全国成人高考数学试卷及答案(word版本)
2024年成人高考专升本《数学》考卷真题及答案

2024年成人高考专升本《数学》考卷真题及答案一、选择题(每小题5分,共25分)1. 下列函数中,是奇函数的是()A. y = x^3B. y = x^2C. y = x^4D. y = x^2 + 12. 下列数列中,是等差数列的是()A. 1, 3, 5, 7,B. 1, 2, 4, 8,C. 1, 3, 9, 27,D. 1, 2, 3, 4,3. 下列不等式中,正确的是()A. 2x + 3 > 5x 1B. 3x 4 < 2x + 5C. 4x + 7 > 5x 2D. 5x 3 < 4x + 14. 下列立体图形中,是圆柱的是()A. 圆锥B. 球体C. 长方体D. 圆柱5. 下列积分中,正确的是()A. ∫(x^2 + 1)dx = (1/3)x^3 + x + CB. ∫(x^3 + 1)dx = (1/4)x^4 + x + CC. ∫(x^4 + 1)dx = (1/5)x^5 + x + CD. ∫(x^5 + 1)dx = (1/6)x^6 + x + C二、填空题(每小题5分,共25分)1. 函数y = x^2 4x + 3的顶点坐标是______。
2. 等差数列1, 3, 5, 7, 的前10项和是______。
3. 不等式3x 4 < 2x + 5的解集是______。
4. 圆柱的体积公式是______。
5. 积分∫(x^3 + 1)dx的值是______。
三、解答题(每小题10分,共50分)1. 解方程组:\[\begin{align}2x + 3y &= 8 \\4x 5y &= 10\end{align}\]2. 求函数y = x^3 6x^2 + 9x 1的极值。
3. 求证:等差数列1, 3, 5, 7, 的前n项和是n(n + 1)/2。
4. 求圆柱的表面积。
5. 计算积分∫(x^4 + 1)dx。
四、证明题(每小题10分,共20分)1. 证明:对于任意实数x,都有x^2 ≥ 0。
2023年成人高考专升本高等数学(一)试题及答案详解

2023年成人高等学校招生全国统一考试专升本高等数学(一)本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间150分钟.第I卷(选择题,共40分)一、选择题(1~10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.当x→0时,5x-si n5x是x的【】A.高阶无穷小量B.等价无穷小量C.同阶无穷小量,但不是等价无穷小量D.低阶无穷小量2.设y=√2x+1,则y'=【】A.B.C.D.3.设y=e*,则d y=】【A.er d x B.-e^d x C.e'd x D.一e'd x~4.设函数在x =0处连续,则b=【】A.2C.0B.1D.—15.【】A.s i nx+CB.—s i n x+CC.c o s x+CD.—c o s x+C6.【】A.2B.1C.D.0【】7.设,则D.A.C.8.幂级数【】的收敛域是D.[-1,1]B.(-1,1)C.(-1,1)A.(-1,1)【】在平面3x-2y+z-7=0上,则k=9.已知直线A.0B.1C.2D.3【】10.微分方程y"+y=e²r的一个特解是A.B.C.D.第Ⅱ卷(非选择题,共110分)(t为参数),二、填空题(11~20小题,每小题4分,共40分)贝12.设13.设y=x+e²,则y”=14.设y=x+s i n x,则y'=15.16.17.设z=e²,则d z=18.过点(0,1,1)且与直线垂直的平面方程为19.设区域D=((x,y)|O≤x≤2,-l≤y≤1},则20.微分方程xy'+y=0满足初始条件y(1)=1的解为y=三、解答题(21~28题,共70分.解答应写出推理、演算步骤)21.(本题满分8分)计算22.(本题满分8分)计23.(本题满分8分)求微分方程的通解.25.(本题满分8分)求函数f(x)=x²e*的单调区间和极值.26.(本题满分10分)设D是由曲线y=1-x²(x≥0),x=0,y=0所围成的平面图形.(1)求D的面积S;(2)求D绕x轴旋转一周所得旋转体的体积V.,其中D是由曲线y=√1-x²,y=x,y=-x所围成的闭区域.计28.(本题满分10分)已知函数f(x)连续,且满参考答案及解析一、选择题1.【答案】A【考情点拨】本题考查了高阶无穷小量的知识点.【应试指导】,故5x-sin5x是x的高阶无穷小量.2.【答案】D【考情点拨】本题考查了复合函数求导的知识点.【应试指导】3.【答案】B【考情点拨】本题考查了微分的知识点.【应试指导】dy=(e*)'dx=-e*dx,4.【答案】B【考情点拨】本题考查了分段函数连续性的知识点.【应试指导】因f(x)在x=0处连续,则有b=1.5.【答案】D【考情点拨】本题考查了不定积分的知识点.【应试指导】6.【答案】C【考情点拨】本题考查了洛必达法则的知识点.【应试指导】7.【答案】B【考情点拨】本题考查了偏导数的知识点.【应试指导】8.【答案】D【考情点拨】本题考查了幂级数收敛域的知识点.【应试指导】收敛半径,所以幂级数的收敛区间为(-1,1).当x=-1时,级数为收敛的p级数.故该级数的收敛为收敛的交错级数;当x=1时,级数域为[-1,1].9.【答案】C【考情点拨】本题考查了直线与平面的位置关系的知识点.【应试指导】由题可知直线的方向向量s=(k,1,-4),平面的法向量n=(3,-2,1).由于s上n,因此有3k-2-4=0,故k=2.10.【答案】A【考情点拨】本题考查了二阶常系数线性非齐次微分方程特解的知识点.【应试指导】可验证,四个选项中只有A项满足微分方程,故其特解为.二、填空题11.【答案】e²【考情点拨】本题考查了两个重要极限的知识点.【应试指导】12.【答案】3【考情点拨】本题考查了参数方程求导的知识点.【应试指导】13.【答案】e'【考情点拨】本题考查了高阶导数的知识点.【应试指导】y'=1+e²,故y”=e².14.【答案】1+c o s x【考情点拨】本题考查了导数的运算的知识点.【应试指导】y'=(x+sinx)'=1+cosx.15.【答案】【考情点拨】本题考查了不定积分的计算的知识点.【应试指导】16.【答案】【考情点拨】本题考查了反常积分的计算的知识点.【应试指导】17.【答案】e²>(y d x+x d y)【考情点拨】本题考查了全微分的知识点.【应试指导】dz= de^>=e²d(x y)=e*(y dx+xdy).18.【答案】x+2y+z-3=0【考情点拨】本题考查了平面点法式方程的知识点.【应试指导】由题意,平面法向量为n=(1,2,1),又过点(0,1,1),故方程为x+2(y-1)+(z-1)=0,即x+2y+z-3=0.19.【答案】4【考情点拨】本题考查了二重积分的知识点.【应试指导】20.【答案】【考情点拨】本题考查了一阶线性齐次微分方程的知识点.【应试指导】由xy+y=0得,通解为,将y(1)=1代入通解,得C=1,故所求的解为三、解答题21.=1.22.23.由题可知24.25.f(x)的定义域为(-α,+o),f'(x)=2xe+-x2e+=e*(-x2+2x),令f'(x)=0,得xj=0,x2=2.列表如下:20(0,2)(2,+o)x(-α,0)y0+0极小值极大值y由表可知,函数的单调增区间为(0,2);单调减区间为(一~,0),(2,+o).极大值为f(2)=4e2,极小值为f(0)= 0.;27.积分区域用极坐标可表示为28.由两边同时求导得(1+x2)f(x)= sinx+xcosx,所以。
历年成人高考数学试题及答案word

历年成人高考数学试题及答案word一、选择题(每题3分,共30分)1. 函数f(x) = 2x^2 - 3x + 1的零点个数是()。
A. 0B. 1C. 2D. 32. 如果一个等差数列的首项为a1,公差为d,那么它的第n项an可以表示为()。
A. an = a1 + (n-1)dB. an = a1 + ndC. an = a1 + (n-1)(2d)D. an = a1 + (n-1)(-d)3. 已知集合A={1,2,3},B={2,3,4},则A∩B=()。
A. {1}B. {2,3}C. {3,4}D. {1,2,3,4}4. 若直线y=kx+b与x轴交于点(2,0),则b的值为()。
A. 2B. -2C. 0D. 45. 函数y=x^3-3x^2+2的导数是()。
A. y' = 3x^2-6xB. y' = x^2-3xC. y' = 3x^2-6x+2D. y' = x^3-3x^26. 已知抛物线方程为y=x^2-4x+3,其顶点坐标为()。
A. (2,-1)B. (2,1)C. (-2,1)D. (-2,-1)7. 函数y=sin(x)的周期是()。
A. πB. 2πC. π/2D. 4π8. 已知向量a=(3,-2),b=(1,2),则向量a·b的值为()。
A. 1B. -1C. 5D. -59. 函数y=e^x的反函数是()。
A. y=ln(x)B. y=e^(-x)C. y=ln(-x)D. y=e^(x-1)10. 已知双曲线方程为x^2/a^2 - y^2/b^2 = 1,其中a>0,b>0,则该双曲线的焦点位于()。
A. x轴上B. y轴上C. 原点D. 第一象限二、填空题(每题2分,共20分)11. 圆的方程为(x-3)^2 + (y+2)^2 = 9,该圆的半径是______。
12. 函数y=cos(x)在区间[0, π]上的最大值是______。
成人高考成考高等数学(二)(专升本)试卷与参考答案

成人高考成考高等数学(二)(专升本)自测试卷(答案在后面)一、单选题(本大题有12小题,每小题7分,共84分)1、设函数(f(x)=x3−3x+2),则(f(x))在区间[-2, 2] 上的最大值为:A、2B、4C、6D、82、已知函数(f(x)=e x lnx),则该函数的定义域是:A.((0,+∞))B.((−∞,0))C.((0,1))D.((1,+∞))3、设函数f(x)=x3−3x2+2在区间[−1,3]上的最大值为M,最小值为m。
则M−m 的值是:A. 4B. 6C. 8D. 10),则该函数的间断点是:4、设函数(f(x)=11+x2A.(x=0)B.(x=1)C.(x=−1)D.(x)无间断点5、设函数(f(x)=x3−3x+1),则该函数在区间 [-2, 2] 上的最大值为:A、4B、3C、2D、16、设函数f(x)=x3−6x2+9x+1,则该函数的极值点为:A.x=1B.x=2C.x=3D.x=47、若函数(f(x)=ln(x2+1)),则(f(x))在(x=1)处的导数(f′(1))是:)A、(12B、1C、2)D、(238、设函数(f(x)=x3−6x2+9x+1),则函数的极值点个数是:A. 0B. 1C. 2D. 39、设函数(f(x)=3x2−4x+5),则该函数的对称轴为:A.(x=1))B.(x=−13)C.(x=23D.(x=2)10、在下列函数中,连续函数为:())(x∈R)A.(f(x)=1x3)(x∈R)B.(f(x)=√xC.$( f(x) =)$D.(f(x)=|x|)(x∈R)),则(f′(0))的值为:11、已知函数(f(x)=1x2+1A. 0B. 1C. -1D. 不存在),求(f′(x))。
12、设函数(f(x)=2x+3x−1)A.(2(x−1)2B.(2x2−1)C.(2(x+1)(x−1))D.(1x−1)二、填空题(本大题有3小题,每小题7分,共21分)1、设函数(f(x)=e ax+b),其中(a,b)为常数,若(f(x))的单调递减区间为((−∞,1a)),则(a)的取值范围为______ 。
全面成人高考数学试卷

1. 已知函数$f(x)=x^3-3x+1$,则该函数的极值点为()A. $x=-1$,$x=1$B. $x=-1$,$x=2$C. $x=1$,$x=2$D. $x=-2$,$x=1$2. 若$a$、$b$、$c$是等差数列,且$a+b+c=9$,则$abc$的值为()A. 27B. 24C. 18D. 153. 已知等比数列$\{a_n\}$的公比为$q$,且$a_1=2$,$a_4=32$,则$q$的值为()A. 2B. 4C. 8D. 164. 若一个正方体的体积为64,则它的对角线长为()A. 8B. 16C. 24D. 325. 在直角坐标系中,点$(2,3)$关于直线$y=x$的对称点为()A. $(2,3)$B. $(3,2)$C. $(-2,-3)$D. $(-3,-2)$6. 已知等差数列$\{a_n\}$的公差为$d$,且$a_1=3$,$a_4+a_7=24$,则$d$的值为()A. 2B. 3C. 4D. 57. 若一个正方体的对角线长为$\sqrt{3}$,则它的体积为()A. $\frac{1}{2}$B. 1C. $\sqrt{2}$D. 28. 在直角坐标系中,点$(1,2)$关于直线$x+y=3$的对称点为()A. $(1,2)$B. $(2,1)$C. $(3,0)$D. $(0,3)$9. 若一个等差数列的前$n$项和为$S_n=4n^2+2n$,则该数列的公差为()A. 2B. 4C. 6D. 810. 已知等比数列$\{a_n\}$的公比为$q$,且$a_1=3$,$a_4+a_7=36$,则$q$的值为()A. 2B. 3C. 4D. 611. 若一个正方体的表面积为$36$,则它的对角线长为()A. 2B. 3C. 4D. 612. 在直角坐标系中,点$(2,3)$关于直线$y=-x$的对称点为()A. $(2,3)$B. $(-2,-3)$C. $(-3,-2)$D. $(3,2)$13. 已知等差数列$\{a_n\}$的公差为$d$,且$a_1=2$,$a_4+a_7=24$,则$d$的值为()A. 2B. 3C. 4D. 514. 若一个正方体的对角线长为$\sqrt{2}$,则它的体积为()A. $\frac{1}{2}$B. 1C. $\sqrt{2}$D. 215. 在直角坐标系中,点$(1,2)$关于直线$x=2$的对称点为()A. $(1,2)$B. $(3,2)$C. $(1,4)$D. $(3,4)$16. 若一个等差数列的前$n$项和为$S_n=5n^2-2n$,则该数列的公差为()A. 2B. 4C. 6D. 817. 已知等比数列$\{a_n\}$的公比为$q$,且$a_1=4$,$a_4+a_7=56$,则$q$的值为()A. 2B. 3C. 4D. 618. 若一个正方体的表面积为$48$,则它的对角线长为()A. 2B. 3C. 4D. 619. 在直角坐标系中,点$(2,3)$关于直线$x=0$的对称点为()A. $(2,3)$B. $(-2,-3)$C. $(-3,-2)$D. $(3,2)$20. 已知等差数列$\{a_n\}$的公差为$d$,且$a_1=3$,$a_4+a_7=28$,则$d$的值为()A. 2B. 3C. 4D. 5二、填空题(本大题共10小题,每小题5分,共50分。
成人高考数学试题(历年成考数学试题答案与解答提示)

成人高考数学试题第一部分:试题答案与解答提示1. 简单计算题请计算下列各式的结果:(1)3 + 5 × 2 8 ÷ 4 = ?(2)(9 3)² + 4 × 6 ÷ 2 = ?(3)√(16 × 25) = ?解答提示:对于简单计算题,我们需要掌握基本的算术运算规则,如加减乘除、乘方、开方等。
在解题过程中,要注意运算顺序,遵循先乘除后加减的原则。
2. 代数式计算题请计算下列各式的结果:(1)若 a = 3,b = 4,求 2a 3b 的值。
(2)若 x = 2,y = 3,求(x² y²) ÷ (x + y) 的值。
(3)若 a = 2,b = 1,求(a + b)² 2ab 的值。
解答提示:对于代数式计算题,我们需要熟练掌握代数式的运算规则,如合并同类项、分配律、平方差公式等。
在解题过程中,要注意代入给定的数值,并按照运算顺序进行计算。
3. 解方程题请解下列方程:(1)2x 5 = 7(2)3x + 4 = 11 2x(3)2x² 5x + 3 = 0解答提示:对于解方程题,我们需要掌握一元一次方程、一元二次方程的求解方法。
在解题过程中,要注意方程的化简、移项、合并同类项等步骤,以及使用求根公式求解一元二次方程。
4. 几何题请计算下列几何问题的答案:(1)若一个正方形的边长为 5 厘米,求其面积。
(2)若一个圆的半径为 4 厘米,求其周长。
(3)若一个三角形的底边长为 6 厘米,高为 8 厘米,求其面积。
解答提示:对于几何题,我们需要掌握基本的几何知识,如正方形、圆、三角形的面积和周长公式。
在解题过程中,要注意代入给定的数值,并按照公式进行计算。
5. 应用题请解决下列应用问题:(1)小华有 10 元钱,购买一支铅笔和一本笔记本后,还剩 2 元。
铅笔的价格是 3 元,笔记本的价格是多少?(2)一辆汽车以每小时 60 公里的速度行驶,从甲地到乙地需要2 小时。
成人高考数学真题及答案

一、选择题: 1~ 10 小题,每小题 4 分,共 40 分.在每个小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内.1.A.2/3B.1C.3/2D.3答案: C2.设函数 y=2x+sinx,则y/=A.1-cosxB.1+cosxC.2-cosxD.2+cosx答案: D3.设函数 y=e x-2 ,则 dy=A.e x-3 dxB.e x-2 dxC.e x-1 dxD.e x dx答案: B4.设函数 y=(2+x )3,则 y / =A.( 2+x )2B.3(2+x) 2C.(2+x) 4D.3(2+x) 4答案: B5.设函数 y=3x+1, 则 y / =A.0B.1C.2D.3答案: A6.A.e xB.e x-1C.e x-1D.e x+1答案: A7.A.2x 2+CB.x2+CC.1/2x 2+CD.x+C答案: C8.A.1/2B.1C.2D.3答案: C9.设函数 z=3x 2y,则αz/ αy=A.6yB.6xyC.3xD.3X 2答案: D10.A.0B.1C.2D.+ ∞答案: B二、填空题: 11 ~20 小题,每小题 4 分,共 40 分.把答案填在题中横线上.11.答案: e212. 设函数 y=x 3,则 y/ =答案: 3x 213. 设函数 y=(x-3) 4,则 dy=答案: 4(x-3 )3dx14. 设函数 y=sin(x-2 ),则 y"=精品文档答案: -sin (x-2 )15.答案: 1/2ln|x|+C16.答案: 017. 过坐标原点且与直线( x-1 ) /3=(y+1)/2+(z-3)/-2垂直的平面方程为答案: 3x+2y-2z=018. 设函数 x=3x+y 2,则 dz=答案: 3dx+2ydy19.微分方程 y/ =3x 2的通解为 y=答案: x3+C20.答案: 2三、解答题: 21-28 题,共 70 分。
成人高考成考高等数学(二)(专升本)试卷及解答参考

成人高考成考高等数学(二)(专升本)复习试卷(答案在后面)一、单选题(本大题有12小题,每小题7分,共84分)1、设函数(f(x)=2x−3x),则函数的零点个数是:A. 1B. 2C. 3D. 02、设函数(f(x)=e x sinx),则该函数的导数(f′(x))为:A.(e x(sinx+cosx))B.(e x(sinx−cosx))C.(e x cosx)D.(e x sinx)3、设函数f(x)=x3-6x2+9x,若函数在x=1处取得极值,则该极值是:A. 4B. 0C. -4D. 84、下列函数中,定义域为实数集的有()A、f(x) = √(x^2 - 1)B、g(x) = 1/xC、h(x) = |x| + 1D、k(x) = √(-x)5、设函数(f(x)=x3−3x+2),则(f(x))的极值点为:A.(x=−1)和(x=1)B.(x=−1)和(x=2)C.(x=0)和(x=1)D.(x=0)和(x=2)6、设函数(f(x)=3x2−4x+1),则该函数的图像开口方向是:A. 向上B. 向下C. 水平D. 垂直),其定义域为((−∞,0)∪(0,+∞)),则函数(f(x))在(x=0)处7、设函数(f(x)=1x的极限值为:A. -∞B. +∞C. 0D. 不存在8、若函数(f(x)=x3−3x2+4x+1)在点(x=1)处可导,且其导数的反函数为(g(x)),则(g′(1))等于:B. -1C. 0D. 29、若函数(f(x)=11+x2)的定义域为(D f),则(D f)为:A.((−∞,+∞))B.((−∞,−1)∪(−1,+∞))C.((−∞,−1]∪[−1,+∞))D.((−1,1]∪[1,+∞))10、设函数f(x)=1xlnx,则f(x)的导数f′(x)为:A.−1x2lnx+1x2B.1x2lnx−1x2C.1x lnx−1x2D.−1x lnx+1x211、设函数(f(x)=11+x2),则(f′(0))的值为:A.(−1)B.(0)C.(12)D.(11+02)12、设函数f(x)=x 3−3xx2−1,则f′(1)的值为:A. 1C. 0D. 无定义二、填空题(本大题有3小题,每小题7分,共21分)1、设函数f(x) = x² - 3x + 2,若f(x)在x=1处的导数为0,则f(x)的极值点为______ 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密★启用前
成人高等学校招生全国统一考试
数学(文史财经类)
第Ⅰ卷(选择题, 共85分)
一、选择题:本大题共17小题, 每小题5分, 共85分, 在每小题给出的4个选项中只有一项是符合题目要求的.
1.设全集=U {1,2,3,4}, 集合M={3,4} , 则=M C U
A.{2, 3}
B.{2, 4}
C.{1, 4} D .{1, 2}
2.函数x y 4cos =的最小正周期为 A.
4π B.2
π C. π D.π2 3.设 甲:0=b 乙:函数b kx y +=的图像经过坐标原点,
则
A 甲是乙的充分条件但不是必要条件
B. 甲是乙的必要条件但不是充分条件
C 甲是乙的充要条件
D. 甲既不是乙的充分条件也不是乙的必要条件
4.已知,21tan =
α则)4
tan(πα+= A.-3 B.31- C.31 D.3 5.函数21x y -=的定义域是
A.{x x |≥-1}
B. {x x |≤1}
C. {x x |≤-1}
D. {|x -1≤x ≤1}
6.设,10<<x 则
A. 1<x 22<
B. 120<<x
C.0log 2
1<x D.0log 2>x 7.不等式|21+x |2
1>的解集为 A. {|x 01<<-x } B. {|x 10-<>x x 或} C. {|x 1->x } D. {|x 0<x }
8.甲、乙、丙、丁4人排成一行, 其中甲、乙必须排在两端, 则不同的排法共有
A. 2种
B. 4种
C. 8种
D.24种
9.若向量),1,1(),1,1(-==b a 则=-b a 2
321 A.(1, 2) B.(1, -2) C.(-1, 2) D .(-1, -2) 10.02
1
3)2(161log -++=
A.5
B.4
C.3
D.2
11.函数542--=x x y 的图像与x 轴交于A 、B 两点, 则|AB|=
A.3
B.4
C.5
D.6
12.下列函数中, 为奇函数的是
A. 32+-=x y
B. x
y 2-= C.32-=x y D.x y cos 3= 13.双曲线116
92
2=-y x 的焦点坐标是 A. (-5, 0) , (5, 0) B.(0,7-
) ,(0,7 ) C. (0, -5) , (0, 5) D.)7,0(),7,0(-
14.若直线01=-+y mx 与直线0124=++y x 平行, 则m=
A. -1
B. 0
C. 1
D.2
15.在等比数列{n a }中, 4a 65=a , 则7632a a a a =
A.12
B. 24
C. 36
D.72
16.已知函数)(x f 的定义域为R, 且,14)2(+=x x f 则=)1(f
A. 3
B. 5
C. 7
D.9
17.甲乙各自独立地射击一次, 已知甲射中10环的概率为0.9, 乙射中10环的概率为0.5, 则甲乙都射中10环的概率为
A. 0.2
B. 0.25
C. 0.45
D.0.75
二.填空题:本大题共4小题, 每小题4分, 共16分。
请将答案填写在答题卡的相应位置上。
18. 椭圆14
22
=+y x 的离心率为______________ 19.函数12)(2
+-=x x x f 在1=x 处的导数为______________
20.设函数b x x f +=)(, 且3)2(=f , 则=)3(f ______________
21.从一批相同型号的钢管中抽取5根, 测其内径, 得到如下样本数据(单位:mm );
110.8 , 109.4, 111.2 , 109.5 , 109.1
则该样本的方差为______________2mm 。
三.解答题:本大题共4小题, 共49分, 解答应写出文字说明, 证明过程或演算步骤。
22.(12分)
已知{n a }为等差数列, 且153+=a a
(1)求{n a }的公差d (2)若21=a , 求{n a }的前20项和20S
23.(12分)
在△ABC 中, 已知︒=75B ,2
2cos =
C , (1)求A cos (2)若BC=3, 求AB
25.(13分)
已知函数1122)(3
+-=x x x f , 求)(x f 的单调区间和极值。
24.(12分)
在平面直角坐标系xoy 中, 已知⊙M 的方程为,062222=-+-+y x y x ⊙O 经过点M
(1) 求⊙O 的方程
(2) 证明:直线02=+-y x 与⊙M, ⊙O 都相切
答案:
一.选择题
1.D
2.B
3.C
4.D
5.D
6.A
7.B
8.B
9.A 10.B 11.D 12.B
13.A 14.B 15.B 16.A 17.C
二.填空题
18.x sin 2- 19.4-=x y 20.43 21.7.0 22—25略。