]](https://img.taocdn.com/s3/m/29135caaf021dd36a32d7375a417866fb84ac01c.png)
半导体测试与表征技术基础第一章概述(编写人陆晓东)第一节半导体测试与表征技术概述主要包括:发展历史、现状和在半导体产业中的作用第二节半导体测试与表征技术分类及特点主要包括:按测试与表征技术的物理效应分类、按芯片生产流程分类及测试对象分类(性能、材料、制备、成分)等。
第三节半导体测试与表征技术的发展趋势主要包括:结合自动化和计算机技术的发展,重点论述在线测试、结果输出和数据处理功能的变化;简要介绍最新出现的各类新型测试技术。
第二章半导体工艺质量测试技术第一节杂质浓度分布测试技术(编写人:吕航)主要介绍探针法,具体包括:PN结结深测量;探针法测量半导体扩散层的薄层电阻(探针法测试电阻率的基本原理、四探针法的测试设备、样品制备及测试过程注意事项、四探针测试的应用和实例);要介绍扩展电阻测试系统,具体包括:扩展电阻测试的基本原理、扩展电阻的测试原理、扩展电阻测试系统、扩展电阻测试的样品、扩展电阻法样品的磨角、扩展电阻法样品的制备、扩展电阻测试的影响因素、扩展电阻法测量过程中应注意的问题、扩展电阻法测量浅结器件结深和杂质分布时应注意的问题、扩展电阻测试的应用和实例。
第二节少数载流子寿命测试技术(编写人:钟敏)主要介绍直流光电导衰退法、高频光电导衰退法,具体包括:非平衡载流子的产生、非平衡载流子寿命、少数载流子寿命测试的基本原理和技术、少数载流子寿命的测试。
以及其它少子寿命测试方法,如表面光电压法、少子脉冲漂移法。
第三节表面电场和空间电荷区测量(编写人:吕航)主要包括:表面电场和空间电荷区的测量,金属探针法测量PN结表面电场的分布、激光探针法测试空间电荷区的宽度;容压法测量体内空间电荷区展宽。
第四节杂质补偿度的测量(编写人:钟敏)包括:霍尔效应的基本理论、范德堡测试技术、霍尔效应的测试系统、霍尔效应测试仪的结构、霍尔效应仪的灵敏度、霍尔效应的样品和测试、霍尔效应测试的样品结构、霍尔效应测试的测准条件、霍尔效应测试步骤、霍尔效应测试的应用和实例、硅的杂质补偿度测量、znO的载流子浓度、迁移率和补偿度测量、硅超浅结中载流子浓度的深度分布测量第五节氧化物、界面陷阱电荷及氧化物完整性测量(编写人:钟敏)包括:固定氧化物陷阱和可动电荷、界面陷阱电荷、氧化物完整性测试技术等。
探针方法测量半导体的电阻率

探针方法测量半导体的电阻率半导体材料是一类介于导体和绝缘体之间的材料,其电阻率在导体和绝缘体之间。
测量半导体的电阻率对于了解其导电性能以及材料特性非常重要。
其中一种常用的测量方法是探针方法。
探针方法是一种直接测量材料电阻率的方法,它利用了材料的电阻与尺寸、电流和电压之间的关系。
下面将详细介绍探针方法测量半导体电阻率的原理和步骤。
1.原理:探针方法通过在半导体材料上加上一定电流和电压,然后测量电流和电压之间的关系来计算电阻率。
根据欧姆定律,电阻率可以通过以下公式计算:ρ=Ra/(L×A)其中,ρ表示电阻率,R表示电阻,a表示电阻的推销线长度,L表示电流流过的有效长度,A表示截面积。
2.步骤:(1)准备样品:选择适当尺寸和形状的半导体样品,如片状、棒状等。
确保样品表面光洁,以减小接触电阻。
(2)固定样品:将样品固定在一个恒温的环境中,以保持温度的稳定性。
(3)测量电流-电压关系:使用探针仪器,在样品的两个端点接触两个探针,一个用于输入电流,一个用于测量电压。
逐渐增加电流,并记录对应的电压值。
(4)计算电阻率:利用测量到的电流和电压值,计算电阻率。
根据欧姆定律,电阻率可以通过R=V/I计算得到。
(5)考虑材料特性:根据材料的尺寸和形状,以及探针的接触情况来修正计算结果。
比如,对于不同形状的样品,可以根据几何形状的关系来计算电阻率。
探针方法测量半导体电阻率的优点是直接、无损伤地测量样品,可以获得较准确的电阻率值。
然而,探针方法也存在一些局限性,比如接触电阻和温度效应等。
接触电阻是由于探针与样品之间的接触不完美而引起的额外电阻,可能会导致电阻率的测量偏差。
温度效应是由于样品在加上电流后发热,导致温度升高,从而影响电阻率的测量结果。
为了减小这些误差,可以采取一些措施,如使用更小的探头,提高接触的稳定性,降低电流密度以减小温度效应等。
此外,还可以进行多组数据的测量,取平均值,以获得更准确的结果。
总之,探针方法是一种常用的测量半导体电阻率的方法,通过测量电流-电压关系来计算电阻率。
1.2 半导体硅单晶电阻率的测量

如果用以上装置来测量半导体的电阻率,由于导线 与样品之间存在很大的接触电阻,其有效电路图如 图所示:
(2)两探针法电阻率的基本原理 如图所示,在样品两端通以电流,并在样品的电流回路上串 联一个标准电阻Rs,利用高输入的电压表或电位差计测量 电阻上的电压降Vs,计算出流经半导体样品中的电流:
二、电阻率的测试方法
按照测量仪器分类: 1、接触法:适用于测量硅单晶、切、磨等硅片的 电阻率 (1)两探针法 (2)四探针法 (3)扩展电阻法 (4)范德堡法 2、无接触法:测量硅抛光、外延及SOI等片的电阻 率 (1)C-V法 (2)涡旋法
三、两种典型的测量方法 1、两探针法 (1)一般金属测试电阻率:
5)测试环境和温度修正
一般来说,四探针测试过程要求测试室的环境恒温、恒湿、 避光、无磁、无震。 由于半导体材料随温度的变化会发生变化,因此往往需要进 行温度系数的修正。一般参考温度为23℃±2 ℃,如实际温 度与参考温度相差太大,则需根据以下公式修正:
CT----温度修正系数,与样品的材料、导电类型、掺杂元素 有关系
若s1=s2=s3=s,则有
由以上两公式以及公式
可得探针系数为
实际两种为了直接读数,一般设置电流的数值等于探针系数 的数值,如探针间距为S=1mm,则C=2πS=0.628cm,若调节 恒流I=0.628mA,则由,2,3探针直接读出的数值即为样品 的电阻率。
(3)四探针测试仪器(KDY-1A)
(4)四探针法测量电阻的侧准条件和测试工艺要求: 1)样品表面 a)为了增大表面复合,降低少子寿命,从而减小少子注入的 影响,试样测量表面一般要求经过粗砂研磨或喷砂处理。 b)要求试样表面具有较高的平整度,且样品厚度以及任一探 针距样品边缘的距离必须大于4倍针距,以满足近似无穷大 的测试条件。 c)个测试点厚度与中心厚度的偏差不应大于±1%。
半导体的电学测量

(2-17)
此时,测量电压波形从最大值下降到其1/e所经历的时间,就可得到少数载流子寿命。
B
试验装置
直流光电导衰退法的整个实验装置如下图,主要为:光源、恒流器、前 置放大器及示波器。
a
光源
光源为脉冲光源,它的余辉时间(由光强最大值衰减到10%所需的间)
要求短一些,一般要求余辉时间小于1 ,这时可测量样品有效寿命最短为5
空穴陷阱。
A 实验原理
以光子能量大于禁带宽度的光照射半导体,位于价带的电子受激发跃迁 到导带,产生电子--空穴对,形成非平衡载流子 电导率的变化为: 假设符合下列条件: ① 样品是均匀的,no即 或Po在样品各处是相同的 ② 在样品中没有陷阱存在(即符合 ③非平衡载流子在样品表面复合可以忽略不计 ④ 小注入条件 ) 。光注入时,半导体 (2-1)
很多,最常用的是光电导衰退法(PCD),其次是表面光电压法。这两种方法 (指直流PCD)已被美国材料测试学会(ASTM)列为少数载流子寿命的标准测试 方法。 PCD有三种:直流PCD、高频PCD和微波PCD。这三种方法的基本原
理和数据处理均相同,只是对式样中非平衡载流子衰退过程所用的检测技术
不同而已。直流PCD测试方便迅速,结果比较可靠,得到广泛应用。但只适 用于硅锗等间接带隙半导体材料。
(2-1)式可简化为:
(2-2)
a) 如果非平衡载流子在样品表面复合掉的部分可以忽略,那么光激发的
非平衡载流子在样品内可以看成是均匀分布。
设 t=0 时停止照射,非平衡电子和空穴将不断复合而逐渐减少 。少数
载流子空穴复合寿命为 为复合率。有: , 为单位时间内非平衡载流子复合的几率,
(2-3)
小注入时, 为一常数,(2-3) 式解为:
半导体电阻率的测量

半导体电阻率的测量半导体材料的电阻率,是判断材料掺杂浓度的一个主要参数,它反映了补偿后的杂质浓度,与半导体中的载流子浓度有直接关系。
最早用来测量电阻率P的方法是用一个已知尺寸的矩形样品来测量电阻尺,直接利用ρ=(V·S)/(I·L)得到电阻率,但对于半导体材料,这样测量的电阻率将包括一个不可忽略的接触电阻项。
金属探针与半导体相接触的地方有很大的接触电阻,这个电阻甚至远远超过半导体本身的体电阻。
因此不能用直接法测量半导体材料的电阻率。
常用的接触式测量半导体材料电阻率的方法主要有如下几种:两探针法;三探针法;四探针法;单探针扩展电阻法;范德堡法。
在这篇文章中,我们将主要介绍各种测量半导体电阻率的方法。
(一)两探针法两探针法的主要想法,是利用探针与体电阻直接接触,避免了与测试电阻的接触从而消除误差。
试样为长条形或棒状,且视为电阻率均匀分布。
word编辑版.利用高阻抗的电压计测量电阻上的电压从而得到流过半导体的电流,再利用电压计测得半导体上流过单位长度的电压压降,再测得长度L,从而得到ρ=(V*S)/(I*L),S为试样表面积。
(二)三探针法三探针法适用于测量相同导电类型,低阻衬底的外延层材料的电阻率。
该方法是利用金属探针与半导体材料接触处的反向电流.电压特性、测定击穿时的电压来获得材料电阻率的知识的。
金半接触反向偏置时,外电压几乎全部降在接触处,空间电荷区中电场很大,载流子在电场作用下与晶格原子发生碰撞电离。
随着外电场增加,发生雪崩击穿,击穿电压与掺杂浓度有关,具体关系由经验公式给出,再根据电阻率与杂质浓度的关系图线,从而可以得到材料的电阻率。
(三)四探针法直线四探针法是用针距约为1毫米的四根探针同时压在样品的平整表面上,。
利用恒流源给l、4探针通以一个小电流,然后用高输入阻抗的电位差计、电子毫伏计或数字电压表测量电压。
利用高阻值电压计测得2、3探针间的电压值,为探针系数是常数,C=V*C/I。
测电阻率原理

测电阻率原理
测电阻率的原理如下:
电阻率是指单位长度和单位截面积条件下,导体所具有的电阻能力。
使用电阻率可以衡量材料的导电性能,常用于评估导体、绝缘体或半导体的质量。
测量电阻率通常需要使用四引线法。
该方法通过将电流引入导体中的两个接点,并在另外两个接点上测量电压差,从而计算出导体的电阻率。
具体操作步骤如下:
1. 准备实验所需的导体样品。
确保导体表面光洁,以便确保稳定的电流和电压测量。
2. 将导体样品固定在实验台上,并使用夹具保证导体的稳定性。
3. 将电流源的正极与导体的一端相连,负极与导体的另一端相连,建立电流通路。
4. 将电压测量设备的两个探头分别连接导体上的两个不同点,以测量电压差。
5. 调节电流源的电流大小,确保测量的电压差在合适的范围内,既能得到准确的测量结果,又能避免产生过大的电压造成烧损。
6. 记录产生的电流和测得的电压差,并使用以下公式计算电阻率:
电阻率 = (电导率 * 导体长度) / 导体截面积
7. 对于不同的导体样品,按照以上步骤进行多次测量,并取平均值以提高测量的准确性。
需要注意的是,在进行测量时应保证实验环境的稳定性,防止温度和湿度等环境因素对测量结果产生影响。
另外,导体的温度和材料的成分也会对电阻率产生影响,因此在进行比较时应考虑这些因素。