苏科版九年级数学上册期末真题试卷(一)解析版

合集下载

苏科版数学九年级上册《期末考试卷》(带答案解析)

苏科版数学九年级上册《期末考试卷》(带答案解析)

九 年 级 上 册 数 学 期 末 测 试 卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)某县开展关于精准扶贫、精准扶贫的决策部署以来,贫困户2017年人均纯收入为3620元,经过帮扶到2019年人均纯收入为4850元,设该贫困户每年纯收入的平均增长率为x ,则下面列出的方程中正确的是( )A .23620(1)4850x -=B .3620(1)4850x +=C .3620(12)4850x +=D .23620(1)4850x +=2.(3分)如图,O 的直径CD 垂直弦AB 于点E ,且2CE =,8DE =,则BE 的长为( )A .2B .4C .6D .83.(3分)某校足球队有16名队员,队员的年龄情况统计如下:则这16名队员年龄的中位数和众数分别是( ) A .14,15B .15,15C .14.5,14D .14.5,154.(3分)在一个不透明的袋子中有3个白球、4个红球,这些球除颜色不同外其他完全相同.从袋子中随机摸出一个球,它是红球的概率是( ) A .14B .13C .37D .475.(3分)使方程222525x mx m -+=的一根为整数的整数m 的值共有( ) A .1个B .2个C .3个D .4个6.(3分)点P 为O 外一点,PA 为O 的切线,A 为切点,PO 交O 于点B ,30P ∠=︒,4BP =,则线段AP 的长为( )A .4B .8C .D .7.(3分)如图,点A 、B 、C 在O 上,54ACB ∠=︒,则ABO ∠的度数是( )A .54︒B .27︒C .36︒D .108︒8.(3分)实数a ,b ,c 满足0a b c -+=,则( ) A .240b ac ->B .240b ac -<C .240b ac -D .240b ac -9.(3分)如图,四边形ABCD 内接于O ,AB CB =,30BAC ∠=︒,BD =AD CD +的值为()A .3B .C 1D .不确定10.(3分)如图,O 的直径AB 与弦CD 相交于点P ,且45APC ∠=︒,若228PC PD +=,则O 的半径为( )A B .2C .D .4二.填空题(共8小题,满分24分,每小题3分)11.(3分)如果关于x 的一元二次方程210ax bx +-=的一个解是1x =,则2021a b --= .12.(3分)如图AB 是O 的直径,弦CD OB ⊥于点E ,交O 于点D ,已知5OC cm =,8CD cm =,则AE = cm .13.(3分)已知数据1x ,2x ,3x 的平均数是5,则数据132x +,232x +,332x +的平均数是 . 14.(3分)在一个不透明的袋子中装有4个白球,a 个红球.这些球除颜色外都相同.若从袋子中随机摸出1个球,摸到红球的概率为23,则a = . 15.(3分)在从小到大排列的五个数x ,3,6,8,12中再加入一个数,若这六个数的中位数、平均数与原来五个数的中位数、平均数分别相等,则x 的值为 .16.(3分)一个不透明的盒子内装有大小、形状相同的六个球,其中红球1个、绿球2个、白球3个,小明摸出一个球是绿球的概率是 .17.(3分)一次数学测验满分是100分,全班38名学生平均分是67分.如果去掉A 、B 、C 、D 、E 五人的成绩,其余人的平均分是62分,那么在这次测验中,C 的成绩是 分.18.(3分)有五张正面分别标有数2-,0,1,3,4的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将卡片上的数记为a ,则使关于x 的方程13(1)3ax x x --+=-的解是正整数的概率 . 三.解答题(共8小题,满分46分) 19.(4分)解一元二次方程: (1)290x -=;(2)2230x x --=.20.(4分)如图,在ABC∠=∠.∆中,D是边BC上一点,以BD为直径的O经过点A,且CAD ABC (1)请判断直线AC是否是O的切线,并说明理由;(2)若2CA=,求弦AB的长.CD=,421.(4分)疫情结束后,某广场推出促销活动,已知商品每件的进货价为30元,经市场调研发现,当该商品的销售单价为40元时,每天可销售280件;当销售单价每增加1元,每天的销售数量将减少10件.【销售利润=销售总额-进货成本】.(1)若该商品的的件单价为43元时,则当天的售商品是件,当天销售利润是元;(2)当该商品的销售单价为多少元时,该商品的当天销售利润是3450元.22.(6分)如图,在ABC∠的平分线交BC于点D,点O在AB上,以点O为圆心,∠=︒,BACC∆中,90OA为半径的圆恰好经过点D,分别交AC、AB于点E.F.(1)试判断直线BC与O的位置关系,并说明理由;BF=,求O的半径.(2)若BD=223.(6分)2017年全国两会民生话题成为社会焦点.徐州市记者为了了解百姓”两会民生话题”的聚焦点,随机调查了徐州市部分市民,并对调查结果进行整理.绘制了如图所示的不完整的统计图表.请根据图表中提供的信息解答下列问题:(1)填空: m=,n=.扇形统计图中E组所占的百分比为%;(2)徐州市市区人口现有170万人,请你估计其中关注D组话题的市民人数;(3)若在这次接受调查的市民中,随机抽查一人,则此人关注C组话题的概率是多少?24.(6分)某楼盘准备以每平方米6000元的均价对外销售,新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.(1)求平均每次下调的百分率;(2)某人准备以开盘均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?25.(8分)已知: 如图,AB为O的直径,CE ABBF OC,连接BC,CF.⊥于E,//求证: OCF ECB∠=∠.26.(8分)密码锁有三个转轮,每个转轮上有十个数字: 0,1,2,9⋯.小黄同学是9月份中旬出生,用生日”月份+日期”设置密码: 9⨯⨯小张同学要破解其密码:(1)第一个转轮设置的数字是9,第二个转轮设置的数字可能是.(2)请你帮小张同学列举出所有可能的密码,并求密码数能被3整除的概率;(3)小张同学是6月份出生,根据(1)(2)的规律,请你推算用小张生日设置的密码的所有可能个数.答案与解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)某县开展关于精准扶贫、精准扶贫的决策部署以来,贫困户2017年人均纯收入为3620元,经过帮扶到2019年人均纯收入为4850元,设该贫困户每年纯收入的平均增长率为x ,则下面列出的方程中正确的是( )A .23620(1)4850x -=B .3620(1)4850x +=C .3620(12)4850x +=D .23620(1)4850x +=【解答】解: 如果设该贫困户每年纯收入的平均增长率为x , 那么根据题意得: 23620(1)4850x +=. 故选: D .2.(3分)如图,O 的直径CD 垂直弦AB 于点E ,且2CE =,8DE =,则BE 的长为( )A .2B .4C .6D .8【解答】解: 2CE =,8DE =,5OB ∴=, 3OE ∴=, AB CD ⊥,∴在OBE ∆中,4BE ==,故选: B .3.(3分)某校足球队有16名队员,队员的年龄情况统计如下:则这16名队员年龄的中位数和众数分别是( ) A .14,15B .15,15C .14.5,14D .14.5,15【解答】解: 共有16个数,最中间两个数的平均数是(1415)214.5+÷=,则中位数是14.5; 15出现了6次,出现的次数最多,则众数是15; 故选: D .4.(3分)在一个不透明的袋子中有3个白球、4个红球,这些球除颜色不同外其他完全相同.从袋子中随机摸出一个球,它是红球的概率是( ) A .14B .13C .37D .47【解答】解: 根据题意可得: 袋子中有3个白球,4个红球,共7个, 从袋子中随机摸出一个球,它是红球的概率47. 故选: D .5.(3分)使方程222525x mx m -+=的一根为整数的整数m 的值共有( ) A .1个 B .2个C .3个D .4个【解答】解:方程有一个整数根,∴△222258(25)9400m m m =--=+>,设△2(p p =为正整数), (3)(3)40m p m p ∴-+=-, 33m p m p -+且同奇偶, 34m p ∴-=-,10-,2-,20-, 310m p +=,4,20,2, 3m ∴=±,1±,经检验,均有一根为整数, ∴符合条件的整数m 的值有4个,故选: D .6.(3分)点P 为O 外一点,PA 为O 的切线,A 为切点,PO 交O 于点B ,30P ∠=︒,4BP =,则线段AP 的长为( )A.4B.8C.D.【解答】解: 连接OA,如图:PA为O的切线,∴⊥,PA OA∴∠=︒,OAP90∠=︒,30P∴==,AP=,OP OA OB22∴===,4OA OB BP∴=AP故选: C.7.(3分)如图,点A、B、C在O上,54∠的度数是()∠=︒,则ABOACBA.54︒B.27︒C.36︒D.108︒【解答】解: 54∠=︒,ACB∴圆心角2108∠=∠=︒,AOB ACBOB OA =,1(180)362ABO BAO AOB ∴∠=∠=⨯︒-∠=︒,故选: C .8.(3分)实数a ,b ,c 满足0a b c -+=,则( ) A .240b ac ->B .240b ac -<C .240b ac -D .240b ac -【解答】解: 设一元二次方程为20ax bx c ++= 当1x =-时,原方程化为0a b c -+=所以一元二次方程为20ax bx c ++=有实数根, 所以240b ac -. 故选: C .9.(3分)如图,四边形ABCD 内接于O ,AB CB =,30BAC ∠=︒,BD =AD CD +的值为()A .3B .C 1D .不确定【解答】解: 如图,过点B 作BE AD ⊥于E ,BF DC ⊥交DC 的延长线于F .AB BC =, ∴AB BC =,BDE BDF ∴∠=∠,90DEB DFB ∠=∠=︒,DB DB =,()BDE BDF AAS ∴∆≅∆,BE BF ∴=,DE DF =,90AEB F ∠=∠=︒,BA BC =,BE BF =,Rt BEA Rt BFC(HL)∴∆≅∆,AE CF ∴=,2AD DC DE AE DF CF DF ∴+=++-=,30BDF BAC ∠=∠=︒,BD3cos302DF BD ∴=︒=, 3DA DC ∴+=, 故选: A .10.(3分)如图,O 的直径AB 与弦CD 相交于点P ,且45APC ∠=︒,若228PC PD +=,则O 的半径为( )AB .2 C.D .4【解答】解: 作CM AB ⊥于M ,DN AB ⊥于N ,连接OC ,OD ,45NDP MCP APC ∴∠=∠=∠=︒又OC OD =,ODP OCP ∴∠=∠,45COM OCD ∠=︒+∠,45ODB ODC ∠=︒+∠,NDO COM ∴∠=∠,在Rt ODN ∆与Rt COM ∆中,90OMC OND COM NDOOC OD ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, Rt ODN Rt COM ∴∆≅∆,ON CM PM ∴==,OM ND PN ==又222OC CM OM =+,222OD DN ON =+222OC CM PN ∴=+,222OD DN PM =+222222228OC OD CM PN DN PM PC PD ∴+=+++=+=24OC ∴=,2OC ∴=,故选: B .二.填空题(共8小题,满分24分,每小题3分)11.(3分)如果关于x 的一元二次方程210ax bx +-=的一个解是1x =,则2021a b --= 2020 .【解答】解: 把1x =代入方程210ax bx +-=得10a b +-=,所以1a b +=,所以20212021()202112020a b a b --=-+=-=.故答案为: 2020.12.(3分)如图AB 是O 的直径,弦CD OB ⊥于点E ,交O 于点D ,已知5OC cm =,8CD cm =,则AE = 8 cm .【解答】解: CD OB ⊥,142CE DE CD ∴===,在Rt OCE ∆中,3OE =,538()AE AO OE cm ∴=+=+=.故答案为8.13.(3分)已知数据1x ,2x ,3x 的平均数是5,则数据132x +,232x +,332x +的平均数是 17 .【解答】解: 数据1x ,2x ,3x 的平均数是5,1235315x x x ∴++=⨯=,则数据132x +,232x +,332x +的平均数是1231(323232)3x x x ⨯+++++ 1231[3()6]3x x x =⨯+++ 1(3156)3=⨯⨯+ 17=,故答案为: 17.14.(3分)在一个不透明的袋子中装有4个白球,a 个红球.这些球除颜色外都相同.若从袋子中随机摸出1个球,摸到红球的概率为23,则a = 8 . 【解答】解: 根据题意,得:243a a =+, 解得8a =,经检验: 8a =是分式方程的解,故答案为: 8.15.(3分)在从小到大排列的五个数x ,3,6,8,12中再加入一个数,若这六个数的中位数、平均数与原来五个数的中位数、平均数分别相等,则x 的值为 1 .【解答】解: 从小到大排列的五个数x ,3,6,8,12的中位数是6,再加入一个数,这六个数的中位数与原来五个数的中位数相等,∴加入的一个数是6, 这六个数的平均数与原来五个数的平均数相等, ∴11(36812)(366812)56x x ++++=+++++, 解得1x =.故答案为: 1.16.(3分)一个不透明的盒子内装有大小、形状相同的六个球,其中红球1个、绿球2个、白球3个,小明摸出一个球是绿球的概率是13 . 【解答】解: 一个盒子内装有大小、形状相同的六个球,其中红球1个、绿球2个、白球3个,∴小明摸出一个球是绿球的概率是:211233=++. 故答案为: 1317.(3分)一次数学测验满分是100分,全班38名学生平均分是67分.如果去掉A 、B 、C 、D 、E 五人的成绩,其余人的平均分是62分,那么在这次测验中,C 的成绩是 100 分.【解答】解: 设A 、B 、C 、D 、E 分别得分为a 、b 、c 、d 、e .则[3867()](385)62a b c d e ⨯-++++÷-=,因此500a b c d e ++++=分.由于最高满分为100分,因此100a b c d e =====,即C 得100分.故答案为: 100.18.(3分)有五张正面分别标有数2-,0,1,3,4的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将卡片上的数记为a ,则使关于x 的方程13(1)3ax x x --+=-的解是正整数的概率 25. 【解答】解: 将原方程整理可得4ax =,∴当1a =、4时,方程的解为正整数,∴使关于x 的方程13(1)3ax x x --+=-的解是正整数的概率为25, 故答案为: 25. 三.解答题(共8小题,满分46分)19.(4分)解一元二次方程:(1)290x -=;(2)2230x x --=.【解答】解: (1)290x -=,29x ∴=, 则13x =,23x =-;(2)2230x x --=,(1)(3)0x x ∴+-=,则10x +=或30x -=,解得11x =-,23x =.20.(4分)如图,在ABC ∆中,D 是边BC 上一点,以BD 为直径的O 经过点A ,且CAD ABC ∠=∠.(1)请判断直线AC 是否是O 的切线,并说明理由;(2)若2CD =,4CA =,求弦AB 的长.【解答】解: (1)直线AC 是O 的切线,理由如下: 如图,连接OA ,BD 为O 的直径,90BAD OAB OAD ∴∠=︒=∠+∠,OA OB =,OAB ABC ∴∠=∠,又CAD ABC ∠=∠,OAB CAD ABC ∴∠=∠=∠,90OAD CAD OAC ∴∠+∠=︒=∠,AC OA ∴⊥,又OA 是半径,∴直线AC 是O 的切线;(2)过点A 作AE BD ⊥于E ,222OC AC AO =+,22(2)16OA OA ∴+=+,3OA ∴=,5OC ∴=,8BC =,1122OAC S OA AC OC AE ∆=⨯⨯=⨯⨯, 341255AE ⨯∴==,95OE ∴=,245BE BO OE ∴=+=,AB ∴==. 21.(4分)疫情结束后,某广场推出促销活动,已知商品每件的进货价为30元,经市场调研发现,当该商品的销售单价为40元时,每天可销售280件;当销售单价每增加1元,每天的销售数量将减少10件.【销售利润=销售总额-进货成本】.(1)若该商品的的件单价为43元时,则当天的售商品是 250 件,当天销售利润是 元;(2)当该商品的销售单价为多少元时,该商品的当天销售利润是3450元.【解答】解: (1)280(4340)10250--⨯=(件),当天销售利润是250(4330)3250⨯-=(元). 故答案为: 250,3250;(2)设该纪念品的销售单价为x 元(40)x >,则当天的销售量为[280(40)10]x --⨯件,依题意,得: (30)[280(40)10]3450x x ---⨯=,整理,得: 29823850x x -+=,整理,得: 153x =,245x =.答: 当该商品的销售单价为45元或53元时,该商品的当天销售利润是3450元.22.(6分)如图,在ABC ∆中,90C ∠=︒,BAC ∠的平分线交BC 于点D ,点O 在AB 上,以点O 为圆心,OA 为半径的圆恰好经过点D ,分别交AC 、AB 于点E .F .(1)试判断直线BC 与O 的位置关系,并说明理由;(2)若BD =2BF =,求O 的半径.【解答】解: (1)线BC 与O 的位置关系是相切,理由是: 连接OD ,OA OD =,OAD ODA ∴∠=∠, AD 平分CAB ∠,OAD CAD ∴∠=∠,ODA CAD ∴∠=∠,//OD AC ∴,90C ∠=︒,90ODB ∴∠=︒,即OD BC ⊥, OD 为半径,∴线BC 与O 的位置关系是相切;(2)设O 的半径为R ,则OD OF R ==,在Rt BDO ∆中,由勾股定理得: 222OB BD OD =+,即222(2)R R +=+,解得: 4R =,即O 的半径是4.23.(6分)2017年全国两会民生话题成为社会焦点.徐州市记者为了了解百姓”两会民生话题”的聚焦点,随机调查了徐州市部分市民,并对调查结果进行整理.绘制了如图所示的不完整的统计图表.请根据图表中提供的信息解答下列问题:(1)填空: m = ,n = .扇形统计图中E 组所占的百分比为 %;(2)徐州市市区人口现有170万人,请你估计其中关注D 组话题的市民人数;(3)若在这次接受调查的市民中,随机抽查一人,则此人关注C 组话题的概率是多少?【解答】解: (1)由题意可得,本次调查的市民有: 8020%400÷=(人),40010%40m =⨯=,400804012060100n =----=,扇形统计图中E 组所占的百分比为: 604000.1515%÷==,故答案为: 40,100,15;(2)由题意可得,关注D 组话题的市民有: 12017051400⨯=(万人), 答: 关注D 组话题的市民有51万人;(3)由题意可得,在这次接受调查的市民中,随机抽查一人,则此人关注C 组话题的概率是: 10014004=, 答: 在这次接受调查的市民中,随机抽查一人,则此人关注C 组话题的概率是14. 24.(6分)某楼盘准备以每平方米6000元的均价对外销售,新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.(1)求平均每次下调的百分率;(2)某人准备以开盘均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择: ①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?【解答】解: (1)设平均每次下调的百分率为x ,依题意,得26000(1)4860x -=,解得 10.110%x ==,2 1.9x =(不合题意,舍去),答: 平均每次下调的百分率为10%;(2)方案①可优惠: 4860100(198%)9720⨯⨯-=元;方案②可优惠: 100808000⨯=元,>,97208000∴方案①更划算.25.(8分)已知: 如图,AB为O的直径,CE ABBF OC,连接BC,CF.⊥于E,//求证: OCF ECB∠=∠.【解答】证明: 延长CE交O于点G.AB为O的直径,CE AB⊥于E,∴=,BC BG∴∠=∠,G2BF OC,//1F∴∠=∠,又G F∠=∠,12∴∠=∠.即OCF ECB∠=∠.26.(8分)密码锁有三个转轮,每个转轮上有十个数字: 0,1,2,9⋯.小黄同学是9月份中旬出生,用生日”月份+日期”设置密码: 9⨯⨯小张同学要破解其密码:(1)第一个转轮设置的数字是9,第二个转轮设置的数字可能是1或2.(2)请你帮小张同学列举出所有可能的密码,并求密码数能被3整除的概率;(3)小张同学是6月份出生,根据(1)(2)的规律,请你推算用小张生日设置的密码的所有可能个数.【解答】解: (1)小黄同学是9月份中旬出生∴第一个转轮设置的数字是9,第二个转轮设置的数字可能是1,2;故答案为1或2;(2)所有可能的密码是: 911,912,913,914,915,916,917,918,919,920;能被3整除的有912,915,918,;密码数能被3整除的概率310.(3)小张同学是6月份出生,6月份只有30天,∴第一个转轮设置的数字是6,第二个转轮设置的数字可能是0,1,2,3;第三个转轮设置的数字可能,0,1,2,9⋯(第二个转轮设置的数字是0时,第三个转轮的数字不能是0;第二个转轮设置的数字是3时,第三个转轮的数字只能是0;)∴一共有91010130+++=,∴小张生日设置的密码的所有可能个数为30种.(也可以直接根据6月份只有30天,有30个不同的数字,得出设置的密码的所有可能个数为30种)。

最新苏科版数学九年级上册《期末测试题》(带答案解析)

最新苏科版数学九年级上册《期末测试题》(带答案解析)

苏科版九年级上学期期末考试数学试题一、选择题 本大题共有10小题,每小题3分,共30分.1.数轴上点A ,B 表示的数分别是5,-3,它们之间的距离可以表示为( )A. -3+5B. -3-5C. |-3+5|D. |-3-5| 2.下列计算正确的是( )A. 330--=B. 02339+=C. 331÷-=-D. ()1331-⨯-=- 3.下列运算正确的是( )A. x 4+x 2=x 6B. x 2•x 3=x 6C. (x 2)3=x 6D. x 2﹣y 2=(x ﹣y )2 4.我市5月的某一周每天的最高气温(单位:℃)统计如下:19,20,24,22,24,26,27,则这组数据的中位数与众数分别是( )A. 23,24B. 24,22C. 24,24D. 22,245.已知M=29a ﹣1,N=a 2﹣79a (a 为任意实数),则M 、N 的大小关系为( ) A. M <N B. M=N C. M >N D. 不能确定 6.在平面直角坐标系中,将二次函数22y x =的图象向上平移2个单位,所得图象的表达式为( ) A . 222y x =- B. 222y x =+ C. ()222y x =- D. ()222y x =+ 7.下列关于抛物线()=-+2y 2x 31有关性质的说法,正确的是( )A. 其图象的开口向下B. 其图象的对称轴为3x =-C. 其最大值为1D. 当3x <时,y 随x 的增大而减小 8.下列命题中,正确的是( )A. 平面上三个点确定一个圆B. 等弧所对的圆周角相等C. 平分弦(不是直径)直径垂直于这条弦D. 与某圆一条半径垂直的直线是该圆的切线 9.如图,过⊙O 外一点P 引⊙O 的两条切线PA ,PB ,切点分别是A ,B ,OP 交⊙O 于点C ,点D 是ABC 上不与点A 、点C 重合的一个动点,连接AD ,CD ,若∠APB=80°,则∠ADC 的度数是( )A. 15°B. 20°C. 25°D. 30°10.如图,点A ,B 的坐标分别为(1,4)和(4,4),抛物线的顶点在线段AB 上运动,与x轴交于C 、D 两点(C 在D 的左侧),点C 的横坐标最小值为,则点D 的横坐标最大值为(▲)A. -3B. 1C. 5D. 8二、填空题 本大题共8小题,每小题3分,共24分.11.当x ______时,分式无意义.12.花粉的质量很小,一粒某种植物花粉的质量约为0.000037毫克.已知1克=1000毫克,那么0.000037毫克可以用科学记数法表示为______克.13.计算:222a a b b b a⎛⎫-÷= ⎪⎝⎭________. 14.在一个暗箱中,只装有个白色乒乓球和10个黄色乒乓球,每次搅拌均匀后,任意摸出一个球后又放回,通过大量重复摸球实验后发现,摸到黄球的频率稳定在40%,则= ▲ .15.一圆锥的侧面积为 15π ,底面半径为3,则该圆锥的母线长为________.16.已知抛物线234y x x =+-与x 轴的两个交点为()1,0x 、()2,0x 则212315x x -+= . 17.已知抛物线y =x 2-2mx -4 (m >0)的顶点M 关于坐标原点O 的对称点为M '.若点M '在这条抛物线上,则点M 的坐标为_________.18.如图,△ABC 中,∠BAC=60°,∠ABC=45°,AB= 2 ,D 是线段BC 上的一个动点,以AD 为直径画⊙O 分别交AB 、AC 于E 、F ,连接EF ,则线段EF 长度的最小值为________.三、解答题 本大题共10小题,共76分.19.计算:101423(21)2-⎛⎫-⨯+-+- ⎪⎝⎭20.分解因式:2x 2+4x +221.先化简再求值:232)121x x x x x x --÷+++(,其中x 满足220x x +-= 22. 某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课外阅读时间x (单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分别直方图和扇形统计图:根据图中提供的信息,解答下列问题:(1)补全频数分布直方图(2)求扇形统计图中m 的值和E 组对应的圆心角度数(3)请估计该校3000名学生中每周的课外阅读时间不小于6小时的人数23.在校园文化艺术节中,九年级一班有1名男生和2名女生获得美术奖,另有2名男生和2名女生获得音乐奖.(1)从获得美术奖和音乐奖的7名学生中选取1名参加颁奖大会,求刚好是男生的概率;(2)分别从获得美术奖、音乐奖学生中各选取1名参加颁奖大会,用列表或树状图求刚好是一男生一女生的概率.24.如图,已知⊙O 的直径AB 垂直于弦CD 于E ,连接AD 、BD 、OC 、OD ,且OD=5.(1)若sin ∠BAD=35,求CD 的长; (2)若∠ADO:∠EDO=4:1,求扇形OAC (阴影部分)的面积(结果保留π).25.观察表格:根据表格解答下列问题:(l) a=______,b=_____,c=_____;(2) 在下图的直角坐标系中画出函数y=ax2+bx+c的图象,并根据图象,直接写出当x取什么实数时,不等式ax2+bx+c > -3成立;(3)该图象与x轴两交点从左到右依次分别为A、B,与y轴交点为C,求过这三个点的外接圆的半径.26. 为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元,超市规定每盒售价不得少于45元.根据以往销售经验发现:当售价定为每盒45元时,每天可卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?27.如图,已知Rt△ABC的直角边AC与Rt△DEF的直角边DF在同一条直线上,且AC=60cm,BC=45cm,DF=6cm,EF=8cm.现将点C与点F重合,再以4cm/s的速度沿CA方向移动△DEF;同时,点P从点A出发,以5cm/s的速度沿AB方向移动.设移动时间为t(s),以点P为圆心,3t(cm)长为半径的⊙P与直线AB相交于点M,N,当点F与点A重合时,△DEF与点P同时停止移动,在移动过程中:(1)连接ME,当ME∥AC时,t=________s;(2)连接NF,当NF平分DE时,求t值;(3)是否存在⊙P与Rt△DEF的两条直角边所在的直线同时相切的时刻?若存在,求出t的值;若不存在,说明理由.28. 如图,平面直角坐标系中,O为菱形ABCD的对称中心,已知C(2,0),D(0,﹣1),N为线段CD 上一点(不与C、D重合).(1)求以C为顶点,且经过点D的抛物线解析式;(2)设N关于BD的对称点为N1,N关于BC的对称点为N2,求证:△N1BN2∽△ABC;(3)求(2)中N1N2的最小值;(4)过点N作y轴的平行线交(1)中的抛物线于点P,点Q为直线AB上的一个动点,且∠PQA=∠BAC,求当PQ最小时点Q坐标.答案与解析一、选择题 本大题共有10小题,每小题3分,共30分.1.数轴上点A ,B 表示的数分别是5,-3,它们之间的距离可以表示为( )A. -3+5B. -3-5C. |-3+5|D. |-3-5|【答案】D【解析】分析:数轴上两点之间的距离可以用两点所表示的数的差的绝对值来表示.详解:根据题意可得:AB=35--,故选D .点睛:本题主要考查的是绝对值的几何意义,属于基础题型.理解绝对值的几何意义是解决这个问题的关键. 2.下列计算正确的是( )A. 330--=B. 02339+=C. 331÷-=-D. ()1331-⨯-=-【答案】D【解析】 试题解析:A.33 6.--=- 故错误.B.023310.+= 故错误.C.33 1.÷-= 故错误.D .正确.故选D.3.下列运算正确的是( )A. x 4+x 2=x 6B. x 2•x 3=x 6C. (x 2)3=x 6D. x 2﹣y 2=(x ﹣y )2【答案】C【解析】试题解析:x 4与x 2不是同类项,不能合并,A 错误;x 2•x 3=x 5,B 错误;(x 2)3=x 6,C 正确; x 2﹣y 2=(x+y )(x ﹣y ),D 错误,故选C .【点睛】本题考查的是合并同类项、同底数幂的乘法、积的乘方和因式分解,掌握合并同类项法则、同底数幂的乘法法则、积的乘方法则和利用平方差公式进行因式分解是解题的关键.4.我市5月的某一周每天的最高气温(单位:℃)统计如下:19,20,24,22,24,26,27,则这组数据的中位数与众数分别是( )A .23,24 B. 24,22 C. 24,24 D. 22,24【答案】C【解析】∵从小到大排列后排在中间位置的数是24,∴中位数是24;∵出现次数最多的数是24,∴众数是24;故选C.【点睛】如果一组数据有奇数个,那么把这组数据从小到大排列后,排在中间位置的数是这组数据的中位数;如果一组数据有偶数个,那么把这组数据从小到大排列后,排在中间位置的两个数的平均数是这组数据的中位数;5.已知M=29a ﹣1,N=a 2﹣79a (a 为任意实数),则M 、N 的大小关系为( ) A. M <NB. M=NC. M >ND. 不能确定 【答案】A【解析】 ∵M =219a -,N =279a a -(a 为任意实数),∴N -M =21a a -+=21324a ⎛⎫-+ ⎪⎝⎭,∴N >M ,即M <N , 故选A . 6.在平面直角坐标系中,将二次函数22y x =的图象向上平移2个单位,所得图象的表达式为( ) A. 222y x =-B. 222y x =+C. ()222y x =-D. ()222y x =+ 【答案】B【解析】∵二次函数图像平移的规律为“左加右减,上加下减”∴二次函数22y x =的图象向上平移2个单位,所得所得图象的解析式为222y x =+.故选B.7.下列关于抛物线()=-+2y 2x 31有关性质的说法,正确的是( )A. 其图象的开口向下B. 其图象的对称轴为3x =-C. 其最大值为1D. 当3x <时,y 随x 的增大而减小【答案】D【解析】【分析】根据抛物线的表达式中系数a的正负判断开口方向和函数的最值问题,根据开口方向和对称轴判断函数增减性.【详解】解:∵a=2>0,∴抛物线开口向上,故A选项错误;抛物线的对称轴为直线x=3,故B选项错误;抛物线开口向上,图象有最低点,函数有最小值,没有最大值,故C选项错误;因为抛物线开口向上,所以在对称轴左侧,即x<3时,y随x的增大而减小,故D选项正确.故选:D.【点睛】本题考查二次函数图象和性质,掌握图象特征与系数之间的关系即数形结合思想是解答此题的关键.8.下列命题中,正确的是()A. 平面上三个点确定一个圆B. 等弧所对的圆周角相等C. 平分弦(不是直径)的直径垂直于这条弦D. 与某圆一条半径垂直的直线是该圆的切线【答案】B【解析】【分析】根据在一条直线上的三点就不能确定一个圆可以判断A,再利用圆心角定理得出B正确;由当弦为直径时不垂直也平分,以及利用切线的判定对D进行判定.【详解】解:A.三个点不共线的点确定一个平面,故A不正确;B.由圆心角、弧、弦的关系及圆周角定理可知:在同圆或等圆中,同弧或等弧所对圆周角相等,故选项B 正确;C.平分弦的直径垂直于弦,被平分的弦不能是直径,故此选项错误;D.与某圆一条半径垂直的直线是该圆的切线,错误,正确的应该是:一条直线垂直于圆的半径的外端,这条直线一定就是圆的切线.故此选项错误;故选:B.【点睛】此题主要考查了切线的判断和圆的确定、圆心角定理以及垂径定理等知识,熟练掌握定义是解题关键.9.如图,过⊙O外一点P引⊙O的两条切线PA,PB,切点分别是A,B,OP交⊙O于点C,点D是ABC上不与点A、点C重合的一个动点,连接AD,CD,若∠APB=80°,则∠ADC的度数是()A. 15°B. 20°C. 25°D. 30°【答案】C【解析】【详解】解;如图,连接OB,OA.因为PA,PB是圆O的切线,所以∠OBP=∠OAP=90°,PA=PB.由四边形的内角和定理,得∠BOA=360°-90°-90°-80°=100°.在△BPO和△APO中,PB=PA,PO=PO,OB=OA,所以△BPO≌△APO,所以∠BOC=∠COA=12∠AOB=50°.由圆周角定理,得∠ADC=12∠AOC=25°.故选C.10.如图,点A,B的坐标分别为(1,4)和(4,4),抛物线的顶点在线段AB上运动,与x 轴交于C、D两点(C在D的左侧),点C的横坐标最小值为,则点D的横坐标最大值为(▲)A. -3B. 1C. 5D. 8【答案】D【解析】当点C 横坐标为-3时,抛物线顶点为A (1,4),对称轴为x=1,此时D 点横坐标为5,则CD=8;当抛物线顶点为B (4,4)时,抛物线对称轴为x=4,且CD=8,故C (0,0),D (8,0);由于此时D 点横坐标最大,故点D 的横坐标最大值为8;故选D .二、填空题 本大题共8小题,每小题3分,共24分.11.当x ______时,分式无意义. 【答案】12=【解析】试题解析:当210x -=时,分式无意义, 解得:1.2x = 故答案为1.2= 点睛:分式有意义的条件:分母不为0.12.花粉的质量很小,一粒某种植物花粉的质量约为0.000037毫克.已知1克=1000毫克,那么0.000037毫克可以用科学记数法表示为______克.【答案】3.7×10-8 【解析】试题解析:0.000037mg 用科学记数法表示为53.710mg -⨯ 583.710mg=3.710g.--⨯⨯故答案为83.710.-⨯13.计算:222a a b b b a⎛⎫-÷= ⎪⎝⎭________. 【答案】222a b【解析】 试题解析:原式2222222242422.a a a a a a b b b b b b=-⋅=-= 故答案为222.a b14.在一个暗箱中,只装有个白色乒乓球和10个黄色乒乓球,每次搅拌均匀后,任意摸出一个球后又放回,通过大量重复摸球实验后发现,摸到黄球的频率稳定在40%,则= ▲ .【答案】15【解析】根据摸出1个球后,摸到黄球的频率是40%,再根据概率公式列出方程,即可求出a 的值.解:因为任意摸出1个球后,摸到黄球的频率是40%,所以10a 10+=40%, 解得:a=15,故答案为15.15.一圆锥的侧面积为 15π ,底面半径为3,则该圆锥的母线长为________.【答案】5【解析】【分析】圆锥的侧面积=底面周长×母线长÷2. 【详解】解:底面半径为3,则底面周长=6π,设圆锥的母线长为x ,圆锥的侧面积=12×6πx=15π. 解得:x=5,故答案为5.16.已知抛物线234y x x =+-与x 轴的两个交点为()1,0x 、()2,0x 则212315x x -+= . 【答案】28.【解析】试题分析:∵1x 、2x 为方程的两实根,∴21134x x =-+,12x x +=-3;∴212315x x -+=(134x -+)23x -+15=-3(12x x +)+19=9+19=28.故答案为28.考点:一元二次方程根与系数的关系.17.已知抛物线y =x 2-2mx -4 (m >0)的顶点M 关于坐标原点O 的对称点为M '.若点M '在这条抛物线上,则点M 的坐标为_________.【答案】(2,-8)【解析】试题解析:()22222224244,y x mx x mx m m x m m =--=-+--=--- ()2,4.M m m ∴-- M 关于坐标原点O 的对称点为M ',()2,4.M m m '∴-+点M '在这条抛物线上, 22224 4.m m m ∴+-=+解得: 2.m =±0,m >2.m =故答案为()2,8.-18.如图,△ABC 中,∠BAC=60°,∠ABC=45°,AB= 2 ,D 是线段BC 上的一个动点,以AD 为直径画⊙O 分别交AB 、AC 于E 、F ,连接EF ,则线段EF 长度的最小值为________.【答案】.【解析】 试题解析:由垂线段的性质可知,当AD 为△ABC 的边BC 上的高时,直径AD 最短,如图,连接OE ,OF ,过O 点作OH ⊥EF ,垂足为H ,∵在Rt △ADB 中,∠ABC=45°,2,∴AD=BD=2,即此时圆的直径为2,由圆周角定理可知∠EOH=12∠EOF=∠BAC=60°,∴在Rt △EOH 中,EH=OE•sin ∠ 考点:1.定理;2.角定理;3.角三角形.三、解答题 本大题共10小题,共76分.19.计算101231)2-⎛⎫⨯+-+ ⎪⎝⎭【答案】2【解析】原式=2-4+3+1=220.分解因式:2x 2+4x +2【答案】2(x+1)2【解析】试题分析:提取公因式法和公式法相结合.试题解析:原式()()2222121.x x x =++=+ 故答案为()221.x +点睛:因式分解的常用方法:提取公因式法,公式法,十字相乘法,分组分解法. 21.先化简再求值:232)121x x x x x x --÷+++(,其中x 满足220x x +-= 【答案】2x x +;2.【解析】【分析】 先把括号里的式子通分,然后把能分解因式的分解因式,除法转换成乘法计算即可,注意计算结果要化简成最简分式或整式.然后根据给出的方程求值即可.【详解】原式=2(1)32121x x x x x x x +--÷+++ =2222112x x x x x x -++⨯+- =2(2)(1)12x x x x x -+⨯+- =(1)x x +=2x x +.由220x x +-=,移项得到:22x x +=,即原式=2x x +=2.22. 某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课外阅读时间x (单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分别直方图和扇形统计图:根据图中提供的信息,解答下列问题:(1)补全频数分布直方图(2)求扇形统计图中m 的值和E 组对应的圆心角度数(3)请估计该校3000名学生中每周的课外阅读时间不小于6小时的人数【答案】略;m=40, 14.4°;870人.【解析】试题分析:根据A 组的人数和比例得出总人数,然后得出D 组的人数,补全条形统计图;根据C 组的人数和总人数得出m 的值,根据E 组的人数求出E 的百分比,然后计算圆心角的度数;根据D 组合E 组的百分数总和,估算出该校的每周的课外阅读时间不小于6小时的人数.试题解析:(1)补全频数分布直方图,如图所示.(2)∵10÷10%=100 ∴40÷100=40% ∴m=40 ∵4÷100=4% ∴“E”组对应的圆心角度数=4%×360°=14.4°(3)3000×(25%+4%)=870(人).答:估计该校学生中每周的课外阅读时间不小于6小时的人数是870人.考点:统计图.23.在校园文化艺术节中,九年级一班有1名男生和2名女生获得美术奖,另有2名男生和2名女生获得音乐奖.(1)从获得美术奖和音乐奖的7名学生中选取1名参加颁奖大会,求刚好是男生的概率;(2)分别从获得美术奖、音乐奖的学生中各选取1名参加颁奖大会,用列表或树状图求刚好是一男生一女生的概率.【答案】(1)37;(2)12【解析】【分析】(1)直接根据概率公式求解;(2)画树状图展示所有12种等可能的结果数,再找出刚好是一男生一女生的结果数,然后根据概率公式求解.【详解】(1)从获得美术奖和音乐奖的7名学生中选取1名参加颁奖大会,刚好是男生的概率=334=37;(2)画树状图为:共有12种等可能的结果数,其中刚好是一男生一女生的结果数为6,所以刚好是一男生一女生的概率=612=12.【点睛】利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.24.如图,已知⊙O的直径AB垂直于弦CD于E,连接AD、BD、OC、OD,且OD=5.(1)若sin∠BAD=35,求CD的长;(2)若∠ADO:∠EDO=4:1,求扇形OAC(阴影部分)的面积(结果保留π).【答案】(1)485 (2)12518π 【解析】 试题分析:(1)首先根据锐角三角函数求得Rt ABC △的两条直角边,再根据面积计算其斜边上的高,进一步根据垂径定理计算弦长;(2)根据直角三角形的两个锐角互余结合已知条件求得扇形所对的圆心角,进一步求其面积. 试题解析:(1)∵AB 是O 的直径, 5.OD =9010.ADB AB ∴∠=︒=,在Rt △ABD 中, sin ,BD BAD AB∠=又∵3sin ,5BAD ∠=,∴3105BD =, 6.BD ∴=22221068AD AB BD =-=-=,90,ADB AB CD ∠=︒⊥,∴DE AB AD BD ⋅=⋅,,CE DE =∴1086DE ⨯=⨯,∴245DE =, ∴4825CD DE ==. (2)∵AB 是O 的直径,,AB CD ⊥∴CB BD =,AC AD =,.BAD CDB AOC AOD ∴∠=∠∠=∠,AO DO =,所以,BAD ADO ∠=∠ ,CDB ADO ∴∠=∠设4ADO x ∠=,则4,CDB x ∠= 由:4:1ADO EDO ∠∠=,则,EDO x ∠= 90,ADO EDO EDB ∠+∠+∠=︒4490,x x x ∴++=︒10,x ∴=︒()180100.AOD OAD ADO ∴∠=︒-∠+∠=︒100.AOC AOD ∴∠=∠=︒S 扇形OAC 2100125 =5=36018ππ⨯⨯. 25.观察表格:根据表格解答下列问题:(l) a =______,b =_____,c =_____;(2) 在下图的直角坐标系中画出函数y =ax 2+bx +c 的图象,并根据图象,直接写出当x 取什么实数时,不等式ax 2+bx +c > -3成立;(3)该图象与x 轴两交点从左到右依次分别为A 、B ,与y 轴交点为C ,求过这三个点的外接圆的半径.【答案】(1)1,-2,-3;(2)图象见解析,0x <或2x >;(35【解析】【分析】(1)直接将()11,代入求出a 即可,进而将2x =代入求出y ,再分别将()()03,23--,,代入求出b c ,的值; (2)再利用函数解析式进而得出函数图象,进而得出不等式的解集.(3)根据题意求得外接圆的圆心的坐标为()1,1-,进而求得圆的半径.【详解】(1)2y ax =过(1,1),∴1=a ,∴当x =2时,224y ==, 2y ax bx c =++过(0,−3),(2,−3),a =1,23,3223c b ∴=--=+-,解得:b =−2,223y x x ∴=--,当x =1时,y =−4, 故答案为1,−2,−3;(2)如图所示:当0x <或2x >时,不等式2 3.ax bx c ++>-(3)由(2)可知A (−1,0),B (3,0),C (0,−3),则作BC 、AB 的垂直平分线的交点Q (1,−1),∴外接圆的半径()()223101 5.QB =-++=26. 为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元,超市规定每盒售价不得少于45元.根据以往销售经验发现:当售价定为每盒45元时,每天可卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y (盒)与每盒售价x (元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P (元)最大?最大利润是多少?【答案】(1)y=-20x+1600;(2)当每盒售价定为60元时,每天销售的利润P (元)最大,最大利润是8000元.【解析】(1)根据“当售价定为每盒45元时,每天可卖出700盒,每盒售价每提高1元,每天要少卖出20盒”即可得出每天的销售量y (盒)与每盒售价x (元)之间的函数关系式;(2)根据利润=1盒粽子所获的利润×销售量列出函数关系式整理,然后根据二次函数的最值问题解答即可.试题分析:试题解析:(1)由题意得,y=700-20(x-45)=-20x+1600;(2)()()()22402016002024006400020608000P x x x x x =--+=-+-=--+,∵x≥45,抛物线()220608000P x =--+的开口向下,∴当x=60时,P 最大值=8000元,即当每盒售价定为60元时,每天销售的利润P (元)最大,最大利润是8000元.考点:二次函数的应用.27.如图,已知Rt △ABC 的直角边AC 与Rt △DEF 的直角边DF 在同一条直线上,且AC =60cm ,BC =45cm ,DF =6cm ,EF =8cm .现将点C 与点F 重合,再以4cm/s 的速度沿CA 方向移动△DEF ;同时,点P 从点A 出发,以5cm/s 的速度沿AB 方向移动.设移动时间为t (s ),以点P 为圆心,3t (cm )长为半径的⊙P 与直线AB 相交于点M ,N ,当点F 与点A 重合时,△DEF 与点P 同时停止移动,在移动过程中:(1)连接ME ,当ME ∥AC 时,t=________s ;(2)连接NF ,当NF 平分DE 时,求t 的值;(3)是否存在⊙P 与Rt △DEF 的两条直角边所在的直线同时相切的时刻?若存在,求出t 的值;若不存在,说明理由.【答案】203【解析】 试题分析:(1)作MH AC ⊥,垂足为H ,作OG AC ⊥,垂足为G .首先可求得A ∠的正弦和余弦值,在Rt APG △中可求得PG 的长,然后再求得AM 的长,接下来,再求得MH 的长,最后依据MH EF =列方程求解即可;(2)连结NF 交DE 与点G ,则G 为DE 的中点.先证明EDF ABC ∽,从而可证明A E ∠=∠,然后再证明ANF 是直角三角形,然后利用锐角三角函数的定义可求得AF 的长,然后依据AF FC AC +=列方程求解即可;(3)如图3所示:过点P 作PH AC ⊥,垂足为H ,当P 与EF 相切时,且点为G ,连结PG .先证明PG HF =,然后可得到434AH t FH t FC t ,,,=== 然后依据AH HF FC AC ++=列方程求解即可;如图4所示:连接GP ,过点P 作PH AC ⊥,垂足为H .先证明PG HF =,然后可得到43AH FC t FH t ===,, 然后依据AH CF FH AC +-=列方程求解即可.试题解析:(1)如图1所示:作MH ⊥AC ,垂足为H ,作OG ⊥AC ,垂足为G .∵在Rt △ABC 中,AC =60,BC =45,∴AB =75cm . 3sin .5A ∴∠= 33.5PM PG PA t ∴=== ∴AM =5t −3t =2t .36.55HM AM t ∴== 当ME //AC 时,MH =EF ,即68,5t = 解得20.3t = 故答案为20.3(2)如图2所示:连结NF 交DE 与点G ,则G 为DE 的中点,∵AC =60cm ,BC =45cm ,DF =6cm ,EF =8cm ,.BC AC DF EF∴= 又90ACB DFE ∠=∠=, ∴△EDF ∽△ABC .∴∠A =∠E .∵E 是DE 的中点,1.2GF DG ED ∴== ∴∠DFD =∠GDF .90GDF E ∠+∠=,90.GFD E ∴∠+∠=90.A GFD ∴∠+∠=90.ANF ∴∠=510.4AF AN t ∴== 又∵FC =4t , ∴10t +4t =60,解得30.7t = (3)如图3所示:过点P 作PH ⊥AC ,垂足为H ,当⊙P 与EF 相切时,且点为G ,连结PG .∵EF 是⊙P 的切线,90.PGF ∴∠=90PGF GFH PHF ∠=∠=∠=,∴四边形PGFH 为矩形,∴PG =HF .∵⊙P 的半径为3t ,3sin 55A AP t ,,∠== ∴PH =3t .∴⊙P 与AC 相切,∵EF 为⊙P 的切线,∴PG⊥EF.∴HF=PG=3t.∵AH=45AP=4t,FC=4t,∴4t+3t+4t=60,解得60.11t=如图4所示:连接GP,过点P作PH⊥AC,垂足为H. 由题意得可知:AH=4t,CF =4t. ∵EF是⊙P的切线,90.PGF∴∠=90PGF GFH PHF∠=∠=∠=,∴四边形PGFH为矩形, ∴PG=HF.∵GP=FH,∴FH=3t.∴4t+4t−3t=60,解得:t=12.综上所述,当t的值为6011或12时,⊙P与Rt△DEF的两条直角边所在的直线同时相切.28.如图,平面直角坐标系中,O为菱形ABCD的对称中心,已知C(2,0),D(0,﹣1),N为线段CD上一点(不与C、D重合).(1)求以C为顶点,且经过点D的抛物线解析式;(2)设N关于BD的对称点为N1,N关于BC的对称点为N2,求证:△N1BN2∽△ABC;(3)求(2)中N1N2的最小值;(4)过点N作y轴的平行线交(1)中的抛物线于点P,点Q为直线AB上的一个动点,且∠PQA=∠BAC,求当PQ最小时点Q坐标.【答案】(1)y=﹣14(x﹣2)2(2)证明见解析(3)165(4)(52,-14)或(3110,5120)【解析】【分析】(1)用待定系数法求,即可;(2)由对称的特点得出∠N1BN2=2∠DBC结合菱形的性质即可;(3)先判定出,当BN⊥CD时,BN最短,再利用△ABC∽△N1BN2得到比例式,求解,即可;(4)先建立PE=14m2﹣12m+2函数解析式,根据抛物线的特点确定出最小值.【详解】(1)由已知,设抛物线解析式为y=a(x﹣2)2把D(0,﹣1)代入,得a=﹣1 4∴y=﹣14(x﹣2)2(2)如图1,连结BN.∵N1,N2是N的对称点∴BN 1=BN 2=BN ,∠N 1BD=∠NBD ,∠NBC=∠N 2BC∴∠N 1BN 2=2∠DBC∵四边形ABCD 是菱形∴AB=BC ,∠ABC=2∠DBC∴∠ABC=∠N 1BN 2,12AB BC BN BN =∴△ABC ∽△N 1BN 2(3)∵点N 是CD 上的动点,∴点到直线的距离,垂线段最短,∴当BN ⊥CD 时,BN 最短.∵C (2,0),D (0,﹣1)∴CD=5,∴BNmin=455BD CO CD ⨯=,∴BN 1min =BN min =455,∵△ABC ∽△N 1BN 2∴112ABACBN N N =,N 1N 2min =165,(4)如图2,过点P 作PE ⊥x 轴,交AB 于点E .∵∠PQA=∠BAC∴PQ 1∥AC∵菱形ABCD 中,C (2,0),D (0,﹣1)∴A (﹣2,0),B (0,1)∴l AB :Y=12x+1 不妨设P (m ,﹣14(m ﹣2)2),则E (m ,12m+1) ∴PE=14m 2﹣12m+2 ∴当m=1时,min 74PE =∴P (1,-14) ∴Q 1(52-,-14) 此时,PQ 1最小,最小值为1tan PE EQ P ∠=72, ∴PQ 1=PQ 2=72. 设Q 2(n,12n+1) ∵P (1,-14)∴272PQ == ∴n=52-或n=3110 ∴Q 2(3110,5120) ∴满足条件的Q (52-,-14)或(3110,5120) 【点睛】此题是二次函数综合题,涉及到菱形的性质,待定系数法求解析式,相似三角形的性质和判定,对称的特点,解本题的关键是判断出达到极值是的位置.。

苏科版数学九年级上册期末试卷(带解析)

苏科版数学九年级上册期末试卷(带解析)

苏科版数学九年级上册期末试卷(带解析)一、选择题1.sin 30°的值为( ) A .3B .32C .12D .222.在平面直角坐标系中,O 的直径为10,若圆心O 为坐标原点,则点()8,6P -与O的位置关系是( ) A .点P 在O 上B .点P 在O 外C .点P 在O 内D .无法确定 3.关于x 的一元一次方程122a x m -+=的解为1x =,则a m -的值为( )A .5B .4C .3D .24.已知3sin α=,则α∠的度数是( ) A .30°B .45°C .60°D .90°5.如图,⊙O 的直径BA 的延长线与弦DC 的延长线交于点E ,且CE =OB ,已知∠DOB =72°,则∠E 等于( )A .18°B .24°C .30°D .26°6.方程x 2﹣3x =0的根是( )A .x =0B .x =3C .10x =,23x =-D .10x =,23x =7.某篮球队14名队员的年龄如表: 年龄(岁) 18 19 20 21 人数5432则这14名队员年龄的众数和中位数分别是( ) A .18,19 B .19,19 C .18,4 D .5,4 8.一个扇形的半径为4,弧长为2π,其圆心角度数是( )A .45B .60C .90D .1809.如图,已知等边△ABC 的边长为4,以AB 为直径的圆交BC 于点F ,CF 为半径作圆,D 是⊙C 上一动点,E 是BD 的中点,当AE 最大时,BD 的长为( )A .23B .25C .4D .610.方程2x x =的解是( ) A .x=0B .x=1C .x=0或x=1D .x=0或x=-111.在同一坐标系内,一次函数y ax b =+与二次函数2y ax 8x b =++的图象可能是A .B .C .D .12.已知△ABC ≌△DEF ,∠A =60°,∠E =40°,则∠F 的度数为( ) A .40B .60C .80D .10013.袋中装有5个白球,3个黑球,除颜色外均相同,从中一次任摸出一个球,则摸到黑球的概率是( ) A .35B .38C .58D .3414.如图,在平面直角坐标系xOy 中,二次函数21y ax bx =++的图象经过点A ,B ,对系数a 和b 判断正确的是( )A .0,0a b >>B .0,0a b <<C .0,0a b ><D .0,0a b <>15.如图,AB 为O 的直径,C 为O 上一点,弦AD 平分BAC ∠,交BC 于点E ,6AB =,5AD =,则AE 的长为( )A .2.5B .2.8C .3D .3.2二、填空题16.关于x 的一元二次方程20x a +=没有实数根,则实数a 的取值范围是 . 17.三角形的两边长分别为3和6,第三边的长是方程x 2﹣6x+8=0的解,则此三角形的周长是_____.18.已知线段4AB =,点P 是线段AB 的黄金分割点(AP BP >),那么线段AP =______.(结果保留根号)19.在比例尺为1∶500 000的地图上,量得A 、B 两地的距离为3 cm ,则A 、B 两地的实际距离为_____km .20.如图,二次函数y =ax 2+bx +c 的图像过点A (3,0),对称轴为直线x =1,则方程ax 2+bx +c =0的根为____.21.从地面垂直向上抛出一小球,小球的高度h (米)与小球运动时间t (秒)之间的函数关系式是h=12t ﹣6t 2,则小球运动到的最大高度为________米;22.如图,在平面直角坐标系中,直线l :28y x =+与坐标轴分别交于A ,B 两点,点C 在x 正半轴上,且OC =O B .点P 为线段AB (不含端点)上一动点,将线段OP 绕点O 顺时针旋转90°得线段OQ ,连接CQ ,则线段CQ 的最小值为___________.23.圆锥的母线长是5 cm,底面半径长是3 cm,它的侧面展开图的圆心角是____.24.已知关于x 的方程230x mx m ++=的一个根为-2,则方程另一个根为__________. 25.已知正方形ABCD 边长为4,点P 为其所在平面内一点,PD =5,∠BPD =90°,则点A 到BP 的距离等于_____.26.在Rt △ABC 中,两直角边的长分别为6和8,则这个三角形的外接圆半径长为_____. 27.某计算机程序第一次算得m 个数据的平均数为x ,第二次算得另外n 个数据的平均数为y ,则这m n 个数据的平均数等于______.28.像23x +=x 这样的方程,可以通过方程两边平方把它转化为2x +3=x 2,解得x 1=3,x 2=﹣1.但由于两边平方,可能产生增根,所以需要检验,经检验,当x 1=3时,9=3满足题意;当x 2=﹣1时,1=﹣1不符合题意;所以原方程的解是x =3.运用以上经验,则方程x +5x +=1的解为_____.29.如图,在□ABCD 中,E 、F 分别是AD 、CD 的中点,EF 与BD 相交于点M ,若△DEM 的面积为1,则□ABCD 的面积为________.30.如图,四边形ABCD 中,∠A =∠B =90°,AB =5cm ,AD =3cm ,BC =2cm ,P 是AB 上一点,若以P 、A 、D 为顶点的三角形与△PBC 相似,则PA =_____cm .三、解答题31.如图,AD 是⊙O 的直径,AB 为⊙O 的弦,OP ⊥AD ,OP 与AB 的延长线交于点P ,点C 在OP 上,满足∠CBP =∠ADB . (1)求证:BC 是⊙O 的切线;(2)若OA =2,AB =1,求线段BP 的长.32.如图,在△ABC 中,BC 的垂直平分线分别交BC 、AC 于点D 、E ,BE 交AD 于点F ,AB=AD .(1)判断△FDB 与△ABC 是否相似,并说明理由; (2)BC =6,DE =2,求△BFD 的面积.33.如图,在▱ABCD 中,点E 是边AD 上一点,延长CE 到点F ,使∠FBC =∠DCE ,且FB 与AD 相交于点G . (1)求证:∠D =∠F ;(2)用直尺和圆规在边AD 上作出一点P ,使△BPC ∽△CDP ,并加以证明.(作图要求:保留痕迹,不写作法.)34.(1)(学习心得)于彤同学在学习完“圆”这一章内容后,感觉到一些几何问题如果添加辅助圆,运用圆的知识解决,可以使问题变得非常容易.例如:如图1,在ABC 中,,90AB AC BAC ∠==,D 是ABC 外一点,且AD AC =,求BDC ∠的度数.若以点A为圆心,AB 为半径作辅助A ,则C 、D 必在A 上,BAC ∠是A 的圆心角,而BDC ∠是圆周角,从而可容易得到BDC ∠=________.(2)(问题解决)如图2,在四边形ABCD 中,90BAD BCD ∠=∠=,25BDC ∠=,求BAC ∠的度数.(3)(问题拓展)如图3,,E F 是正方形ABCD 的边AD 上两个动点,满足AE DF =.连接交于点,连接CF交BD于点G,连接BE交于点H,若正方形的边长为2,则线段DH长度的最小值是_______.35.如图,二次函数y=ax2+bx+c的图象与x轴相交于点A(﹣1,0)、B(5,0),与y轴相交于点C(0,53).(1)求该函数的表达式;(2)设E为对称轴上一点,连接AE、CE;①当AE+CE取得最小值时,点E的坐标为;②点P从点A出发,先以1个单位长度/的速度沿线段AE到达点E,再以2个单位长度的速度沿对称轴到达顶点D.当点P到达顶点D所用时间最短时,求出点E的坐标.四、压轴题36.阅读理解:如图,在纸面上画出了直线l与⊙O,直线l与⊙O相离,P为直线l上一动点,过点P作⊙O的切线PM,切点为M,连接OM、OP,当△OPM的面积最小时,称△OPM为直线l与⊙O的“最美三角形”.解决问题:(1)如图1,⊙A的半径为1,A(0,2) ,分别过x轴上B、O、C三点作⊙A的切线BM、OP、CQ,切点分别是M、P、Q,下列三角形中,是x轴与⊙A的“最美三角形”的是.(填序号)①ABM;②AOP;③ACQ(2)如图2,⊙A的半径为1,A(0,2),直线y=kx(k≠0)与⊙A的“最美三角形”的面积为12,求k的值.(3)点B在x轴上,以B为圆心,3为半径画⊙B,若直线y=3x+3与⊙B的“最美三角形”的面积小于32,请直接写出圆心B的横坐标B x的取值范围.37.如图,⊙O的直径AB=26,P是AB上(不与点A,B重合)的任一点,点C,D为⊙O上的两点.若∠APD=∠BPC,则称∠DPC为直径AB的“回旋角”.(1)若∠BPC=∠DPC=60°,则∠DPC是直径AB的“回旋角”吗?并说明理由;(2)猜想回旋角”∠DPC的度数与弧CD的度数的关系,给出证明(提示:延长CP交⊙O 于点E);(3)若直径AB的“回旋角”为120°,且△PCD的周长为3AP的长.38.已知,如图1,⊙O 是四边形ABCD 的外接圆,连接OC 交对角线BD 于点F ,延长AO 交BD 于点E ,OE=OF.(1)求证:BE=FD ;(2)如图2,若∠EOF=90°,BE=EF ,⊙O 的半径25AO =,求四边形ABCD 的面积; (3)如图3,若AD=BC ;①求证:22•AB CD BC BD +=;②若2•12AB CD AO ==,直接写出CD 的长. 39.如图,在平面直角坐标系中,直线l 分别交x 轴、y 轴于点A ,B ,∠BAO = 30°.抛物线y = ax 2 + bx + 1(a < 0)经过点A ,B ,过抛物线上一点C (点C 在直线l 上方)作CD ∥BO 交直线l 于点D ,四边形OBCD 是菱形.动点M 在x 轴上从点E ( -3,0)向终点A 匀速运动,同时,动点N 在直线l 上从某一点G 向终点D 匀速运动,它们同时到达终点.(1)求点D 的坐标和抛物线的函数表达式. (2)当点M 运动到点O 时,点N 恰好与点B 重合.①过点E 作x 轴的垂线交直线l 于点F ,当点N 在线段FD 上时,设EM = m ,FN = n ,求n 关于m 的函数表达式.②求△NEM 面积S 关于m 的函数表达式以及S 的最大值.40.一个四边形被一条对角线分割成两个三角形,如果分割所得的两个三角形相似,我们就把这条对角线称为相似对角线.(1)如图,正方形ABCD 的边长为4,E 为AD 的中点,点F ,H 分别在边AB 和CD上,且1AF DH ==,线段CE 与FH 交于点G ,求证:EF 为四边形AFGE 的相似对角线;(2)在四边形ABCD 中,BD 是四边形ABCD 的相似对角线,120A CBD ∠=∠=,2AB =,BD =CD 的长;(3)如图,已知四边形ABCD 是圆O 的内接四边形,90A ∠=,8AB =,6AD =,点E 是AB 的中点,点F 是射线AD 上的动点,若EF 是四边形AECF 的相似对角线,请直接写出线段AF 的长度(写出3个即可).【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】直接利用特殊角的三角函数值求出答案. 【详解】 解:sin 30°=12故选C 【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关特殊角的三角函数值是解题关键.2.B解析:B 【解析】 【分析】求出P 点到圆心的距离,即OP 长,与半径长度5作比较即可作出判断. 【详解】解:∵()8,6P -,∴10= , ∵O 的直径为10,∴r=5, ∵OP>5, ∴点P 在O 外.故选:B. 【点睛】本题考查点和直线的位置关系,当d>r时点在圆外,当d=r时,点在圆上,当d<r时,点在圆内,解题关键是根据点到圆心的距离和半径的关系判断.3.D解析:D【解析】【分析】满足题意的有两点,一是此方程为一元一次方程,即未知数x的次数为1;二是方程的解为x=1,即1使等式成立,根据两点列式求解.【详解】解:根据题意得,a-1=1,2+m=2,解得,a=2,m=0,∴a-m=2.故选:D.【点睛】本题考查一元一次方程的定义及方程解的定义,对定义的理解是解答此题的关键.4.C解析:C【解析】【分析】根据特殊角三角函数值,可得答案.【详解】解:由sinα=,得α=60°,故选:C.【点睛】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.5.B解析:B【解析】【分析】根据圆的半径相等可得等腰三角形,根据三角形的外角的性质和等腰三角形等边对等角可得关于∠E的方程,解方程即可求得答案.【详解】解:如图,连接CO,∵CE=OB=CO=OD,∴∠E=∠1,∠2=∠D∴∠D=∠2=∠E+∠1=2∠E.∴∠3=∠E+∠D=∠E+2∠E=3∠E.由∠3=72°,得3∠E=72°.解得∠E=24°.故选:B.【点睛】本题考查了圆的认识,等腰三角形的性质,三角形的外角的性质.能利用圆的半径相等得出等腰三角形是解题关键.6.D解析:D【解析】【分析】先将方程左边提公因式x,解方程即可得答案.【详解】x2﹣3x=0,x(x﹣3)=0,x1=0,x2=3,故选:D.【点睛】本题考查解一元二次方程,解一元二次方程的常用方法有:配方法、直接开平方法、公式法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.7.A解析:A【解析】【分析】根据众数和中位数的定义求解可得.【详解】∵这组数据中最多的数是18,∴这14名队员年龄的众数是18岁,∵这组数据中间的两个数是19、19,∴中位数是19192=19(岁),故选:A.【点睛】本题考查众数和中位数,将一组数据从小到大的顺序排列,如果数据的个数是奇数,则处于中间位置的数称为这组数据的中位数;如果数据的个数是偶数,则中间两个数的平均数称为这组数据的中位数;一组数据中出现次数最多的数据称为这组数据的众数;熟练掌握定义是解题关键.8.C解析:C【解析】【分析】根据弧长公式即可求出圆心角的度数.【详解】解:∵扇形的半径为4,弧长为2π,∴4 2180nππ⨯=解得:90n=,即其圆心角度数是90︒故选C.【点睛】此题考查的是根据弧长和半径求圆心角的度数,掌握弧长公式是解决此题的关键.9.B解析:B【解析】【分析】点E在以F为圆心的圆上运到,要使AE最大,则AE过F,根据等腰三角形的性质和圆周角定理证得F是BC的中点,从而得到EF为△BCD的中位线,根据平行线的性质证得CD⊥BC,根据勾股定理即可求得结论.【详解】解:点D在⊙C上运动时,点E在以F为圆心的圆上运到,要使AE最大,则AE过F,连接CD,∵△ABC是等边三角形,AB是直径,∴EF⊥BC,∴F是BC的中点,∵E为BD的中点,∴EF为△BCD的中位线,∴CD∥EF,∴CD⊥BC,BC=4,CD=2,故==故选:B.【点睛】本题主要考查等边三角形的性质,圆周角定理,三角形中位线的性质以及勾股定理,熟练并正确的作出辅助圆是解题的关键.10.C解析:C【解析】【分析】根据因式分解法,可得答案.【详解】=,解:2x x方程整理,得,x2-x=0因式分解得,x(x-1)=0,于是,得,x=0或x-1=0,解得x1=0,x2=1,故选:C.【点睛】本题考查了解一元二次方程,因式分解法是解题关键.11.C解析:C【解析】【分析】x=0,求出两个函数图象在y轴上相交于同一点,再根据抛物线开口方向向上确定出a>0,然后确定出一次函数图象经过第一三象限,从而得解.【详解】x=0时,两个函数的函数值y=b,所以,两个函数图象与y轴相交于同一点,故B、D选项错误;由A、C选项可知,抛物线开口方向向上,所以,a>0,所以,一次函数y=ax+b经过第一三象限,所以,A选项错误,C选项正确.故选C.12.C解析:C【解析】【分析】根据全等三角形对应角相等可得∠B=∠E=40°,∠F=∠C,然后利用三角形内角和定理计算出∠C的度数,进而可得答案.【详解】解:∵△ABC≌△DEF,∴∠B=∠E=40°,∠F=∠C,∵∠A=60°,∴∠C=180°-60°-40°=80°,∴∠F=80°,故选:C.【点睛】此题主要考查了全等三角形的性质,关键是掌握全等三角形的对应角相等.13.B解析:B【解析】【分析】先求出球的总个数,根据概率公式解答即可.【详解】因为白球5个,黑球3个一共是8个球,所以从中随机摸出1个球,则摸出黑球的概率是3.8故选B.【点睛】本题考查了概率公式,明确概率的意义是解答问题的关键,用到的知识点为:概率=所求情况数与总情况数之比.14.D解析:D【解析】【分析】根据二次函数y=ax2+bx+1的图象经过点A,B,画出函数图象的草图,根据开口方向和对称轴即可判断.【详解】解:由二次函数y=ax2+bx+1可知图象经过点(0,1),∵二次函数y=ax2+bx+1的图象还经过点A,B,则函数图象如图所示,抛物线开口向下,∴a <0,,又对称轴在y 轴右侧,即02b a-> , ∴b >0,故选D 15.B解析:B【解析】【分析】连接BD,CD,由勾股定理求出BD 的长,再利用ABD BED ,得出DE DB DB AD=,从而求出DE 的长,最后利用AE AD DE =-即可得出答案.【详解】连接BD,CD∵AB 为O 的直径90ADB ∴∠=︒22226511BD AB AD ∴=-=-∵弦AD 平分BAC ∠11CD BD ∴==CBD DAB ∴∠=∠ADB BDE ∠=∠ABD BED ∴DE DB DB AD∴=5 =解得115DE=115 2.85AE AD DE∴=-=-=故选:B.【点睛】本题主要考查圆周角定理的推论及相似三角形的判定及性质,掌握圆周角定理的推论及相似三角形的性质是解题的关键.二、填空题16.a>0.【解析】试题分析:∵方程没有实数根,∴△=﹣4a<0,解得:a>0,故答案为a>0.考点:根的判别式.解析:a>0.【解析】试题分析:∵方程20x a+=没有实数根,∴△=﹣4a<0,解得:a>0,故答案为a>0.考点:根的判别式.17.14【解析】【分析】先求出方程的两根,然后根据三角形的三边关系,得到合题意的边,进而求得三角形周长即可.【详解】解:x2﹣6x+8=0,(x﹣2)(x﹣4)=0,x﹣2=0,x﹣4=0解析:14【解析】【分析】先求出方程的两根,然后根据三角形的三边关系,得到合题意的边,进而求得三角形周长即可.【详解】解:x2﹣6x+8=0,(x﹣2)(x﹣4)=0,x ﹣2=0,x ﹣4=0,x 1=2,x 2=4,当x =2时,2+3<6,不符合三角形的三边关系定理,所以x =2舍去,当x =4时,符合三角形的三边关系定理,三角形的周长是3+6+4=13,故答案为:13.【点睛】本题考查了因式分解法解一元二次方程以及三角形的三边关系,不能盲目地将三边长相加起来,而应养成检验三边长能否成三角形的好习惯,熟练掌握一元二次方程的解法是解法本题的关键.18.【解析】【分析】根据黄金比值为计算即可.【详解】解:∵点P 是线段AB 的黄金分割点(AP>BP )∴故答案为:.【点睛】本题考查的知识点是黄金分割,熟记黄金分割点的比值是解题的关键.解析:2【解析】【分析】计算即可. 【详解】解:∵点P 是线段AB 的黄金分割点(AP>BP )∴1AP 22AB =⨯=故答案为:2.【点睛】本题考查的知识点是黄金分割,熟记黄金分割点的比值是解题的关键.19.15【解析】【分析】由在比例尺为1:50000的地图上,量得A 、B 两地的图上距离AB=3cm ,根据比例尺的定义,可求得两地的实际距离.【详解】解:∵比例尺为1:500000,量得两地的距离解析:15【解析】【分析】由在比例尺为1:50000的地图上,量得A 、B 两地的图上距离AB=3cm ,根据比例尺的定义,可求得两地的实际距离.【详解】解:∵比例尺为1:500000,量得两地的距离是3厘米,∴A 、B 两地的实际距离3×500000=1500000cm=15km ,故答案为15.【点睛】此题考查了比例尺的性质.注意掌握比例尺的定义,注意单位要统一.20.【解析】【分析】根据点A 的坐标及抛物线的对称轴可得抛物线与x 轴的两个交点坐标,从而求得方程的解.【详解】解:由二次函数y =ax2+bx +c 的图像过点A (3,0),对称轴为直线x =1可得:解析:123;1x x ==-【解析】【分析】根据点A 的坐标及抛物线的对称轴可得抛物线与x 轴的两个交点坐标,从而求得方程的解.【详解】解:由二次函数y =ax 2+bx +c 的图像过点A (3,0),对称轴为直线x =1可得: 抛物线与x 轴交于(3,0)和(-1,0)即当y=0时,x=3或-1∴ax 2+bx +c =0的根为123;1x x ==-故答案为:123;1x x ==-【点睛】本题考查抛物线的对称性及二次函数与一元二次方程,利用对称性求出抛物线与x 轴的交点坐标是本题的解题关键.21.6【解析】【分析】现将函数解析式配方得,即可得到答案.【详解】,∴当t=1时,h 有最大值6.故答案为:6.【点睛】此题考查最值问题,确定最值时需现将函数解析式配方为顶点式,再根据开 解析:6【解析】【分析】现将函数解析式配方得221266(1)6h tt t =--=+﹣,即可得到答案. 【详解】 221266(1)6h t t t =--=+﹣,∴当t=1时,h 有最大值6.故答案为:6.【点睛】此题考查最值问题,确定最值时需现将函数解析式配方为顶点式,再根据开口方向确定最值.22.【解析】【分析】在OA 上取使,得,则,根据点到直线的距离垂线段最短可知当⊥AB 时,CP 最小,由相似求出的最小值即可.【详解】解:如图,在OA 上取使,∵,∴,在△和△QOC 中,,【解析】【分析】在OA 上取'C 使'OC OC =,得'OPC OQC ≅,则CQ=C'P ,根据点到直线的距离垂线段最短可知当'PC ⊥AB 时,CP 最小,由相似求出C'P 的最小值即可.【详解】解:如图,在OA 上取'C 使'OC OC =,∵90AOC POQ ∠=∠=︒,∴'POC QOC ∠=∠,在△'POC 和△QOC 中,''OP OQ POC QOC OC OC =⎧⎪∠=∠⎨⎪=⎩,∴△'POC ≌△QOC (SAS ),∴'PC QC =∴当'PC 最小时,QC 最小,过'C 点作''C P ⊥AB ,∵直线l :28y x =+与坐标轴分别交于A ,B 两点,∴A 坐标为:(0,8);B 点(-4,0),∵'4OC OC OB ===, ∴22228445AB OA OB ++=''4AC OA OC =-=. ∵'''OB C P sin BAO AB AC ∠==, ''445C P =, ∴4''55C P = ∴线段CQ 455 455【点睛】 本题主要考查了一次函数图像与坐标轴的交点及三角形全等的判定和性质、垂线段最短等知识,解题的关键是正确寻找全等三角形解决问题,学会利用垂线段最短解决最值问题,属于中考压轴题.23.216°.【解析】【分析】【详解】圆锥的底面周长为2π×3=6π(cm),设圆锥侧面展开图的圆心角是n°,则=6π,解得n=216.故答案为216°.【点睛】本题考查了圆锥的计算,解析:216°.【解析】【分析】【详解】圆锥的底面周长为2π×3=6π(cm),设圆锥侧面展开图的圆心角是n°,则π5180n ⨯=6π, 解得n=216.故答案为216°.【点睛】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长. 24.6【解析】【分析】将方程的根-2代入原方程求出m 的值,再解方程即可求解.【详解】解:把x=-2代入原方程得出,4-2m+3m=0,解得m=-4;故原方程为:,解方程得:.故答案为:6解析:6【解析】【分析】将方程的根-2代入原方程求出m 的值,再解方程即可求解.【详解】解:把x=-2代入原方程得出,4-2m+3m=0,解得m=-4;故原方程为:24120x x --=,解方程得:122,6x x =-=.故答案为:6.【点睛】本题考查的知识点是解一元二次方程,根据方程的一个解求出方程中参数的值是解此题的关键.25.或【解析】【分析】由题意可得点P在以D为圆心,为半径的圆上,同时点P也在以BD为直径的圆上,即点P是两圆的交点,分两种情况讨论,由勾股定理可求BP,AH的长,即可求点A到BP的距离.【详解】解析:3352+或3352-【解析】【分析】由题意可得点P在以D为圆心,5为半径的圆上,同时点P也在以BD为直径的圆上,即点P是两圆的交点,分两种情况讨论,由勾股定理可求BP,AH的长,即可求点A到BP 的距离.【详解】∵点P满足PD=5,∴点P在以D为圆心,5为半径的圆上,∵∠BPD=90°,∴点P在以BD为直径的圆上,∴如图,点P是两圆的交点,若点P在AD上方,连接AP,过点A作AH⊥BP,∵CD=4=BC,∠BCD=90°,∴BD=2∵∠BPD=90°,∴BP22BD PD-3,∵∠BPD =90°=∠BAD ,∴点A ,点B ,点D ,点P 四点共圆,∴∠APB =∠ADB =45°,且AH ⊥BP ,∴∠HAP =∠APH =45°,∴AH =HP ,在Rt △AHB 中,AB 2=AH 2+BH 2,∴16=AH 2+(AH )2,∴AH =2(不合题意),或AH =2, 若点P 在CD 的右侧,同理可得AH ,综上所述:AH . 【点睛】本题是正方形与圆的综合题,正确确定点P 是以D BD 为直径的圆的交点是解决问题的关键.26.5【解析】【分析】根据直角三角形外接圆的直径是斜边的长进行求解即可.【详解】由勾股定理得:AB ==10,∵∠ACB=90°,∴AB 是⊙O 的直径,∴这个三角形的外接圆直径是10;∴这解析:5【解析】【分析】根据直角三角形外接圆的直径是斜边的长进行求解即可.【详解】由勾股定理得:AB =10,∵∠ACB =90°,∴AB 是⊙O 的直径,∴这个三角形的外接圆直径是10;∴这个三角形的外接圆半径长为5,故答案为5.【点睛】本题考查了90度的圆周角所对的弦是直径,熟练掌握是解题的关键.27..【解析】【分析】根据加权平均数的基本求法,平均数等于总和除以个数,即可得到答案. 【详解】平均数等于总和除以个数,所以平均数.【点睛】本题考查求加权平均数,解题的关键是掌握加权平均数的解析:mx ny m n++.【解析】【分析】根据加权平均数的基本求法,平均数等于总和除以个数,即可得到答案.【详解】平均数等于总和除以个数,所以平均数mx nym n+=+.【点睛】本题考查求加权平均数,解题的关键是掌握加权平均数的基本求法.28.x=﹣1【解析】【分析】根据等式的性质将x移到等号右边,再平方,可得一元二次方程,根据解一元二次方程,可得答案.【详解】解:将x移到等号右边得到:=1﹣x,两边平方,得x+5=1﹣2x解析:x=﹣1【解析】【分析】根据等式的性质将x移到等号右边,再平方,可得一元二次方程,根据解一元二次方程,可得答案.【详解】解:将x1﹣x,两边平方,得x+5=1﹣2x+x2,解得x1=4,x2=﹣1,检验:x=4时,=5,左边≠右边,∴x=4不是原方程的解,当x=﹣1时,﹣1+2=1,左边=右边,∴x=﹣1是原方程的解,∴原方程的解是x=﹣1,故答案为:x=﹣1.【点睛】本题主要考查解无理方程的知识点,去掉根号把无理式化成有理方程是解题的关键,注意观察方程的结构特点,把无理方程转化成一元二次方程的形式进行解答,需要同学们仔细掌握.29.16【解析】【分析】【详解】延长EF交BC的延长线与H,在平行四边形ABCD中,∵AD=BC,AD∥BC∴△DEF∽△CHF, △DEM∽△BHM∴ ,∵F是CD的中点∴DF解析:16【解析】【分析】【详解】延长EF交BC的延长线与H,在平行四边形ABCD 中,∵AD=BC,AD ∥BC∴△DEF ∽△CHF, △DEM ∽△BHM ∴DE DF CH CF = ,2()DEM BMHS DE S BH ∆∆= ∵F 是CD 的中点∴DF=CF∴DE=CH∵E 是AD 中点∴AD=2DE∴BC=2DE∴BC=2CH∴BH=3CH∵1DEM S ∆= ∴211()3BMH S ∆= ∴9BMH S ∆=∴9CFH BCFM S S ∆+=四边形∴9DEF BCFM S S ∆+=四边形∴9DME DFM BCFM S S S ∆∆++=四边形∴19BCD S ∆+=∴8BCD S ∆=∵四边形ABCD 是平行四边形∴2816ABCD S =⨯=四边形故答案为:16.30.2或3【解析】【分析】根据相似三角形的判定与性质,当若点A ,P ,D 分别与点B ,C ,P 对应,与若点A ,P ,D 分别与点B ,P ,C 对应,分别分析得出AP 的长度即可.【详解】解:设AP =xcm .则解析:2或3【解析】【分析】根据相似三角形的判定与性质,当若点A ,P ,D 分别与点B ,C ,P 对应,与若点A ,P ,D 分别与点B ,P ,C 对应,分别分析得出AP 的长度即可.【详解】解:设AP =xcm .则BP =AB ﹣AP =(5﹣x )cm以A ,D ,P 为顶点的三角形与以B ,C ,P 为顶点的三角形相似,①当AD :PB =PA :BC 时,352x x =-, 解得x =2或3.②当AD :BC =PA +PB 时,3=25x x-,解得x =3, ∴当A ,D ,P 为顶点的三角形与以B ,C ,P 为顶点的三角形相似,AP 的值为2或3. 故答案为2或3.【点睛】本题考查了相似三角形的问题,掌握相似三角形的性质以及判定定理是解题的关键.三、解答题31.(1)见解析;(2)BP =7.【解析】【分析】(1)连接OB ,如图,根据圆周角定理得到∠ABD=90°,再根据等腰三角形的性质和已知条件证出∠OBC=90°,即可得出结论;(2)证明△AOP ∽△ABD ,然后利用相似三角形的对应边成比例求BP 的长.【详解】(1)证明:连接OB ,如图,∵AD 是⊙O 的直径,∴∠ABD =90°,∴∠A+∠ADB =90°,∵OA=OB,∴∠A=∠OBA,∵∠CBP=∠ADB,∴∠OBA+∠CBP=90°,∴∠OBC=180°﹣90°=90°,∴BC⊥OB,∴BC是⊙O的切线;(2)解:∵OA=2,∴AD=2OA=4,∵OP⊥AD,∴∠POA=90°,∴∠P+∠A=90°,∴∠P=∠D,∵∠A=∠A,∴△AOP∽△ABD,∴APAD =AOAB,即14BP=21,解得:BP=7.【点睛】本题考查了切线的判定、圆周角定理、等腰三角形的性质、相似三角形的判定与性质等知识;熟练掌握圆周角定理和切线的判定是解题的关键.32.(1)相似,理由见解析;(2)94.【解析】【分析】(1)根据线段垂直平分线的性质得出BE=CE,根据等腰三角形的性质得出∠EBC=∠ECB,∠ABC=∠ADB,根据相似三角形的判定得出即可;(2)根据△FDB∽△ABC得出FDAB=BDBC=12,求出AB=2FD,可得AD=2FD,DF=AF,根据三角形的面积得出S△AFB=S△BFD,S△AEF=S△EFD,根据DE为BC的垂直平分线可得S△BDE=S△CDE,可求出△ABC的面积,再根据相似三角形的性质求出答案即可.【详解】(1)△FDB与△ABC相似,理由如下:∵DE是BC垂直平分线,∴BE=CE,∴∠EBC=∠ECB,∵AB=AD,∴∠ABC=∠ADB,∴△FDB∽△ABC.(2)∵△FDB ∽△ABC , ∴FD AB =BD BC =12, ∴AB =2FD ,∵AB =AD ,∴AD =2FD ,∴DF =AF ,∴S △AFB =S △BFD ,S △AEF =S △EFD ,∴S △ABC =3S △BDE =3×12×3×2=9, ∵△FDB ∽△ABC , ∴BFD ABC S S =(DB BC )2=(12)2=14, ∴S △BFD =14S △ABC =14×9=94. 【点睛】 本题考查线段垂直平分线的性质及相似三角形的判定与性质,线段存在平分线上的点到线段两端的距离相等;熟练掌握相似三角形的面积比等于相似比的平方是解题关键.33.(1)详见解析;(2)详见解析.【解析】【分析】(1)根据四边形ABCD 是平行四边形可得AD ∥BC ,∠FGE =FBC ,再根据已知∠FBC =∠DCE ,进而可得结论;(2)作三角形FBC 的外接圆交AD 于点P 即可证明.【详解】解:(1)∵四边形ABCD 是平行四边形,∴AD ∥BC∴∠FGE =∠FBC∵∠FBC =∠DCE ,∴∠FGE =∠DCE∵∠FEG =∠DEC∴∠D =∠F .(2)如图所示:点P即为所求作的点.证明:作BC和BF的垂直平分线,交于点O,作△FBC的外接圆,连接BO并延长交AD于点P,∴∠PCB=90°∵AD∥BC∴∠CPD=∠PCB=90°由(1)得∠F=∠D∵∠F=∠BPC∴∠D=∠BPC∴△BPC∽△CDP.【点睛】此题主要考查圆的综合应用,解题的关键是熟知平行四边形的性质、外接圆的性质及相似三角形的判定与性质.34.(1)45;(2)25°;(351【解析】【分析】(1)利用同弦所对的圆周角是所对圆心角的一半求解.(2)由A、B、C、D共圆,得出∠BDC=∠BAC,(3)根据正方形的性质可得AB=AD=CD,∠BAD=∠CDA,∠ADG=∠CDG,然后利用“边角边”证明△ABE和△DCF全等,根据全等三角形对应角相等可得∠1=∠2,利用“SAS”证明△ADG和△CDG全等,根据全等三角形对应角相等可得∠2=∠3,从而得到∠1=∠3,然后求出∠AHB=90°,取AB的中点O,连接OH、OD,根据直角三角形斜边上的中线等于斜边的一半可得OH=12AB=1,利用勾股定理列式求出OD,然后根据三角形的三边关系可知当O、D、H三点共线时,DH的长度最小.【详解】(1)如图1,∵AB=AC,AD=AC,。

苏科版九年级上册数学期末考试试卷含答案解析

苏科版九年级上册数学期末考试试卷含答案解析

苏科版九年级上册数学期末考试试题一、选择题。

(每小题只有一个正确答案)1.用配方法解方程2x 4x 10-+=,下列变形正确的是( )A .2(x 2)4-=B .2(x 4)4-=C .2(x 2)3-=D .2(x 4)3-= 2.下列方程中是关于x 的一元二次方程的是( )A .x 2+1x 2=0 B .ax 2+bx +c =0C .(x −1)(x −2)=0D .3x 2−2xy −5y 2=03.下列说法中,正确的是( )A .为检测我市正在销售的酸奶质量,应该采用抽样调查的方式B .两名同学连续五次数学测试的平均分相同,方差较大的同学数学成绩更稳定C .抛掷一个正方体骰子,点数为奇数的概率是13D .“打开电视,正在播放广告”是必然事件4.女鞋专柜试销一种新款女鞋,一个月内销售情况如下表所示:经理最关心的是,哪种型号的鞋销量最大.对他来说, 下列统计量中最重要的是( ) A .众数 B .平均数 C .中位数 D .方差5.圆锥的母线长为5cm,底面半径为3cm,那么它的侧面展开图的圆心角是( ) A .180° B .200° C .225° D .216° 6.方程x 2-3x +2=0的最小一个根的倒数是( )A .1B .2C .12D .47.扇形的周长为16,圆心角为360π,则扇形的面积是( ) A .16 B .32 C .64 D .16π 8.某商场将某种商品的售价从原来的每件200元经两次调价后调至每件162元,设平均每次调价的百分率为x , 列出方程正确的是( )A .162(1-x)2=200B .200(1+x)2=162C .162(1+x)2=200D .200(1-x)2=1629.已知a ,b 是方程x 2+2013x+1=0的两个根,则(1+2015a+a 2)(1+2015b+b 2)的值为 A .1 B .2 C .3 D .4二、填空题10.已知一元二次方程 2310x x --= 的两根为1x 、2x ,则12x x += ________11.如图,△ABC 内接于⊙O ,AD 是⊙O 的直径,∠ABC=30°,则∠CAD=________度.12.一元二次方程(x+6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是________.13.如图,四边形ABCD 是⊙O 的内接四边形,点E 在AB 的延长线上,BF 是∠CBE 的平分线,∠ADC=100°,则∠FBE=_______.14.如果m 、n 是两个不相等的实数,且满足m 2﹣m=2016,n 2﹣n=2016,那么代数式n 2+mn+m 的值为________.15.一个扇形的弧长是20cm π,面积是2240cm π,则这个扇形的圆心角是___度. 16.如图,AB 是O 的直径,,C D 是O 上的点,30CDB ∠=︒,过点C 作O 的切线交AB 的延长线于点E ,则sin E 的值为______.17.已知:△ABC 中,∠C=90°,AC=5cm , AB=13cm , 以B 为圆心,以12cm 长为半径作⊙B ,则C 点在⊙B________.18.某超市今年一月份的营业额为60万元.三月份的营业额为135万元.若每月营业额的平均增长,则二月份的营业额是________万元.19.如图,在Rt AOB中,OA=OB=⊙O的半径为1,点P是AB边上的动点,过点P作⊙O的一条切线PQ(点Q为切点),则切线PQ的最小值为_____.三、解答题20.解方程:x2﹣5x﹣6=0;21.如图,⊙O是△ABC的外接圆,∠A=45°,BD是直径,且BC=2,连接CD,求BD的长.22.甲、乙两人在相同的情况下各打靶6次,每次打靶的成绩如下:(单位:环)请你运用所学的统计知识做出分析,从三个不同角度评价甲、乙两人的打靶成绩.23.如图,一拱桥所在弧所对的圆心角为120°(即∠AOB=120°),半径为5 m,一艘6 m宽的船装载一集装箱,已知箱顶宽3.2 m,离水面AB高2 m,问此船能过桥洞吗?请说明理由.24.“五一”假日期间,某网店为了促销,设计了一种抽奖送积分活动,在该网店网页上显示如图所示的圆形转盘,转盘被分成四等份,四个扇形上分别标有“谢谢惠顾”“10分”“20分”“40分”字样.参与抽奖的顾客只需用鼠标点击转盘,指针就会在转动的过程中随机地停在某个扇形区域,指针指向扇形上的积分就是顾客获得的奖励积分,凡是在活动期间下单的顾客,均可获得两次抽奖机会,求两次抽奖顾客获得的总积分不低于30分的概率.25.某公司欲招聘一名部门经理,对甲、乙、丙三名候选人进行了笔试与面试,甲、乙、丙三人的笔试成绩分别为95分、94分和94分.他们的面试成绩如表:(1)分别求出甲、乙、丙三人的面试成绩的平均分x甲、x乙、x丙;(2)若按笔试成绩的40%与面试成绩的60%的和作为综合成绩,综合成绩高者将被录用,请你通过计算判断谁将被录用.26.如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠B=60°.(1)求∠ADC的度数;(2)求证:AE是⊙O的切线.27.如图所示,要建一个面积为130 m2的仓库,仓库有一边靠墙(墙长16 m),并在与墙平行的一边开一道宽1 m的门,现有能围成32 m的木板,求仓库的长与宽?(注意:仓库靠墙的那一边不能超过墙长).28.列方程解应用题:某玩具厂生产一种玩具,按照控制固定成本降价促销的原则,使生产的玩具能够及时售出,据市场调查:每个玩具按480元销售时,每天可销售160个;若销售单价每降低1元,每天可多售出2个,已知每个玩具的固定成本为360元,问这种玩具的销售单价为多少元时,厂家每天可获利润20000元?参考答案1.C【解析】在本题中,把常数项1移项后,应该在左右两边同时加上一次项系数﹣4的一半的平方.【详解】把方程x2﹣4x+1=0的常数项移到等号的右边,得到:x2﹣4x=﹣1方程两边同时加上一次项系数一半的平方,得到:x2﹣4x+4=﹣1+4配方得:(x﹣2)2=3.故选C.【点睛】本题考查了解一元二次方程﹣配方法.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.2.C【解析】A中分母含有未知数;B中当a=0时,二次项系数为0;D中含有两个未知数,只有C化为一般形式为x2+x-3=0,是一元二次方程.3.A【详解】A、为检测我市正在销售的酸奶质量,应该采用抽样调查的方式,不能采取全面调查,正确;B、应为方差小的同学数学成绩更稳定,故本选项错误;C、点数为奇数概率应为3162,故本选项错误;D、“打开电视,正在播放广告”是可能事件,故本选项错误.故选A.4.A【解析】平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.鞋店经理最关心的是哪种型号的鞋销量最大,就是关心那种型号销的最多,故值得关注的是众数.故选A.5.D【分析】先根据圆的周长公式求得底面圆周长,再根据弧长公式即可求得结果.【详解】设它的侧面展开图的圆心角是n°,由题意得底面圆周长=236cm ππ⨯=61850n ππ⨯=, 解得n=216故选D .【点睛】本题是弧长公式的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,难度一般.6.A【详解】解:x 2﹣3x +2=0,(x ﹣1)(x ﹣2)=0,x ﹣1=0或x ﹣2=0,x 1=1或x 2=2,所以方程x 2﹣3x +2=0的最小一个根的倒数是1,故选A .点睛:本题考查了一元二次方程的解法和倒数的概念.解题的关键是求出方程的解,找出最小的根.7.A【分析】设半径为R ,先根据弧长公式得到弧长与半径的关系,,再由扇形的周长为16,即可求出半径R 以及弧长l ,最后根据扇形的面积公式即可得到答案.【详解】解:设半径为R ,由题意得360216180RR ππ+=,解得4R =,∴弧长16428l =-⨯=,∴扇形的面积11841622S lR ==⨯⨯=, 故选A .【点睛】本题考查了弧长公式,扇形的面积公式,解答本题的关键是注意扇形的周长是指扇形的弧长与两个半径的和,同时熟练掌握弧长的计算公式:180n R l π=,扇形的面积公式: 12S lR =. 8.D【分析】设平均每次调价百分率为x ,根据售价从原来每件200元经两次调价后调至每件162元,可列方程.【详解】解:设平均每次调价百分率为x ,列方程:200(1−x)2=162.故选D.【点睛】本题考查一元二次方程的应用,关键设出两次降价的百分率,根据调价前后的价格列方程求解.9.D【详解】∵a ,b 是方程2201310x x ++=,∴2201310a a ++=,2201310b b ++=,2013a b +=-,1ab =,则22(12015)(12015)a a b b ++++=22(120132)(120132)a a a b b b ++++++=4ab=4.故选:D .考点:1.根与系数的关系;2.一元二次方程的解.10.3.【详解】试题分析:∵一元二次方程2310x x -+=的两根为1x 和2x ,∴12x x +=3.故答案为3. 考点:根与系数的关系.11.60°.【详解】试题分析:∵AD 是⊙O 的直径,∴∠ACD=90°;∵∠CDA=∠ABC=30°,(同弧所对的圆周角相等)∴∠CAD=90°﹣∠CDA=60°.考点:圆周角定理.12.x+6=﹣4【解析】【分析】方程两边直接开平方可达到降次的目的,进而可直接得到答案.【详解】解:∵(x+6)2=16,∴两边直接开平方得:x+6=±4,∴x+6=4,x+6=−4,故选D.【点睛】本题主要考查了直接开平方法解一元二次方程,关键是将方程右侧看做一个非负已知数,根据法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”来求解.13.50【解析】根据圆内接四边形的相关性质进行分析解答即可.详解:∵四边形ABCD 是O 的内接四边形,∴∠ADC+∠ABC=180°,又∵∠ABC+∠CBE=180°,∴∠CBE=∠ADC=100°,∵BF平分∠CBE,∴∠FBE=50°.故答案为:50°.点睛:熟记“圆内接四边形的性质:圆内接四边形的对角互补”是正确解答本题的关键. 14.1【解析】【分析】由m、n是两个不相等的实数,且满足m2-m=2016,n2-n=2016,即可得出m、n是方程x2-x-2016=0的两个实数根,根据根与系数的关系即可得出m+n=1、mn=-2016,将其代入n2+mn+m=n2-n+mn+m+n中即可得出结论.【详解】解:∵m、n是两个不相等的实数,且满足m2−m=2016,n2−n=2016,∴m、n是方程x2−x−2016=0的两个实数根,∴m+n=1,mn=−2016,∴n2+mn+m=n2−n+mn+m+n=2016−2016+1=1.故答案为:1.【点睛】本题考查了根与系数的关系,找出m、n是方程x2-x-2016=0的两个实数根是解题的关键. 15.150【分析】根据弧长公式计算.【详解】根据扇形的面积公式12S lr=可得:1 240202rππ=⨯,解得r=24cm,再根据弧长公式20180n rl cm ππ==, 解得150n =︒. 故答案为:150. 【点睛】本题考查了弧长的计算及扇形面积的计算,要记熟公式:扇形的面积公式12S lr =,弧长公式180n rl π=. 16.12 【分析】连接OC ,利用切线的性质得到90,OCE ∠=︒利用圆周角与圆心角之间的关系得到:60,COB ∠=︒从而可得答案.【详解】 解:连接OC , CE 为O 的切线, ,OC CE ∴⊥ 90,OCE ∴∠=︒30CDB ∠=︒60COB ∴∠=︒ 30,E ∠=︒1sin sin 30.2E ∴=︒=故答案为:1.2【点睛】本题考查的是切线的性质,同圆或等圆中,一条弧所对的圆周角是它所对的圆心角的一半,锐角三角函数,掌握以上知识是解题的关键.17.上【详解】∵△ABC中,∠C=90°,AC=5cm,AB=13cm,∴=.12∴当以点B为圆心,12cm长为半径作⊙B时,点C在⊙B上.18.90【解析】【分析】首先设增长率为x,那么三月份的营业额可表示为60(1+x)2,已知三月份营业额为135万元,即可列出方程,从而求出x的值,进而可得二月份的营业额.【详解】解:设每月营业额的平均增长率为x,根据题意得:60(1+x)2=135,解得:x=−2.5(不合题意舍去),x=0.5,∴每月的增长率应为50%,二月份的营业额是:60×(1+50%)=90(万元),故答案为:90.【点睛】平均增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.19.【详解】试题分析:连接OP、OQ,∵PQ是⊙O的切线,∴OQ⊥PQ.根据勾股定理知PQ2=OP2﹣OQ2,∴当PO⊥AB时,线段PQ最短.此时,∵在Rt△AOB中,OA=OB=,∴AB=OA=6.∴OP=AB=3.∴.20.x1=6,x2=﹣1.【解析】试题分析:方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.试题解析:解:方程变形得:(x﹣6)(x+1)=0,解得:x1=6,x2=﹣1.考点:因式分解法解一元二次方程.21【详解】试题分析:先根据圆周角定理可求出∠D=45°,∠BCD=90°,再根据三角形内角和定理可知△BCD是等腰直角三角形,由锐角三角函数的定义即可求出BC的长.试题解析:在⊙O中,∵∠A=45°,∴∠D=45°.∵BD为⊙O的直径,∴∠BCD=90°,∴BC=BD·sin45°=.22.这6次打靶成绩的平均数说明甲、乙两人实力相当,甲打靶成绩的方差低于乙打靶成绩的方差,说明甲的打靶成绩较为稳定;甲、乙两人的这6次打靶成绩中,命中10环分别为2次和3次,说明乙更有可能创造好成绩.【分析】根据平均数、方差、众数的意义分别进行计算,再进行比较即可.【详解】解:根据题意得:甲这6次打靶成绩的平均数为(10+9+8+8+10+9)÷6=9(环),乙这6次打靶成绩的平均数为(10+10+8+10+7+9)÷6=9(环),说明甲、乙两人实力相当;甲的方差为:2S甲=[(10-9)2+(9-9)2+(8-9)2+(8-9)2+(10-9)2+(9-9)2]÷6=23,乙的方差为:2S乙=[(10-9)2+(10-9)2+(8-9)2+(10-9)2+(7-9)2+(9-9)2]÷6=43,甲打靶成绩的方差低于乙打靶成绩的方差,说明甲的打靶成绩较为稳定;甲、乙两人的这6次打靶成绩中,命中10环分别为2次和3次,说明乙更有可能创造好成绩.故答案为平均数说明甲、乙两人实力相当,方差说明甲的打靶成绩较为稳定;甲、乙两人的这6次打靶成绩中,命中10环分别为2次和3次,说明乙更有可能创造好成绩.【点睛】本题考查了方差、平均数、众数的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.23.能【解析】试题分析:先根据垂径定理找出圆心O,连接OA,OB,OE,过点OF作OH⊥EF于点H,由∠AOB可得出∠OAB的度数,根据直角三角形的性质得出OK的长,再根据勾股定理得出EH的长,进而得出CD的长与3.2m相比较即可.试题解析:如图所示,连接OE,过点O作OH⊥EF于点H,∵∠AOB=120°OA=5m,∴∠OAB=30°,OK=2.5m,则OH=2.5+2=4.5m,∵OE=5m,∴在Rt△OEH中,,∴ 3.2,∴此船能过桥洞.点睛:本题主要考查的就是垂径定理的实际应用问题,属于中等难度的题型.在解决这种问题的时候,首先找出圆心,然后根据垂径定理求出未知数的一个量,然后与题目中给出的一个量进行比较大小,从而得出答案.在这种问题的时候,二次函数的实际应用中也会出现,我们一定要分清具体运用哪个知识点来进行求解.24.5 8【详解】试题分析:首先根据题意列出表格,计算出总分和,从而得出所有可能出现的情况,然后得出总积分不低于30分所出现的情况,从而根据概率的计算法则得出概率.试题解析:将指针指向“谢谢惠顾”记为“0分”,列表得:由表可知,所有等可能结果有16种,其中两次抽奖顾客获得的总积分不低于30分的结果有10种,所以两次抽奖顾客获得的总积分不低于30分)的概率P= =25.:(1)甲=91分,乙=92分,丙=91分;(2)乙将被录用.【分析】(1)根据算术平均数的含义和求法,分别用三人的面试的总成绩除以3,求出甲、乙、丙三人的面试的平均分甲、乙和丙即可;(2)首先根据加权平均数的含义和求法,分别求出三人的综合成绩各是多少;然后比较大小,判断出谁的综合成绩最高,即可判断出谁将被录用.【详解】解:(1)甲=(94+89+90)÷3=273÷3=91(分),乙=(92+90+94)÷3=276÷3=92(分),丙=(91+88+94)÷3=273÷3=91(分),∴甲的面试成绩的平均分甲是91分,乙的面试成绩的平均分乙是92分,丙的面试成绩的平均分丙是91分;(2)甲的综合成绩=40%×95+60%×91=38+54.6=92.6(分),乙的综合成绩=40%×94+60%×92=37.6+55.2=92.8(分),丙的综合成绩=40%×94+60%×91=37.6+54.6=92.2(分),∵92.8>92.6>92.2,∴乙将被录用.故答案为(1)甲=91分,乙=92分,丙=91分;(2)乙将被录用.【点睛】本题主要考查了加权平均数的含义和求法,要熟练掌握,解答此题的关键是要明确:数据的权能够反映数据的相对“重要程度”,要突出某个数据,只需要给它较大的“权”,权的差异对结果会产生直接的影响.还考查了算术平均数的含义和求法,要熟练掌握,解答此题的关键是要明确:算术平均数是加权平均数的一种特殊情况,加权平均数包含算术平均数,当加权平均数中的权相等时,就是算术平均数.26.(1)60°(2)见解析【分析】(1)根据“同弧所对的圆周角相等”可以得到∠ADC=∠B=60°.(2)欲证明AE是⊙O的切线,只需证明BA⊥AE即可.【详解】解:(1)∵∠B与∠ADC都是弧AC所对的圆周角,∠B=60°,∴∠ADC=∠B=60°(2)证明:∵AB是⊙O的直径,∴∠ACB=90°∵∠B=60°,∴∠BAC=30°又∵∠EAC =60°,∴∠BAE=∠BAC+∠EAC=30°+60°=90°,即BA⊥AE.又∵AB是⊙O的直径,∴AE是⊙O的切线.27.只能长为13,宽为10.【分析】设仓库的垂直于墙的一边长为x,而与墙平行的一边开一道1m宽的门,现有能围成32m长的木板,那么平行于墙的一边长为(32-2x+1),而仓库的面积为130m2,由此即可列出方程,解方程就可以解决问题.【详解】解:设仓库的宽为x,则长为(32-2x+1),列方程得(32-2x+1)x=130,解得x1=6.5,x2=10,当x1=6.5时,长为32-2x+1=20>16,不合题意舍去,当x2=10时,长为32-2x+1=13<16,答:仓库的长和宽分别为13m,10m.故答案为长13m,宽10m.【点睛】此题和实际生活结合比较紧密,正确理解题意,找出题目的数量关系,准确列出方程是解题的关键.此外还要注意判断所求的解是否符合题意,舍去不合题意的解.28.这种玩具的销售单价为460元时,厂家每天可获利润20000元.【详解】试题分析:设这种玩具的销售单价为x元时,厂家每天可获利润元,根据销售单价每降低元,每天可多售出个可得现在销售[160+2(480-x)]个,再利用获利润元,列一元二次方程解求解即可.试题解析:【解】解:设这种玩具的销售单价为x元时,厂家每天可获利润元,由题意得,(x-360)[160+2(480-x)]=20000(x-360)(1120-2x)=20000(x-360)(560-x)=10000∴这种玩具的销售单价为460元时,厂家每天可获利润元.。

苏科版九年级数学上册 全册期末复习试卷测试卷(含答案解析)

苏科版九年级数学上册 全册期末复习试卷测试卷(含答案解析)

苏科版九年级数学上册全册期末复习试卷测试卷(含答案解析)一、选择题1.如图,等边三角形ABC的边长为5,D、E分别是边AB、AC上的点,将△ADE沿DE折叠,点A恰好落在BC边上的点F处,若BF=2,则BD的长是()A.2 B.3 C.218D.2472.如图,OA、OB是⊙O的半径,C是⊙O上一点.若∠OAC=16°,∠OBC=54°,则∠AOB的大小是()A.70°B.72°C.74°D.76°3.如图,△ABC 中,AD 是中线,BC=8,∠B=∠DAC,则线段AC 的长为()A.43B.42C.6 D.44.如图,在由边长为1的小正方形组成的网格中,点A,B,C,D都在格点上,点E 在AB的延长线上,以A为圆心,AE为半径画弧,交AD的延长线于点F,且弧EF经过点C,则扇形AEF的面积为()A.58B.58πC.54πD.545.小广,小娇分别统计了自己近5次数学测试成绩,下列统计量中能用来比较两人成绩稳定性的是( )A .方差B .平均数C .众数D .中位数6.如图,小正方形边长均为1,则下列图形中三角形(阴影部分)与△ABC 相似的是A .B .C .D .7.如图,抛物线2144y x =-与x 轴交于A 、B 两点,点P 在一次函数6y x =-+的图像上,Q 是线段PA 的中点,连结OQ ,则线段OQ 的最小值是( )A .22B .1C .2D .28.如图,在边长为1的正方形组成的网格中,△ABC 的顶点都在格点上,将△ABC 绕点C 顺时针旋转60°,则顶点A 所经过的路径长为( )A .10πB .103C 10πD .π9.如图,AB 为⊙O 的直径,点C 、D 在⊙O 上,∠BAC=50°,则∠ADC 为( )A .40°B .50°C .80°D .100°10.如图,已知一组平行线////a b c ,被直线m 、n 所截,交点分别为A 、B 、C 和D 、E 、F ,且 1.5AB =,2BC =, 1.8DE =,则EF =( )A .4.4B .4C .3.4D .2.411.若关于x 的一元二次方程240kx x -+=有实数根,则k 的取值范围是( ) A .16k ≤B .116k ≤C .1,16k ≤且0k ≠ D .16,k ≤ 且0k ≠ 12.如图,AC 是⊙O 的内接正四边形的一边,点B 在弧AC 上,且BC 是⊙O 的内接正六边形的一边.若AB 是⊙O 的内接正n 边形的一边,则n 的值为( )A .6B .8C .10D .1213.如图所示的网格是正方形网格,则sin A 的值为( )A .12B .22C .35D .4514.在△ABC 中,∠C =90°,tan A =13,那么sin A 的值是( )A .12B .13C .1010D .3101015.如图,点P (x ,y )(x >0)是反比例函数y=kx(k >0)的图象上的一个动点,以点P 为圆心,OP 为半径的圆与x 轴的正半轴交于点A ,若△OPA 的面积为S ,则当x 增大时,S 的变化情况是( )A .S 的值增大B .S 的值减小C .S 的值先增大,后减小D .S 的值不变二、填空题16.已知tan (α+15°)=3,则锐角α的度数为______°. 17.已知三点A (0,0),B (5,12),C (14,0),则△ABC 内心的坐标为____. 18.抛物线y =3(x+2)2+5的顶点坐标是_____.19.如图,Rt △ABC 中,∠ACB =90°,AC =BC =4,D 为线段AC 上一动点,连接BD ,过点C 作CH ⊥BD 于H ,连接AH ,则AH 的最小值为_____.20.已知,二次函数2(0)y ax bx c a =++≠的图象如图所示,当y <0时,x 的取值范围是________.21.如图,利用标杆BE 测量建筑物的高度,已知标杆BE 高1.2m ,测得1.6,12.4AB m BC m ==,则建筑物CD 的高是__________m .22.如图,D 、E 分别是△ABC 的边AB ,AC 上的点,AD AB =AEAC,AE =2,EC =6,AB =12,则AD 的长为_____.23.经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x ,根据题意可列方程是__________________________.24.如图,△ABC 的顶点A 、B 、C 都在边长为1的正方形网格的格点上,则sinA 的值为________.25.某电视台招聘一名记者,甲应聘参加了采访写作、计算机操作和创意设计的三项素质测试得分分别为70、60、90,三项成绩依次按照5:2:3计算出最后成绩,那么甲的成绩为__.26.在某市中考体考前,某初三学生对自己某次实心球训练的录像进行分析,发现实心球飞行高度y (米)与水平距离x (米)之间的关系为21251233y x x =-++,由此可知该生此次实心球训练的成绩为_______米.27.设二次函数y =x 2﹣2x ﹣3与x 轴的交点为A ,B ,其顶点坐标为C ,则△ABC 的面积为_____.28.有4根细木棒,它们的长度分别是2cm 、4cm 、6cm 、8cm .从中任取3根恰好能搭成一个三角形的概率是_____.29.顶点在原点的二次函数图象先向左平移1个单位长度,再向下平移2个单位长度后,所得的抛物线经过点(0,﹣3),则平移后抛物线相应的函数表达式为_____. 30.如图,四边形ABCD 中,∠A =∠B =90°,AB =5cm ,AD =3cm ,BC =2cm ,P 是AB 上一点,若以P 、A 、D 为顶点的三角形与△PBC 相似,则PA =_____cm .三、解答题31.定义:如果一个四边形的一组对角互余,那么我们称这个四边形为“对角互余四边形”.(1)如图①,在对角互余四边形ABCD中,∠B=60°,且AC⊥BC,AC⊥AD,若BC=1,则四边形ABCD的面积为;(2)如图②,在对角互余四边形ABCD中,AB=BC,BD=13,∠ABC+∠ADC=90°,AD=8,CD=6,求四边形ABCD的面积;(3)如图③,在△ABC中,BC=2AB,∠ABC=60°,以AC为边在△ABC异侧作△ACD,且∠ADC=30°,若BD=10,CD=6,求△ACD的面积.32.如图,AB为⊙O的直径,AC、DC为弦,∠ACD=60°,P为AB延长线上的点,∠APD=30°.(1)求证:DP是⊙O的切线;(2)若⊙O的半径为3cm,求图中阴影部分的面积.33.如图,AB为O的直径,PD切O于点C,交AB的延长线于点D,且∠=∠.D A2∠的度数.(1)求D(2)若O的半径为2,求BD的长.34.小亮晚上在广场散步,图中线段AB表示站立在广场上的小亮,线段PO表示直立在广场上的灯杆,点P表示照明灯的位置.(1)请你在图中画出小亮站在AB处的影子BE;(2)小亮的身高为1.6m,当小亮离开灯杆的距离OB为2.4m时,影长为1.2m,若小亮离开灯杆的距离OD=6m时,则小亮(CD)的影长为多少米?cm,那么这个三角形的35.如果一个直角三角形的两条直角边的长相差2cm,面积是242两条直角边分别是多少?四、压轴题36.已知P是⊙O上一点,过点P作不过圆心的弦PQ,在劣弧PQ和优弧PQ上分别有动点A、B(不与P,Q重合),连接AP、BP. 若∠APQ=∠BPQ.(1)如图1,当∠APQ=45°,AP=1,BP=22时,求⊙O的半径;(2)如图2,选接AB,交PQ于点M,点N在线段PM上(不与P、M重合),连接ON、OP,若∠NOP+2∠OPN=90°,探究直线AB与ON的位置关系,并证明.37.如图①,A(﹣5,0),OA=OC,点B、C关于原点对称,点B(a,a+1)(a>0).(1)求B、C坐标;(2)求证:BA⊥AC;(3)如图②,将点C绕原点O顺时针旋转α度(0°<α<180°),得到点D,连接DC,问:∠BDC的角平分线DE,是否过一定点?若是,请求出该点的坐标;若不是,请说明理由.38.如图,函数y=-x 2+bx +c 的图象经过点A (m ,0),B (0,n )两点,m ,n 分别是方程x 2-2x -3=0的两个实数根,且m <n .(1)求m ,n 的值以及函数的解析式;(2)设抛物线y=-x 2+bx +c 与x 轴的另一交点为点C ,顶点为点D ,连结BD 、BC 、CD ,求△BDC 面积;(3)对于(1)中所求的函数y=-x 2+bx +c , ①当0≤x ≤3时,求函数y 的最大值和最小值;②设函数y 在t ≤x ≤t +1内的最大值为p ,最小值为q ,若p-q =3,求t 的值. 39.如图1(注:与图2完全相同)所示,抛物线212y x bx c =-++经过B 、D 两点,与x 轴的另一个交点为A ,与y 轴相交于点C . (1)求抛物线的解析式.(2)设抛物线的顶点为M ,求四边形ABMC 的面积(请在图1中探索)(3)设点Q 在y 轴上,点P 在抛物线上.要使以点A 、B 、P 、Q 为顶点的四边形是平行四边形,求所有满足条件的点P 的坐标(请在图2中探索)40.()1尺规作图1:已知:如图,线段AB 和直线且点B 在直线上求作:点C ,使点C 在直线上并且使ABC 为等腰三角形. 作图要求:保留作图痕迹,不写作法,做出所有符合条件的点C .()2特例思考:如图一,当190∠=时,符合()1中条件的点C 有______个;如图二,当160∠=时,符合()1中条件的点C 有______个.()3拓展应用:如图,AOB 45∠=,点M ,N 在射线OA 上,OM x =,ON x 2=+,点P 是射线OB 上的点.若使点P ,M ,N 构成等腰三角形的点P 有且只有三个,求x 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】根据折叠得出∠DFE =∠A =60°,AD =DF ,AE =EF ,设BD =x ,AD =DF =5﹣x ,求出∠DFB =∠FEC ,证△DBF ∽△FCE ,进而利用相似三角形的性质解答即可. 【详解】解:∵△ABC 是等边三角形,∴∠A =∠B =∠C =60°,AB =BC =AC =5, ∵沿DE 折叠A 落在BC 边上的点F 上, ∴△ADE ≌△FDE ,∴∠DFE =∠A =60°,AD =DF ,AE =EF , 设BD =x ,AD =DF =5﹣x ,CE =y ,AE =5﹣y , ∵BF =2,BC =5, ∴CF =3,∵∠C =60°,∠DFE =60°,∴∠EFC +∠FEC =120°,∠DFB +∠EFC =120°, ∴∠DFB =∠FEC , ∵∠C =∠B ,∴△DBF∽△FCE,∴BD BF DFFC CE EF==,即2535x xy y-==-,解得:x=218,即BD=218,故选:C.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知折叠的性质、相似三角形的判定定理.2.D解析:D【解析】【分析】连接OC,根据等腰三角形的性质得到∠OAC=∠OCA=16°;∠OBC=∠OCB=54°求出∠ACB 的度数,然后根据同圆中同弧所对的圆周角等于圆心角的一半求解.【详解】解:连接OC∵OA=OC,OB=OC∴∠OAC=∠OCA=16°;∠OBC=∠OCB=54°∴∠ACB=∠OCB-∠OCA=54°-16°=38°∴∠AOB=2∠ACB=76°故选:D【点睛】本题考查的是等腰三角形的性质及同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半,掌握相关性质定理是本题的解题关键.3.B解析:B【分析】 由已知条件可得ABC DAC ~,可得出AC BC DC AC =,可求出AC 的长. 【详解】解:由题意得:∠B =∠DAC ,∠ACB =∠ACD,所以ABC DAC ~,根据“相似三角形对应边成比例”,得AC BC DC AC=,又AD 是中线,BC =8,得DC=4,代入可得AC=42, 故选B.【点睛】本题主要考查相似三角形的判定与性质.灵活运用相似的性质可得出解答. 4.B解析:B【解析】【分析】连接AC ,根据网格的特点求出r=AC 的长度,再得到扇形的圆心角度数,根据扇形面积公式即可求解.【详解】连接AC ,则r=AC=22251=+扇形的圆心角度数为∠BAD=45°,∴扇形AEF 的面积=()2455360π⨯⨯=58π 故选B.【点睛】此题主要考查扇形面积求解,解题的关键是熟知勾股定理及扇形面积公式.5.A解析:A【解析】【分析】根据方差的意义:体现数据的稳定性,集中程度,波动性大小;方差越小,数据越稳定.要比较两位同学在五次数学测验中谁的成绩比较稳定,应选用的统计量是方差.【详解】平均数,众数,中位数都是反映数字集中趋势的数量,方差是反映数据离散水平的数据,也就会说反映数据稳定程度的数据是方差考点:方差6.B解析:B【解析】【分析】根据网格的特点求出三角形的三边,再根据相似三角形的判定定理即可求解.【详解】已知给出的三角形的各边AB 、CB 、AC 、2只有选项B 的各边为1B .【点晴】此题主要考查相似三角形的判定,解题的关键是熟知相似三角形的判定定理.7.A解析:A【解析】【分析】先求得A 、B 两点的坐标,设()6P m m -,,根据之间的距离公式列出2PB 关于m 的函数关系式,求得其最小值,即可求得答案.【详解】令0y =,则21404x -=, 解得:4x =±,∴A 、B 两点的坐标分别为:()()4040A B -,、,, 设点P 的坐标为()6m m -,, ∴()()2222246220522(5)2PB m m m m m =-+-=-+=-+,∵20>,∴当5m =时,2PB 有最小值为:2,即PB ,∵A 、B 为抛物线的对称点,对称轴为y 轴,∴O 为线段AB 中点,且Q 为AP 中点,∴12OQ PB ==. 故选:A .【点睛】本题考查了二次函数与一次函数的综合问题,涉及到的知识有:两点之间的距离公式,三角形中位线的性质,二次函数的最值问题,利用两点之间的距离公式求得2PB 的最小值是解题的关键.解析:C【解析】【分析】【详解】如图所示:在Rt△ACD中,AD=3,DC=1,根据勾股定理得:AC=2210AD CD+=,又将△ABC绕点C顺时针旋转60°,则顶点A所经过的路径长为l=6010101803ππ⨯=.故选C.9.A解析:A【解析】试题分析:先根据圆周角定理的推论得到∠ACB=90°,再利用互余计算出∠B=40°,然后根据圆周角定理求解.解:连结BC,如图,∵AB为⊙O的直径,∴∠ACB=90°,∵∠BAC=50°,∴∠B=90°﹣50°=40°,∴∠ADC=∠B=40°.故选A.考点:圆周角定理.10.D解析:D【解析】【分析】根据平行线等分线段定理列出比例式,然后代入求解即可.【详解】解:∵////a b c∴AB DEBC EF=即1.5 1.82EF=解得:EF=2.4故答案为D.【点睛】本题主要考查的是平行线分线段成比例定理,利用定理正确列出比例式是解答本题的关键.11.C解析:C【解析】【分析】一元二次方程有实数根,则根的判别式∆≥0,且k≠0,据此列不等式求解.【详解】根据题意,得:∆=1-16k≥0且k≠0,解得:116k≤且k≠0.故选:C.【点睛】本题考查一元二次方程根的判别式与实数根的情况,注意k≠0.12.D解析:D【解析】【分析】连接AO、BO、CO,根据中心角度数=360°÷边数n,分别计算出∠AOC、∠BOC的度数,根据角的和差则有∠AOB=30°,根据边数n=360°÷中心角度数即可求解.【详解】连接AO、BO、CO,∵AC是⊙O内接正四边形的一边,∴∠AOC=360°÷4=90°,∵BC是⊙O内接正六边形的一边,∴∠BOC=360°÷6=60°,∴∠AOB=∠AOC﹣∠BOC=90°﹣60°=30°,∴n=360°÷30°=12;故选:D.【点睛】本题考查正多边形和圆,解题的关键是根据正方形的性质、正六边形的性质求出中心角的度数.13.C解析:C【解析】【分析】设正方形网格中的小正方形的边长为1,连接格点BC,AD,过C作CE⊥AB于E,解直角三角形即可得到结论.【详解】解:设正方形网格中的小正方形的边长为1,连接格点BC,AD,过C作CE⊥AB于E,∵224225AC BC=+==,BC=22,AD=2232AC CD+=,∵S△ABC=12AB•CE=12BC•AD,∴CE=223265525BC ADAB⨯==,∴6535525CEAsin CABC∠===,故选:C.【点睛】本题考查了解直角三角形的问题,掌握解直角三角形的方法以及锐角三角函数的定义是解题的关键.14.C解析:C【解析】【分析】根据正切函数的定义,可得BC,AC的关系,根据勾股定理,可得AB的长,根据正弦函数的定义,可得答案.【详解】tan A=BCAC=13,BC=x,AC=3x,由勾股定理,得AB=10x,sin A=BCAB=10,故选:C.【点睛】本题考查了同角三角函数的关系,利用正切函数的定义得出BC=x,AC=3x是解题关键.15.D解析:D【解析】【分析】作PB⊥OA于B,如图,根据垂径定理得到OB=AB,则S△POB=S△PAB,再根据反比例函数k的几何意义得到S△POB=12|k|,所以S=2k,为定值.【详解】作PB⊥OA于B,如图,则OB=AB,∴S△POB=S△PAB.∵S△POB=12|k|,∴S=2k,∴S的值为定值.故选D.【点睛】本题考查了反比例函数系数k的几何意义:在反比例函数y=kx图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.二、填空题16.15【解析】【分析】直接利用特殊角的三角函数值求出答案.【详解】解:tan(α+15°)=∴α+15°=30°,∴α=15°故答案是15【点睛】此题主要考查了特殊角的三角函数值,解析:15【解析】【分析】直接利用特殊角的三角函数值求出答案.【详解】解:tan(α+15°)∴α+15°=30°,∴α=15°故答案是15【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关特殊角的三角函数值是解题关键.17.(6,4).【解析】【分析】作BQ⊥AC于点Q,由题意可得BQ=12,根据勾股定理分别求出BC、AB的长,继而利用三角形面积,可得△OAB内切圆半径,过点P作PD⊥AC于D,PF⊥AB于F,P解析:(6,4).【解析】【分析】作BQ⊥AC于点Q,由题意可得BQ=12,根据勾股定理分别求出BC、AB的长,继而利用三角形面积,可得△OAB内切圆半径,过点P作PD⊥AC于D,PF⊥AB于F,PE⊥BC于E,设AD=AF=x,则CD=CE=14-x,BF=13-x,BE=BC-CE=15-(14-x)=1+x,由BF=BE可得13-x=1+x,解之求出x的值,从而得出点P的坐标,即可得出答案.【详解】解:如图,过点B作BQ⊥AC于点Q,则AQ=5,BQ=12,∴AB=2213AQ BQ +=,CQ=AC-AQ=9,∴BC=2215BQ CQ +=设⊙P 的半径为r ,根据三角形的面积可得:r=14124141315⨯=++ 过点P 作PD ⊥AC 于D ,PF ⊥AB 于F ,PE ⊥BC 于E ,设AD=AF=x ,则CD=CE=14-x ,BF=13-x ,∴BE=BC-CE=15-(14-x )=1+x ,由BF=BE 可得13-x=1+x ,解得:x=6,∴点P 的坐标为(6,4),故答案为:(6,4).【点睛】本题主要考查勾股定理、三角形的内切圆半径公式及切线长定理,根据三角形的内切圆半径公式及切线长定理求出点P 的坐标是解题的关键.18.(﹣2,5)【解析】【分析】已知抛物线的顶点式,可直接写出顶点坐标.【详解】解:由y =3(x+2)2+5,根据顶点式的坐标特点可知,顶点坐标为(﹣2,5).故答案为:(﹣2,5).【点解析:(﹣2,5)【解析】【分析】已知抛物线的顶点式,可直接写出顶点坐标.【详解】解:由y=3(x+2)2+5,根据顶点式的坐标特点可知,顶点坐标为(﹣2,5).故答案为:(﹣2,5).【点睛】本题考查二次函数的性质,熟知二次函数的顶点式是解题的关键,即在y=a(x-h)2+k中,顶点坐标为(h,k),对称轴为x=h.19.2﹣2【解析】【分析】取BC中点G,连接HG,AG,根据直角三角形的性质可得HG=CG=BG=BC=2,根据勾股定理可求AG=2,由三角形的三边关系可得AH≥AG﹣HG,当点H在线段AG上时,解析:25﹣2【解析】【分析】取BC中点G,连接HG,AG,根据直角三角形的性质可得HG=CG=BG=12BC=2,根据勾股定理可求AG=25,由三角形的三边关系可得AH≥AG﹣HG,当点H在线段AG上时,可求AH的最小值.【详解】解:如图,取BC中点G,连接HG,AG,∵CH⊥DB,点G是BC中点∴HG=CG=BG=12BC=2,在Rt△ACG中,AG22AC CG5在△AHG中,AH≥AG﹣HG,即当点H在线段AG上时,AH最小值为52,故答案为:52【点睛】本题考查了动点问题,解决本题的关键是熟练掌握直角三角形中勾股定理关系式.20.【解析】【分析】直接利用函数图象与x轴的交点再结合函数图象得出答案.【详解】解:如图所示,图象与x轴交于(-1,0),(3,0),故当y<0时,x的取值范围是:-1<x<3.故答案为:x解析:13【解析】【分析】直接利用函数图象与x轴的交点再结合函数图象得出答案.【详解】解:如图所示,图象与x轴交于(-1,0),(3,0),故当y<0时,x的取值范围是:-1<x<3.故答案为:-1<x<3.【点睛】此题主要考查了抛物线与x轴的交点,正确数形结合分析是解题关键.21.5【解析】【分析】先证△AEB∽△ABC,再利用相似的性质即可求出答案.【详解】解:由题可知,BE⊥AC,DC⊥AC∵BE//DC,∴△AEB∽△ADC,∴,即:,∴CD=10.解析:5【解析】【分析】先证△AEB∽△ABC,再利用相似的性质即可求出答案.【详解】解:由题可知,BE⊥AC,DC⊥AC∵BE//DC,∴△AEB∽△ADC,∴BE AB CD AC=, 即:1.2 1.61.612.4CD =+, ∴CD =10.5(m ).故答案为10.5.【点睛】 本题考查了相似的判定和性质.利用相似的性质列出含所求边的比例式是解题的关键. 22.3【解析】【分析】把AE =2,EC =6,AB =12代入已知比例式,即可求出答案.【详解】解:∵=,AE =2,EC =6,AB =12,∴=,解得:AD =3,故答案为:3.【点睛】本题解析:3【解析】【分析】把AE =2,EC =6,AB =12代入已知比例式,即可求出答案.【详解】 解:∵AD AB =AE AC,AE =2,EC =6,AB =12, ∴12AD =226+, 解得:AD =3,故答案为:3.【点睛】 本题考查了成比例线段,灵活的将已知线段的长度代入比例式是解题的关键.23.50(1﹣x )2=32.【解析】由题意可得,50(1−x)²=32,故答案为50(1−x)²=32.解析:50(1﹣x )2=32.【解析】 由题意可得, 50(1−x)²=32, 故答案为50(1−x)²=32.24.【解析】如图,由题意可知∠ADB=90°,BD=,AB=,∴sinA=.解析:5 【解析】如图,由题意可知∠ADB=90°,BD=221+1=2,AB=223+1=10,∴sinA=2510BD AB ==.25.74【解析】【分析】利用加权平均数公式计算.【详解】甲的成绩=,故答案为:74.【点睛】此题考查加权平均数,正确理解各数所占的权重是解题的关键.解析:74【解析】【分析】利用加权平均数公式计算.【详解】甲的成绩=70560290374523,故答案为:74.【点睛】 此题考查加权平均数,正确理解各数所占的权重是解题的关键.26.10【解析】【分析】根据铅球落地时,高度,把实际问题可理解为当时,求x 的值即可.【详解】解:当时,,解得,(舍去),.故答案为10.【点睛】本题考查了二次函数的实际应用,解析式中自解析:10【解析】【分析】根据铅球落地时,高度0y =,把实际问题可理解为当0y =时,求x 的值即可.【详解】解:当0y =时,212501233y x x =-++=, 解得,2x =-(舍去),10x =.故答案为10.【点睛】本题考查了二次函数的实际应用,解析式中自变量与函数表达的实际意义;结合题意,选取函数或自变量的特殊值,列出方程求解是解题关键.27.8【解析】【分析】首先求出A 、B 的坐标,然后根据坐标求出AB 、CD 的长,再根据三角形面积公式计算即可.【详解】解:∵y=x2﹣2x ﹣3,设y =0,∴0=x2﹣2x ﹣3,解得:x1=3,解析:8【解析】【分析】首先求出A 、B 的坐标,然后根据坐标求出AB 、CD 的长,再根据三角形面积公式计算即可.解:∵y=x2﹣2x﹣3,设y=0,∴0=x2﹣2x﹣3,解得:x1=3,x2=﹣1,即A点的坐标是(﹣1,0),B点的坐标是(3,0),∵y=x2﹣2x﹣3,=(x﹣1)2﹣4,∴顶点C的坐标是(1,﹣4),∴△ABC的面积=12×4×4=8,故答案为8.【点睛】本题考查了抛物线与x轴的交点,二次函数的性质,二次函数的三种形式的应用,主要考查学生运用性质进行计算的能力,题目比较典型,难度适中.28.【解析】【分析】根据题意列举出所有4种等可能的结果数,再根据题意得出能够构成三角形的结果数,最后根据概率公式即可求解.【详解】从中任取3根共有4种等可能的结果数,它们为2、4、6;2、4、解析:1 4【解析】【分析】根据题意列举出所有4种等可能的结果数,再根据题意得出能够构成三角形的结果数,最后根据概率公式即可求解.【详解】从中任取3根共有4种等可能的结果数,它们为2、4、6;2、4、8;2、6、8;、4、6、8,其中恰好能搭成一个三角形为4、6、8,所以恰好能搭成一个三角形的概率=14.故答案为14.【点睛】本题考查列表法或树状图法和三角形三边关系,解题的关键是通过列表法或树状图法展示出所有等可能的结果数及求出构成三角形的结果数.29.y=﹣(x+1)2﹣2【分析】根据坐标平移规律可知平移后的顶点坐标为(﹣1,﹣2),进而可设二次函数为,再把点(0,﹣3)代入即可求解a 的值,进而得平移后抛物线的函数表达式.【详解】解析:y =﹣(x +1)2﹣2【解析】【分析】根据坐标平移规律可知平移后的顶点坐标为(﹣1,﹣2),进而可设二次函数为()212y a x +-=,再把点(0,﹣3)代入即可求解a 的值,进而得平移后抛物线的函数表达式.【详解】由题意可知,平移后的函数的顶点为(﹣1,﹣2),设平移后函数的解析式为()212y a x +-=,∵所得的抛物线经过点(0,﹣3),∴﹣3=a ﹣2,解得a =﹣1,∴平移后函数的解析式为()212y x +=--,故答案为()212y x +=--.【点睛】本题考查坐标与图形变化-平移,解题的关键是掌握坐标平移规律:“左右平移时,横坐标左移减右移加,纵坐标不变;上下平移时,横坐标不变,纵坐标上移加下移减”。

最新苏科版数学九年级上册《期末考试试题》(含答案解析)

最新苏科版数学九年级上册《期末考试试题》(含答案解析)

苏科版九年级上学期期末考试数学试题一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上). 1.方程x (x -1)=0的解是( )A. 0B. 1C. 0或1D. 0或-1 2.从单词“happy ”中随机抽取一个字母,抽中p 的概率为( )A. 15B. 14C.25 D. 12 3.某班准备举办一项体育比赛,为了使同学参与比赛热情更高,在全班进行普查,了解同学们对篮球、足球、乒乓球等三种运动项目的喜爱情况,则应关注的统计结果是各种运动项目的( )A. 众数B. 中位数C. 平均数D. 方差4.如图,已知C E ∠=∠,则不一定能使ABC ∆∽ADE ∆成立的条件是( )A. ∠BAD =∠CAEB. ∠B =∠DC. BC AC DE AE =D. AB AC AD AE= 5.某同学在用描点法画二次函数y =ax 2+bx +c 的图象时,列出了下面的表格:由于粗心,他算错了其中一个y 值,则这个错误..的数值是( ) A. -11 B. -5 C. 2 D. -26.如图,⊙O 的半径为2,点O 到直线l 的距离为3,点P 是直线l 上的一个动点,PQ 切⊙O 于点Q ,则PQ 的最小值为( )A.B. C. 3 D. 2 二、填空题(本大题共有10小题,每小题2分,共20分)7.把二次函数y=x 2﹣12x 化为形如y=a (x ﹣h )2+k 的形式______.8.小明某学期的数学平时成绩70分,期中考试80分,期末考试85分,若计算学期总评成绩的方法如下:平时:期中:期末=3:3:4,则小明总评成绩是________分.9.将二次函数y = x 2的图像向右平移1个单位长度,再向下平移2个单位长度,得到的函数图像的对称轴是_______________10.已知23a b =,则a a b +=_______________ 11.若一个圆锥的侧面展开图是一个半径为6cm ,圆心角为120°的扇形,则该圆锥的侧面面积为______cm (结果保留π).12.如图,AB ∥CD ,S △ABE :S △CDE =1:4,则AB CD =___________13.如图,⊙O 中,∠AOB=110°,点C 、D 是AmB 上任两点,则∠C+∠D 的度数是____°.14.如图,小明同学用自制的直角三角形纸板DEF 测量树的高度AB ,他调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一直线上.已知纸板的两条直角边DE=40cm ,EF=20cm ,测得边DF 离地面的高度AC=1.5 m ,CD=8 m ,则树高AB= ▲ .15.如图,点A 、B 在二次函数y =ax 2+bx +c 的图像上,且关于图像的对称轴直线x =1对称,若点A 的坐标为(m ,2),则点B 的坐标为____________ .(用含有m 的代数式表示)16.四边形ABCD内接于⊙O,AD、BC的延长线相交于点E,AB、DC的延长线相交于点F.若∠E+∠F=80°,则∠DCE=________°.三、解答题(本大题共有11小题,共88分)17.解方程:x2+4x=1.18.要从甲、乙两名同学中选出一名,代表班级参加射击比赛,如图是两人最近10次射击训练成绩的折线统计图.(1)已求得甲平均成绩为8环,求乙的平均成绩;(2)观察图形,直接指出甲,乙这10次射击成绩的方差s甲2,s乙2哪个大?(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选哪位参赛更合适?为什么?如果其他班级参赛选手的射击成绩都在9环左右,本班应该选哪位参赛更合适?为什么?19.甲、乙、丙三人站成一横排照相,因甲、乙两人是好友,照相时两人紧邻着站在一起不分开.(1)请按左、中、右的顺序列出所有符合要求的站位的结果;(2)按要求随机的站立,求丙站在甲左边的概率.20.关于的一元二次方程x2+2x+k+1=0的实数解是x1和x2.(1)求k的取值范围;(2)如果x1+x2﹣x1x2<﹣1且k为整数,求k的值.21.已知,如图,在四边形ABCD中,∠ADB=∠ACB,延长AD、BC相交于点E.求证:(1)△ACE∽△BDE;(2)BE•DC=AB•DE.22.已知函数y=x2+2kx+k2+1.(1)求证:不论k取何值,函数y>0;(2)若函数图象与y轴的交点坐标为(0,5),求函数图象的顶点坐标.23.如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?24.已知:如图,AB是⊙O的直径,点C在⊙O上,△ABC的外角平分线BD交⊙O于D,DE∥AC交CB的延长线于E.(1)求证:DE是⊙O的切线;(2)若∠A=30°,求证:BD=BC.25.某水果店出售一种水果,每只定价20元时,每周可卖出300只.试销发现:①每只水果每降价1元,每周可多卖出25只;②每只水果每涨价1元,每周将少卖出10只;③水果定价不能低于18元.我们知道,销售收入=销售单价×销售量,设降价出售时的销售收入为y1元,涨价出售时的销售收入为y2元,水果的定价为x元/只.根据以上信息,回答下列问题:(1)请直接写出y1、y2与x的函数关系式,并写出x的取值范围;y1= ;y2= ;(2)你认为应当如何定价才能使一周的销售收入最多?请说明理由.26.定义:如果过三角形一个顶点的直线与对边所在直线相交,得到的三角形中有一个与原三角形相似,那么我们称这样的直线为三角形的相似线.如图1,△ABC中,直线CD与AB交于点D,若△ACD∽△ABC,则称直线CD是△ABC的相似线.解决问题:已知:如图2,在△ABC中,∠BAC>∠ACB>∠ABC.求作:△ABC的相似线.(1)小明用如下方法作出△ABC的一条相似线:作法:如图3,①作△ABC的外接圆⊙O;②以C为圆心,AC的长为半径画弧,与⊙O交于点P;③连接AP,交BC于点D.则直线AD为△ABC的相似线.请你证明小明的作法的正确性.(2)过A点还有其它△ABC的相似线,请你参考(1)中的作法与结论,利用尺规作图,在图3中再作出一条△ABC的相似线AE;(写出作法,保留作图痕迹,不要证明)(3)若△ABC中,∠BAC=90°,则△ABC中过A点的相似线有条,过B点的相似线有条.27.如图,AB是⊙O的直径,点C为⊙O上一点,AE和过点C的切线互相垂直,垂足为E,AE交⊙O于点D,直线EC交AB的延长线于点P,连接AC,BC.(1)求证:AC平分∠BAD;(2)若AB=6,AC=42,求EC和PB的长.答案与解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上). 1.方程x (x -1)=0的解是( )A. 0B. 1C. 0或1D. 0或-1【答案】C【解析】 【详解】解:∵x(x−1)=0∴x=0或x−1=0∴1x =0,2x =1故选C2.从单词“happy ”中随机抽取一个字母,抽中p 的概率为( ) A. 15B. 14C. 25D. 12【答案】C【解析】∵单词“happy ”中有两个p ,∴抽中p 的概率为:25 . 故选C. 3.某班准备举办一项体育比赛,为了使同学参与比赛热情更高,在全班进行普查,了解同学们对篮球、足球、乒乓球等三种运动项目的喜爱情况,则应关注的统计结果是各种运动项目的( )A. 众数B. 中位数C. 平均数D. 方差【答案】A【解析】根据题意,知要了解同学们对篮球、足球、乒乓球等三种运动项目的喜爱情况,就要看喜欢这三种运动项目的数量,即众数.故选A.4.如图,已知C E ∠=∠,则不一定能使ABC ∆∽ADE ∆成立的条件是( )A. ∠BAD=∠CAEB. ∠B=∠DC. BC AC DE AE=D.AB ACAD AE=【答案】D【解析】由题意得,∠C=∠E,A. 若添加∠BAD=∠CAE,则可得∠BAC=∠DAE,利用两角法可判断△ABC∽△ADE,故本选项错误;B. 若添加∠B=∠D,利用两角法可判断△ABC∽△ADE,故本选项错误;C. 若添加BC ACDE AE=,利用两边及其夹角法可判断△ABC∽△ADE,故本选项错误;D. 若添加AB ACAD AE=,不能判定△ABC∽△ADE,故本选项正确;故选D.点睛:相似三角形的判定:(1)三边法:三组对应边的比相等的两个三角形相似;(2)两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;(3)两角法:有两组角对应相等的两个三角形相似,由此判断即可.5.某同学在用描点法画二次函数y=ax2+bx+c的图象时,列出了下面的表格:由于粗心,他算错了其中一个y值,则这个错误..的数值是()A. -11B. -5C. 2D. -2【答案】B【解析】由函数图象关于对称轴对称,得(-1,-2),(0,1),(1,-2)在函数图象上,把(-1,-2),(0,1),(1,-2)代入函数解析式,得212a b cca b c-+=-⎧⎪=⎨⎪++=-⎩,解得31abc=⎧⎪=⎨⎪=⎩,则函数解析式为:y=-3x²+1,当x=±2时,y=-11,故错误的数值是-5.故选B.6.如图,⊙O的半径为2,点O到直线l的距离为3,点P是直线l上的一个动点,PQ切⊙O于点Q,则PQ 的最小值为()A. B. C. 3 D. 2【答案】B【解析】【分析】因为PQ为切线,所以△OPQ是Rt△.又∵OQ为定值,所以当OP最小时,PQ最小.根据垂线段最短,知OP′=3时P′Q′最小.根据勾股定理得出结论即可.【详解】作OP′⊥l于P′点,则OP′=3,作P′Q′与⊙O相切于点Q′.根据题意,在Rt△OP′Q′中,22325-=.故选B.二、填空题(本大题共有10小题,每小题2分,共20分)7.把二次函数y=x2﹣12x化为形如y=a(x﹣h)2+k的形式______.【答案】y=(x﹣6)2﹣36【解析】【分析】将二次项系数化为1,再加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式.【详解】y =2x 2-12x =2(x²−6x +9)−18=2(x −3)² −18,即y =2(x −3)² −18. 故答案为y =2(x -3)2-18【点睛】本题考查了二次函数表达式三种形式的互化,掌握转化的技巧是解题的关键.8.小明某学期的数学平时成绩70分,期中考试80分,期末考试85分,若计算学期总评成绩的方法如下:平时:期中:期末=3:3:4,则小明总评成绩是________分.【答案】79【解析】【详解】解:本学期数学总评分=70×30%+80×30%+85×40%=79(分) 故答案为799.将二次函数y = x 2的图像向右平移1个单位长度,再向下平移2个单位长度,得到的函数图像的对称轴是_______________【答案】过点(1,2)且平行于y 轴的直线;(或直线x=1)【解析】∵抛物线y=x ²向右平移1个单位长度,再向下平移2个单位长度,∴平移后的解析式为:y=(x−1)²−2. ∴函数图像的对称轴是过点(1,2)且平行于y 轴的直线;(或直线x=1), 故答案为过点(1,2)且平行于y 轴的直线;(或直线x=1)10.已知23a b =,则a a b+=_______________ 【答案】25 【解析】 ∵23a b =, ∴b=32a , ∴a a b +=22355522a a a a a a a ==⨯=+ . 11.若一个圆锥的侧面展开图是一个半径为6cm ,圆心角为120°的扇形,则该圆锥的侧面面积为______cm (结果保留π).【答案】12π【解析】根据圆锥的侧面展开图是扇形可得,2120612360,∴该圆锥的侧面面积为:12π,故答案为12π.12.如图,AB∥CD,S△ABE:S△CDE=1:4,则ABCD=___________【答案】12【解析】∵AB∥CD,∴S△ABE∽S△CDE,∴2()ABECDESABCD S=, ∵S△ABE:S△CDE=1:4, ∴ABCD=1142=,故答案为12.13.如图,⊙O中,∠AOB=110°,点C、D是AmB上任两点,则∠C+∠D的度数是____°.【答案】110.【解析】∵∠AOB=110°,∴∠C=∠D=12∠AOB=55°,∴∠C+∠D=110°.故答案为110.14.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5 m,CD=8 m,则树高AB= ▲ .【答案】5.5【解析】【详解】试题分析:在△DEF和△DBC中,,∴△DEF∽△DBC,∴=,即=,解得BC=4,∵AC=1.5m,∴AB=AC+BC=1.5+4=5.5m考点:相似三角形15.如图,点A、B在二次函数y=ax2+bx+c的图像上,且关于图像的对称轴直线x=1对称,若点A的坐标为(m,2),则点B的坐标为____________ .(用含有m的代数式表示)【答案】(2-m,2)【解析】∵二次函数y=ax2+bx+c的图象的对称轴为x=1,A的坐标为(m,2),由图象知点A 和点B关于直线x=1对称, ∴点B的坐标为(2-m,2)故答案(2-m,2).16.四边形ABCD内接于⊙O,AD、BC的延长线相交于点E,AB、DC的延长线相交于点F.若∠E+∠F=80°,则∠DCE=________°.【答案】50°【解析】连结EF,如图,∵四边形ABCD内接于O,∴∠A+∠BCD=180°,而∠BCD=∠ECF,∴∠A+∠ECF=180°,∵∠ECF+∠1+∠2=180°,∴∠1+∠2=∠A,∵∠A+∠AEF+∠AFE=180°,即∠A+∠AEB+∠1+∠2+∠AFD=180°,∴∠A+80°+∠A=180°,∴∠A=50°. ∵四边形ABCD内接于O, ∴∠DCE=∠A=50°, 故答案为50.三、解答题(本大题共有11小题,共88分)17.解方程:x2+4x=1.【答案】1=52x-,2=52x--.【解析】分析:方程两边加上4得到(x+2)²=5,然后利用直接开平方法解方程.本题解析:解:()225x+=∴∴18.要从甲、乙两名同学中选出一名,代表班级参加射击比赛,如图是两人最近10次射击训练成绩折线统计图.(1)已求得甲的平均成绩为8环,求乙的平均成绩;(2)观察图形,直接指出甲,乙这10次射击成绩的方差s甲2,s乙2哪个大?(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选哪位参赛更合适?为什么?如果其他班级参赛选手的射击成绩都在9环左右,本班应该选哪位参赛更合适?为什么?【答案】(1)8环;(2)s甲2>s乙2;(3)答案见解析.【解析】分析:(1)根据平均数的计算公式和折线统计图给出的数据即可得出答案;(2)根据图形波动的大小可直接得出答案;(3)根据射击成绩都在7环左右的多少可得出乙参赛更合适;根据射击成绩都在9环左右的多少可得出甲参赛更合适.本题解析:解:(1)乙的平均成绩是:(8+9+8+8+7+8+9+8+8+7)÷10=8(环);(2)根据图象可知:甲的波动小于乙的波动,则s甲2>s乙2;(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选乙参赛更合适;因射击成绩在7环以上的次数乙比甲多,所以乙参赛获胜可能性更大;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选甲参赛更合适.因射击成绩在9环以上的次数甲比乙多,所以甲参赛获胜可能性更大.点睛:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.19.甲、乙、丙三人站成一横排照相,因甲、乙两人是好友,照相时两人紧邻着站在一起不分开.(1)请按左、中、右的顺序列出所有符合要求的站位的结果;(2)按要求随机的站立,求丙站在甲左边的概率.【答案】(1)答案见解析;(2)12. 【解析】 分析:(1)利用列举法写出所有6种等可能的结果;(2)再找出丙站在甲左边的结果数,然后根据概率公式求解.本题解析:(1)根据题意,甲、乙、丙三名同学从左向右的顺序所有可能站位的结果有6种,即甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲.(2)由(1)可知,符合条件丙站在甲左边的所有可能的结果有3种:乙丙甲,丙甲乙,丙乙甲,而所有等可能的站位的结果有6种,根据概率公式可得,丙站在甲左边位置的概率p=3162=. 20.关于的一元二次方程x 2+2x+k+1=0的实数解是x 1和x 2.(1)求k 的取值范围;(2)如果x 1+x 2﹣x 1x 2<﹣1且k 为整数,求k 的值.【答案】解:(1)k≤0.(2)k 的值为﹣1和0.【解析】【分析】(1)方程有两个实数根,必须满足△=b 2-4ac≥0,从而求出实数k 的取值范围;(2)先由一元二次方程根与系数的关系,得x 1+x 2=-2,x 1x 2=k+1.再代入不等式x 1+x 2-x 1x 2<-1,即可求得k 的取值范围,然后根据k 为整数,求出k 的值.【详解】(1)∵方程有实数根,∴△=22−4(k+1)≥0,解得k ≤0.故k 的取值范围是k ≤0. (2)根据一元二次方程根与系数的关系,得12x x +=−2,12x x =k+1, 12x x +−12x x =−2−(k+1).由已知,得−2−(k+1)<−1,解得k>−2.又由(1)k ≤0,∴−2<k ≤0.∵k 为整数,∴k 的值为−1或0.21.已知,如图,在四边形ABCD 中,∠ADB=∠ACB ,延长AD 、BC 相交于点E .求证:(1)△ACE ∽△BDE ;(2)BE•DC=AB•DE .【答案】(1)答案见解析;(2)答案见解析.【解析】【分析】(1)根据邻补角的定义得到∠BDE=∠ACE ,即可得到结论;(2)根据相似三角形的性质得到BE ED AE EC= ,由于∠E=∠E ,得到△ECD ∽△EAB ,由相似三角形的性质得到AE AB AC CD = ,等量代换得到BE AB ED CD =,即可得到结论. 本题解析:【详解】证明:(1)∵∠ADB=∠ACB ,∴∠BDE=∠ACE ,又∵∠E=∠E ,∴△ACE ∽△BDE ;(2)∵△ACE ∽△BDE ∴BE ED AE EC =,∵∠E=∠E ,∴△ECD ∽△EAB ,∴BE AB ED CD=,∴BE•DC=AB•DE . 【点睛】本题考查相似三角形的判定与性质,熟练掌握判定定理是关键.22.已知函数y =x 2+2kx +k 2+1.(1)求证:不论k 取何值,函数y >0;(2)若函数图象与y 轴的交点坐标为(0,5),求函数图象的顶点坐标.【答案】(1)答案见解析;(2)顶点坐标为(2,1)或(-2,1).【解析】分析:(1)由根的判别式小于0,可知抛物线与x 轴无交点,再由图象开口向上可得出结论;(2)由二次函数图像与y 轴的交点可得出k 2+1=5,得出k 的值,代入原函数即可.本题解析:解:(1)解法一:∵a=1,b=2k ,c=k 2+1∴b 2-4ac=(2k )2-4×1×(k 2+1)=-4<0∴二次函数图像与x 轴无交点∵a=1>0 ∴图像开口向上∴抛物线在x轴上方∴y>0即不论k取何值,函数y>0解法二:y=x2+2kx+k2+1=(x+k)2+1,∵不论k取何值(x+k)2≥0,∴y>0(2)∵二次函数图像与y轴交于点(0,5)∴当x=0时,y=5∴k2+1=5∴k=±2∴y=x2±4x+5=(x±2)2+1∴顶点坐标为(2,1)或(-2,1)23.如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?【答案】羊圈的边长AB,BC分别是20米、20米. 【解析】试题分析:设AB的长度为x米,则BC的长度为(100﹣4x)米;然后根据矩形的面积公式列出方程.试题解析:设AB的长度为x米,则BC的长度为(100﹣4x)米.根据题意得(100﹣4x)x=400,解得x1=20,x2=5.则100﹣4x=20或100﹣4x=80.∵80>25,∴x2=5舍去.即AB=20,BC=20考点:一元二次方程的应用.24.已知:如图,AB是⊙O的直径,点C在⊙O上,△ABC的外角平分线BD交⊙O于D,DE∥AC交CB的延长线于E.(1)求证:DE是⊙O的切线;(2)若∠A=30°,求证:BD=BC.【答案】(1)答案见解析;(2)答案见解析.分析:(1)连接OD ,由OB=OD ,得出∠ODB=∠OBD ,根据BD 是△ABC 的外角平分线,推出∠ODB=∠DBE ,得到OD ∥BE .推出BE ⊥DE ,根据AB 是⊙O 的直径,得到AC ⊥CE ,根据DE ∥AC ,即可推出OD ⊥DE ,从而证得直线DE 与⊙O 相切.(2)连接OC ,得出△BOC 是等边三角形,再利用平行线的性质得出结果.本题解析:解:(1)连接OD ,∵OB=OD ,∴∠ODB=∠OBD .∵BD 是△ABC 的外角平分线,∴∠DBE=∠OBD ,∴∠DBE=∠ODB ,∴BE ∥OD .∵AB 是⊙O 的直径,∴∠C=90°.∵DE ∥AC ,∴∠DEB=90°,∴OD ⊥DE 且点D 在⊙O 上,∴直线DE 与⊙O 相切.(2)连接OC ,∵∠A=30°,∴∠BOC=60°,∵OB=OC ,∴△BOC 是等边三角形,∴∠OBC=60°,∵BE ∥OD ,∴∠DOB=60°,∴∠DOB=∠BOC ,∴BD=BC . 点睛:本题主要考查切线的性质,三角形外角的性质,平行线的判定,圆周角定理,等腰三角形的性质等知识点的理解和掌握,综合运用这些性质进形推理是证此题的关键.25.某水果店出售一种水果,每只定价20元时,每周可卖出300只.试销发现:①每只水果每降价1元,每周可多卖出25只;②每只水果每涨价1元,每周将少卖出10只;③水果定价不能低于18元.我们知道,销售收入=销售单价×销售量,设降价出售时的销售收入为y 1元,涨价出售时的销售收入为y 2元,水果的定价为x 元/只.根据以上信息,回答下列问题:(1)请直接写出y 1、y 2与x 的函数关系式,并写出x 的取值范围;y 1= ;y 2= ;(2)你认为应当如何定价才能使一周的销售收入最多?请说明理由.【答案】(1)y 1=225800x x -+(18≤x≤20),y 2=210500x x -+(x≥20);(2)该水果应降价销售,当定价为18元每千克时,销售收入最多.分析:(1)设售价为x 元,根据销售量=原来销售量±增加(减少)销售量,就可以表示出y 1、y 2与x 之间案的关系式;(2)根据销售收入=售价×数量就可以表示出y 1、y 2与x 之间的关系式,由函数的性质就可以得出结论.本题解析:解:(1)y 1=(18≤x≤20) y 2=()2300-10-20-10500x x x x ⎡⎤=+⎣⎦(x≥20)(2)由(1)可得:y 1=∵18≤x≤20∴y 1最大值=y 2=()22-10500-10-256250x x x +=+∵x≥20y 2最大值=()2-1025-2562506250+=∴6300>6250∴该水果应降价销售,当定价为18元每千克时,销售收入最多.26.定义:如果过三角形一个顶点的直线与对边所在直线相交,得到的三角形中有一个与原三角形相似,那么我们称这样的直线为三角形的相似线.如图1,△ABC 中,直线CD 与AB 交于点D ,若△ACD ∽△ABC ,则称直线CD 是△ABC 的相似线.解决问题:已知:如图2,在△ABC 中,∠BAC >∠ACB >∠ABC .求作:△ABC的相似线.(1)小明用如下方法作出△ABC的一条相似线:作法:如图3,①作△ABC的外接圆⊙O;②以C为圆心,AC的长为半径画弧,与⊙O交于点P;③连接AP,交BC于点D.则直线AD为△ABC的相似线.请你证明小明的作法的正确性.(2)过A点还有其它的△ABC的相似线,请你参考(1)中的作法与结论,利用尺规作图,在图3中再作出一条△ABC的相似线AE;(写出作法,保留作图痕迹,不要证明)(3)若△ABC中,∠BAC=90°,则△ABC中过A点的相似线有条,过B点的相似线有条.【答案】(1)答案见解析;(2)答案见解析;(3)1条,3条.【解析】(1)连接CP,根据条件得出△ABC∽△DAC,即可求解;(2)截取BQ=BA,再作直线AQ,即可;(3)根据相似三角形的判定方法分别利用平行线及垂直平分线的性质得出对应角相等即可.(1)连接CP,由作图可得AC=PC,则=∴∠EAC=∠B∵∠C是公共角∴△ABC∽△DAC∴直线AD为△ABC的相似线.(2)如图,截取BQ=BA,交⊙O于点Q;作直线AQ,交BC于点E.则直线AE为所求作的相似线.画图正确(3)1条,3条27.如图,AB 是⊙O 的直径,点C 为⊙O 上一点,AE 和过点C 的切线互相垂直,垂足为E ,AE 交⊙O 于点D ,直线EC 交AB 的延长线于点P ,连接AC ,BC .(1)求证:AC 平分∠BAD ;(2)若AB =6,AC =42,求EC 和PB 的长.【答案】(1)答案见解析;(2)EC=423,PB=67. 【解析】 分析:(1)首先连接OC ,由PE 是 O 的切线,AE 和过点C 的切线互相垂直,可证得OC ∥AE ,又由OA=OC ,易证得∠DAC=∠OAC ,即可得AC 平分∠BAD ;(2)由Rt △ABC ∽Rt △ACE 得出CE 的值,再由Rt △ABC ∽Rt △ACE ,得出PB 的值.本题解析:(1)证明:连接OC ,∵PE 是⊙O 的切线,∴OC ⊥PE ,∵AE ⊥PE ,∴OC ∥AE ,∴∠DAC=∠OCA ,∵OA=OC ,∴∠OCA=∠OAC ,∴∠DAC=∠O AC ,∴AC 平分∠BAD ;(2)∵AB 是⊙O 的直径,∠ACB=90°在Rt △ABC 中,AB=6,AC=43()22226422AB AC -=-=,在Rt △ABC 和Rt △ACE中,∵∠DAC=∠OAC,∠AEC=∠ACB=90°,∴Rt△ABC∽Rt△ACE ,∴AC ECAB BC=,∴,∴EC=42 3在Rt△ACE中,AE=()2 2224216 4233AC EC ⎛⎫-=-=⎪⎪⎝⎭,OC==3又∵OC∥AE,∴Rt△ABC∽Rt△ACE,∴,∴331663PBPB+=+,解得:PB=67点睛:本题主要考查了的是相似三角形的性质和判定、切线的性质、圆周角定理的应用,熟练掌握相关定理是解题的关键.。

苏科版数学九年级上册《期末测试卷》(附答案解析)

苏科版数学九年级上册《期末测试卷》(附答案解析)

九年级上册数学期末测试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上)1. 下列函数中,二次函数的是A. y=2x2+1B. y=2x+1C. y=2xD. y=x2-(x-1)22. 下列说法中,正确的是A. 任意两个矩形都相似B. 任意两个菱形都相似C. 相似图形一定位似图形 D. 位似图形一定是相似图形3. 在△ABC中,∠C=90°,AC=1,BC=2,则cos A的值是()A.124. 已知圆锥的底面半径为2,母线长为4,则其侧面积为( )A. 6πB. 8πC. 16πD. 32π5. 某校射击队从甲、乙、丙、丁四人中选拔一人参加市运会射击比赛.在选拔赛中,每人射击10次,他们10次成绩的平均数及方差如下表所示:请你根据表中数据选一人参加比赛,最合适的人选是( )A. 甲B. 乙C. 丙D. 丁6. 若二次函数y=x2+(m+1)x-m的图象与坐标轴只有两个交点,则满足条件的m的值有A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡...相应位置....上)7. 请写出一个关于x的一元二次方程,且有一个根为2: ____.8. 一组数据6,2,–1,5的极差为__________.9. 若△ABC∽△A'B'C',相似比为1:2,则△ABC与△A'B'C'的面积比为____.10. 一元二次方程x2-6x+5=0的两根分别是x1、x2,则x1·x2的值是____.11. 抛掷一枚质地均匀的硬币2次,2次抛掷的结果都是正面朝上的概率是____.12. 将二次函数y=x2的图象向右平移1个单位,再向上平移3个单位,得到的新图象的函数表达式是____.13. 已知扇形的圆心角为120°,弧长为2 ,则它的半径为________.14. 已知二次函数y=x2-2x+2的图像上有两点A(-3,y1)、B(-2,y2),则y1____y2.(填”>”“<”或”=”号)15. 如图,四边形ABCD内接于⊙O,AD、BC的延长线相交于点E,AB、DC的延长线相交于点F.若∠E+∠F=80°,则∠A=____°.16. 如图,AB=5,P是线段AB上的动点,分别以AP、BP为边,在线段AB的同侧作正方形APCD和正方形BPEF,连接CF,则CF的最小值是____.三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17.(1)解方程: x2-4x+2=0;(2)计算: sin30°-cos245°+tan60°·sin60°.18. 已知关于x的方程(k-2)x2-(k-2)x+14=0有两个相等的实数根.求k的值.19. 某校九年级有24个班,共1000名学生,他们参加了一次数学测试,学校统计了所有学生的成绩,得到下列统计图,(1)求该校九年级学生本次数学测试成绩的平均数; (2)下列关于本次数学测试说法正确的是( ) A.九年级学生成绩的众数不平均数相等 B.九年级学生成绩的中位数不平均数相等C.随机抽取一个班,该班学生成绩的平均数等于九年级学生成绩的平均数D.随机抽取300名学生,可以用他们成绩的平均数估计九年级学生成绩的平均数. 20. 从甲、乙、丙、丁4名同学中随机抽取环保志愿者.求下列事件的概率: (1)抽取1名,恰好是甲; (2)抽取2名,甲在其中.21. 如图,点C 在⊙O 上,弦AB ⊥OC ,垂足为D ,AB=8,CD=2.求⊙O的半径.22. 如图,在△ABC 中,CD 是边AB 上的高,且=AD CDCD BD,求∠ACB 的大小.23. 已知二次函数y =-x 2+bx +c 的图象经过点(0,3)、(-1,0). (1)求二次函数的表达式,并写出顶点坐标.(2)在给定的平面直角坐标系中,画出这个二次函数的图象;(3)根据图象,直接写出当x满足什么条件时,y>0.24. 如图,平地上一幢建筑物AB与铁塔CD相距40m,在建筑物的顶部测得铁塔底部的俯角为37°,测得铁塔顶部的仰角为26.6°,求铁塔的高度.(参考数据: sin26.6°≈0.45,tan26.6°≈0.50;sin37°≈0.60,tan37°≈0.75)25. 如图,△ABC中,∠B=∠C=30°,点O是BC边上一点,以点O为圆心、OB为半径的圆经过点A,与BC交于点D.⑴试说明AC与⊙O相切;AC 面积.⑵若2326. 2016年巴西里约奥运会期间,南京某奥运特许经营商店以每件10元的价格购进了一批奥运纪念玩具,定价为20元时,平均每天可售出80个.经调查发现,奥运纪念玩具的单价每降1元,每天可多售出40个;奥运纪念玩具的单价每涨1元,每天要少售出5个.如何定价才能使每天的利润最大?求出此时的最大利润.27. 问题提出: 若一个四边形的两组对边乘积之和等于它的两条对角线的乘积,则称这个四边形为巧妙四边形.初步思考: (1)写出你所知道的四边形是巧妙四边形的两种图形的名称: ,.(2)小敏对巧妙四边形进行了研究,发现圆的内接四边形一定是巧妙四边形.如图①,四边形ABCD是⊙O的内接四边形.求证: AB·CD+BC·AD=AC·BD.小敏在解答此题时,利用了”相似三角形”进行证明,她的方法如下:在BD上取点M,使∠MCB=∠DCA.(请你在下面的空白处完成小敏的证明过程.)推广运用: 如图②,在四边形ABCD中,∠A=∠C=90°,AD=3,AB=6,CD=2.求AC的长.答案与解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上)1. 下列函数中,二次函数的是A. y=2x2+1B. y=2x+1C. y=2xD. y=x2-(x-1)2【答案】A【解析】根据二次函数的定义,形如:()20,,,y ax bx c a a b c=++≠是常数,y关于x的二次函数,故选A. 点睛:本题考查二次函数定义,解决本题的关键是要熟练掌握二次函数的定义.2. 下列说法中,正确的是A.任意两个矩形都相似 B. 任意两个菱形都相似C. 相似图形一定是位似图形D. 位似图形一定是相似图形【答案】D【解析】因为对应边成比例且对应角相等的图形是相似图形,A选项,因为任意两个矩形的对应边不一定成比例,因此A选项错误,B选项,因为任意两个菱形对应角不一定相等,因此B选项错误,C选项,因为位似图形的对应点和位似中心在同一直线上,它们到位似中心的距离之比等于位似比,如果两个多边形不仅相似,而且对应点顶点的连线所在的直线交于一点,对应边互相平行(或在一条直线上),像这样的两个图形叫做位似图形,因此C选项错误,D选项,因为位似图形一定是相似图形,因此D选项正确,故选D.点睛:本题主要考查相似图形和位似图形的相关概念,解决本题的关键是要熟练掌握相似图形和位似图形的概念.3. 在△ABC中,∠C=90°,AC=1,BC=2,则cos A的值是()A.12B. C. D.【答案】C【解析】【分析】根据勾股定理求出斜边AB的值,在利用余弦的定义直接计算即可.【详解】解: 在Rt△ACB中,∠C=90°,AC=1,BC=2,∴AB ==∴cosAC A AB ===, 故选: C .【点睛】本题主要考察直角三角形中余弦值的计算,准确应用余弦定义是解题的关键. 4. 已知圆锥的底面半径为2,母线长为4,则其侧面积为( ) A. 6π B. 8πC. 16πD. 32π【答案】B 【解析】因为圆锥侧面积公式S rl π=,所以S=2×4π=8π,故选B.点睛:本题主要考查圆锥侧面积公式,解决本题的关键是要熟练掌握圆锥侧面积的公式.5. 某校射击队从甲、乙、丙、丁四人中选拔一人参加市运会射击比赛.在选拔赛中,每人射击10次,他们10次成绩的平均数及方差如下表所示:请你根据表中数据选一人参加比赛,最合适的人选是( ) A. 甲 B. 乙 C. 丙 D. 丁【答案】D 【解析】根据方差的性质可知,方差越小,成绩越稳定,在方差相同情况下,比较平均数,平均数越高,成绩教好,故选D. 点睛:本题主要考查平均数和方差的性质,解决本题的关键是要熟练掌握方差和平均数的性质. 6. 若二次函数y =x 2+(m +1)x -m 的图象与坐标轴只有两个交点,则满足条件的m 的值有 A. 1个 B. 2个 C. 3个 D. 4个【答案】C 【解析】 由二次函数与坐标轴只有两个交点所以可得①:()21410m m =+-⨯⨯-=,2610m m ++=,3m =-±;②易得当0m =时也有两个交点,故满足条件的m 的值有3个,故选C.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 7. 请写出一个关于x 的一元二次方程,且有一个根为2: ____. 【答案】x 2=4(答案不唯一). 【解析】根据一元二次方程的定义和一元二次方程根情况可得方程为:24x =,故答案为:24x =.(答案不唯一,符合题意即可) 8. 一组数据6,2,–1,5的极差为__________. 【答案】7 【解析】根据极差的定义,一组数据的最大值与最小值的差为极差,所以这组数据的极差是7,故答案为:7. 9. 若△ABC ∽△A'B'C',相似比为1:2,则△ABC 与△A'B'C'的面积比为____. 【答案】1: 4. 【解析】因为相似三角形的面积比等于相似比的平方,所以△ABC 与△A'B'C'的面积比为1:4,故答案为 1:4. 10. 一元二次方程x 2-6x +5=0的两根分别是x 1、x 2,则x 1·x 2的值是____. 【答案】5 【解析】【详解】根据韦达定理可得: x 1·x 2=5ca=, 故答案为:5.11. 抛掷一枚质地均匀的硬币2次,2次抛掷的结果都是正面朝上的概率是____. 【答案】14【解析】试题分析: 列举出所有情况,看所求的情况占总情况的多少即可.共有正反,正正,反正,反反4种可能,则2次抛掷的结果都是正面朝上的概率为14. 故答案为14. 考点: 概率公式.12. 将二次函数y =x 2的图象向右平移1个单位,再向上平移3个单位,得到的新图象的函数表达式是____.【答案】y =(x -1) 2+3. 【解析】根据二次函数图象平移规律,左加右减,上加下减的平移规律,所以将二次函数y =x 2的图像向右平移1个单位,再向上平移3个单位,得到的新图像的函数表达式是y =(x -1) 2+3,故答案为: y =(x -1) 2+3. 13. 已知扇形的圆心角为120°,弧长为2π,则它的半径为________. 【答案】3 【解析】 【详解】∵180n R l π=,∴18023120R ππ⨯==14. 已知二次函数y =x 2-2x +2的图像上有两点A (-3,y 1)、B (-2,y 2),则y 1____y 2.(填”>”“<”或”=”号) 【答案】> 【解析】【详解】点A 和点B 分别代入二次函数解析式可得:1296217,44210y y =++==++=,所以y 1>y 2, 故答案为: >.15. 如图,四边形ABCD 内接于⊙O ,AD 、BC 的延长线相交于点E ,AB 、DC 的延长线相交于点F .若∠E +∠F =80°,则∠A =____°.【答案】50 【解析】试题分析: 连结EF ,如图,根据圆内接四边形的性质得∠A+∠BCD=180°,根据对顶角相等得∠BCD=∠ECF ,则∠A+∠ECF=180°,根据三角形内角和定理得∠ECF+∠1+∠2=180°,所以∠1+∠2=∠A ,再利用三角形内角和定理得到∠A+∠AEB+∠1+∠2+∠AFD=180°,则∠A+80°+∠A=180°,然后解方程即可. 试题解析: 连结EF ,如图,∵四边形ABCD 内接于⊙O , ∴∠A+∠BCD=180°, 而∠BCD=∠ECF , ∴∠A+∠ECF=180°, ∵∠ECF+∠1+∠2=180°, ∴∠1+∠2=∠A ,∵∠A+∠AEF+∠AFE=180°,即∠A+∠AEB+∠1+∠2+∠AFD=180°, ∴∠A+80°+∠A=180°, ∴∠A=50°.考点: 圆内接四边形的性质.16. 如图,AB =5,P 是线段AB 上的动点,分别以AP 、BP 为边,在线段AB 的同侧作正方形APCD 和正方形BPEF ,连接CF ,则CF 的最小值是____.5 【解析】设AP =x ,则BP=5-x ,所以EF=BP =5-x ,EC =5-x -x =5-2x ,在直角三角形EFC 中,根据勾股定理可得:()()()22255235CF x x x =-+-=-+当x =3时,CF 有最小值,CF 5故答案为: 5三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17. (1)解方程: x 2-4x +2=0; (2)计算: sin30°-cos 245°+tan60°·sin60°.【答案】(1)122x =+,222x =-;(2)32. 【解析】 试题分析:(1)利用配方法,再直接开平方法解方程,(2)根据特殊三角函数值求解即可.试题解析:(1)x 2-4x =-2,(x -2)2=2,x -2=±2,x 1=2+2,x 2=2-2.(2) sin30°-cos 245°+tan60°·sin60°原式=2123322⎛⎫-+⨯ ⎪ ⎪⎝⎭, =113222-+, =32. 18. 已知关于x 的方程(k -2)x 2-(k -2)x +14=0有两个相等的实数根.求k 的值. 【答案】3.【解析】试题分析:根据一元二次方程根的情况可得:240b ac -=,可列出(k -2) 2-4×·(k -2)=0,且k -2≠0,即可求解. 试题解析:因为方程(k -2)x 2-(k -2)x +=0有两个相等的实数根,所以(k -2) 2-4×·(k -2)=0, 解方程,得k 1=2,k 2=3,又因为k -2≠0,所以k =3.19. 某校九年级有24个班,共1000名学生,他们参加了一次数学测试,学校统计了所有学生的成绩,得到下列统计图,(1)求该校九年级学生本次数学测试成绩的平均数;(2)下列关于本次数学测试说法正确的是( )A.九年级学生成绩的众数不平均数相等B.九年级学生成绩的中位数不平均数相等C.随机抽取一个班,该班学生成绩的平均数等于九年级学生成绩的平均数D.随机抽取300名学生,可以用他们成绩的平均数估计九年级学生成绩的平均数.【答案】(1)81分;(2)D.【解析】【分析】(1)用九年级学生的总分除以总人数即可得出答案;(2)根据条形统计图和扇形统计图不能求出众数和中位数,从而得出答案.【详解】解: (1)根据题意得: (80×1000×60%+82.5×1000×40%)÷1000=81(分),答: 该校九年级学生本次数学测试成绩的平均数是81分;(2)A、根据统计图不能求出九年级学生成绩的众数,故本选项错误;B.根据统计图不能求出九年级学生成绩的中位数,故本选项错误;C.随机抽取一个班,该班学生成绩的平均数不一定等于九年级学生成绩的平均数,故本选项错误;D.随机抽取300名学生,可以用他们成绩的平均数估计九年级学生成绩的平均数,故本选项正确;故选D.【点睛】本题考查了众数、平均数和中位数的定义.一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.20. 从甲、乙、丙、丁4名同学中随机抽取环保志愿者.求下列事件的概率:(1)抽取1名,恰好是甲;(2)抽取2名,甲在其中.【答案】(1)14;(2)12. 【解析】试题分析: (1)根据概率的求法,找准两点: ①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.因此,由从甲、乙、丙3名同学中随机抽取环保志愿者,直接利用概率公式求解即可求得答案.(2)利用列举法可得抽取2名,可得: 甲乙,甲丙,乙丙,共3种等可能的结果,甲在其中的有2种情况,然后利用概率公式求解即可求得答案.试题解析: (1)∵从甲、乙、丙3名同学中随机抽取环保志愿者,∴抽取1名,恰好是甲的概率为: 13. (2)∵抽取2名,可得: 甲乙,甲丙,乙丙,共3种等可能的结果,甲在其中的有2种情况, ∴抽取2名,甲在其中的概率为:23. 考点: 概率.21. 如图,点C 在⊙O 上,弦AB ⊥OC ,垂足为D ,AB=8,CD=2.求⊙O 的半径.【答案】5.【解析】试题分析:连接OB ,设半径为r ,在直角三角形ODB 中,BD =4,OD =r -2,OB =r ,根据勾股定理列出关于r 的方程,解方程即可求解.试题解析:连接OB ,∵ 在⊙O 中,弦AB ⊥OC ,垂足为D ,∴ AD =BD =12AB =4, 设⊙O 的半径为r ,在Rt △BOD 中,BD 2+OD 2=OB 2,即42+(r -2) 2=r 2,解方程,得r =5,所以⊙O 的半径为5.22. 如图,在△ABC 中,CD 是边AB 上的高,且=AD CD CD BD,求∠ACB 的大小.【答案】90°. 【解析】试题分析:利用两边对应成比例且夹角相等可以判定△CDA ∽△BDC,再根据相似三角形的性质可得∠A =∠DCB,根据互余可证∠DCB +∠ACD =90°,即可求证. 试题解析:∵ CD 是边AB 上的高,∴ CD ⊥AB ,∴ ∠CDA =∠BDC =90°,又 =AD CD CD BD, ∴△CDA ∽△BDC,∴ ∠A =∠DCB ,又 ∠A +∠ACD =90°,∴ ∠DCB +∠ACD =90°,即 ∠ACB =90°.23. 已知二次函数y =-x 2+bx +c 的图象经过点(0,3)、(-1,0).(1)求二次函数的表达式,并写出顶点坐标.(2)在给定的平面直角坐标系中,画出这个二次函数的图象;(3)根据图象,直接写出当x 满足什么条件时,y >0.【答案】(1) y=-x2+2x+3;(2)作图见解析;(3)-1<x<3.【解析】试题分析:(1)把(0,3),(-1,0)代入二次函数y=-x2+bx+c,列方程组即可求解,(2)通过列表,描点,连线画出图象,(3)根据图象找出二次函数图象在x轴上方的部分所对应的x的取值范围.试题解析:(1)将(0,3),(-1,0)代入y=-x2+bx+c可得:3 01cb c=⎧⎨=--+⎩,解得23 bc=⎧⎨=⎩,所以二次函数的表达式为y=-x2+2x+3,(2)画图略(3)-1<x<3.24.如图,平地上一幢建筑物AB与铁塔CD相距40m,在建筑物的顶部测得铁塔底部的俯角为37°,测得铁塔顶部的仰角为26.6°,求铁塔的高度.(参考数据: sin26.6°≈0.45,tan26.6°≈0.50;sin37°≈0.60,tan37°≈0.75)【答案】50m.【解析】试题分析: 作AE⊥CD,垂足为E.分别在Rt△AEC和Rt△AED中,求出CE和DE的长,然后相加即可.试题解析: 作AE⊥CD,垂足为E.在Rt△AEC中,CE=AE•tan26.6°≈40×0.50=20m;在Rt△AED中,DE=AE•tan37°≈40×0.75=30m;∴CD=20+30=50m.答: 铁塔的高度为50米.考点: 解直角三角形的应用-仰角俯角问题.25. 如图,△ABC中,∠B=∠C=30°,点O是BC边上一点,以点O为圆心、OB为半径的圆经过点A,与BC交于点D.⑴试说明AC与⊙O相切;⑵若23AC=.【答案】(1)见解析;(2)2 233π-【解析】【分析】(1)连接O A ,先得出∠OAB =30°,再解得∠OAC =90°,从而可判断出AC 与⊙O 的位置关系;(2)连接AD ,设OA 的长度为x ,根据”阴影部分的面积=△OAC 的面积-扇形OAD 的面积”列出方程即可求解.【详解】⑴ 连接O A.∵ OA =OB∴ ∠OAB =∠B∵ ∠B =30°∴ ∠OAB =30°△ABC 中: ∠B =∠C =30°∴ ∠BAC =180°-∠B -∠C =120°∴ ∠OAC =∠BAC -∠OAB =120°-30°=90° ∴ OA ⊥AC∴ AC 是⊙O 的切线,即AC 与⊙O 相切.⑵ 连接A D.∵ ∠C =30°,∠OAC =90°∴ OC =2OA设OA 的长度为x ,则OC=2x在△OAC 中,∠OAC=90°,23AC =根据勾股定理可得: 222(23)(2)x x +=解得: 12x =,22x =-(不合题意,舍去) ∴1223232OAC S ∆=⨯⨯=,2602=2=3603OAD S ππ⨯⨯扇形 ∴2=233S π阴影 答: 图中阴影部分的面积为2233π-.【点睛】本题主要考查切线的判定与性质、解直角三角形、扇形面积的计算,正确作出辅助线是解题的关键.26. 2016年巴西里约奥运会期间,南京某奥运特许经营商店以每件10元的价格购进了一批奥运纪念玩具,定价为20元时,平均每天可售出80个.经调查发现,奥运纪念玩具的单价每降1元,每天可多售出40个;奥运纪念玩具的单价每涨1元,每天要少售出5个.如何定价才能使每天的利润最大?求出此时的最大利润.【答案】当定价为16元时,每天的利润最大,最大利润是1440元.【解析】试题分析:本题分降价和涨价两种情况计算,(1)在降价情况下,设每件降价x元,则每天的利润为y1元,根据题意可得y1=-40x2+320x+800,配方求函数最值,在涨价的情况下,设每件涨价x元,则每天的利润为y2元,根据题意可得y2=-5x2+30x+800,配方求函数最值.试题解析:在降价的情况下,设每件降价x元,则每天的利润为y1元,y1=(20-10-x)(80+40x),即y1=-40x2+320x+800=-40(x-4) 2+1440,当x=4元时,即定价为16元时,y1最大,即最大利润,最大利润是1440元,在涨价的情况下,设每件涨价x元,则每天的利润为y2元,y2=(20-10+x)(80-5x),即y2=-5x2+30x+800=-5(x-3) 2+845,当x=3元时,即定价为23元时,y2最大,即最大利润,最大利润是845元,综上所述,当定价为16元时,每天的利润最大,最大利润是1440元.27. 问题提出: 若一个四边形的两组对边乘积之和等于它的两条对角线的乘积,则称这个四边形为巧妙四边形.初步思考: (1)写出你所知道的四边形是巧妙四边形的两种图形的名称: ,.(2)小敏对巧妙四边形进行了研究,发现圆的内接四边形一定是巧妙四边形.如图①,四边形ABCD是⊙O的内接四边形.求证: AB·CD+BC·AD=AC·BD.小敏在解答此题时,利用了”相似三角形”进行证明,她的方法如下:在BD上取点M,使∠MCB=∠DCA.(请你在下面的空白处完成小敏的证明过程.)推广运用: 如图②,在四边形ABCD中,∠A=∠C=90°,AD,AB,CD=2.求AC的长.【答案】(1)正方形,矩形(答案不惟一);(2)证明见解析;(3)15+263.【解析】试题分析:(1)根据巧妙四边形的定义可写出符合条件的四边形,等腰梯形,矩形,正方形等,(2)圆内接四边形对角线为圆内两条相交的弦,根据同弧所对圆周角相等可证等角,再根据两角分别对应相等的两个三角形相似可证相似三角形,根据相似三角形的性质可得对应边成比例,即可求证,(3)连接BD,可根据题目条件证明四点共圆,即四边形ABCD为圆内接四边形,再根据(2)的结论代入数值即可计算求解.试题解析:(1)正方形,矩形(答案不惟一),(2)∵在⊙O中,∠DAC和∠DBC是所对的圆周角,∴∠DAC=∠DBC,又∠MCB=∠DCA,∴△MCB∽△DCA,∴BC BM AC AD=,即BC·AD=AC·BM,∵在⊙O中,∠CDB和∠CAB是所对圆周角, ∴∠CDB=∠CAB.又∠DCM=∠ACB,∴△DCM∽△ACB,∴CD DM CA AB=,即AB·CD=AC·DM,AC·BM=AC·(DM+BM),即AB·CD+BC·AD=AC·BD,(3)连接BD,取BD中点M,连接AM,CM,在Rt△ABD中,BD22AB BD+在Rt△BCD中,BC22BD CD-5∵在Rt△ABD中,M是BD中点,∴AM=12 BD,∵在Rt△BCD中,M是BD中点,∴CM=12 BD,∴AM=CM=MB=MD,∴A,B,C,D四点在以点M为圆心,MA为半径的圆上, 即四边形ABCD是⊙O的内接四边形,由(2)的结论可知AB·CD+BC·AD=AC·BD,∴1526+.。

苏科版九年级数学上册 全册期末复习试卷测试卷(解析版)

苏科版九年级数学上册 全册期末复习试卷测试卷(解析版)

苏科版九年级数学上册 全册期末复习试卷测试卷(解析版) 一、选择题1.如图,矩形ABCD 中,3AB =,8BC =,点P 为矩形内一动点,且满足PBC PCD ∠=∠,则线段PD 的最小值为( )A .5B .1C .2D .32.如图,在平面直角坐标系中,M 、N 、C 三点的坐标分别为(14,1),(3,1),(3,0),点A 为线段MN 上的一个动点,连接AC ,过点A 作AB ⊥AC 交y 轴于点B ,当点A 从M 运动到N 时,点B 随之运动,设点B 的坐标为(0,b ),则b 的取值范围是( )A .14-≤b ≤1B .54-≤b ≤1C .94-≤b ≤12D .94-≤b ≤1 3.如图,△ABC 中,AD 是中线,BC =8,∠B =∠DAC ,则线段 AC 的长为( )A .3B .2C .6D .44.在Rt ABC ∆中,90C ∠=︒,3AC =,=1BC ,则sin A 的值为( )A 10B 310C .13D 105.抛掷一枚质地均匀的硬币,若抛掷6次都是正面朝上,则抛掷第7次正面朝上的概率是( )A .小于12B .等于12C .大于12D .无法确定 6.小华同学某体育项目7次测试成绩如下(单位:分):9,7,10,8,10,9,10.这组数据的中位数和众数分别为( )A .8,10B .10,9C .8,9D .9,107.如图,AB 是⊙O 的弦,∠BAC =30°,BC =2,则⊙O 的直径等于( )A .2B .3C .4D .68.关于2,6,1,10,6这组数据,下列说法正确的是( )A .这组数据的平均数是6B .这组数据的中位数是1C .这组数据的众数是6D .这组数据的方差是10.2 9.已知⊙O 的半径为1,点P 到圆心的距离为d ,若关于x 的方程x 2-2x+d=0有实数根,则点P ( )A .在⊙O 的内部B .在⊙O 的外部C .在⊙O 上D .在⊙O 上或⊙O 内部10.二次函数22y x x =-+在下列( )范围内,y 随着x 的增大而增大.A .2x <B .2x >C .0x <D .0x > 11.下列方程是一元二次方程的是( ) A .2321x x =+B .3230x x --C .221x y -=D .20x y += 12.如图在△ABC 中,点D 、E 分别在△ABC 的边AB 、AC 上,不一定能使△ADE 与△ABC相似的条件是( )A .∠AED=∠B B .∠ADE=∠C C .AD DE AB BC = D .AD AE AC AB= 13.数据3、4、6、7、x 的平均数是5,这组数据的中位数是( )A .4B .4.5C .5D .6 14.如图,O 的直径AB 垂直于弦CD ,垂足是点E ,22.5CAO ∠=,6OC =,则CD 的长为( )A .62B .32C .6D .1215.在4张相同的小纸条上分别写上数字﹣2、0、1、2,做成4支签,放在一个盒子中,搅匀后从中任意抽出1支签(不放回),再从余下的3支签中任意抽出1支签,则2次抽出的签上的数字的和为正数的概率为( )A .14B .13C .12D .23二、填空题16.若m 是方程2x 2﹣3x =1的一个根,则6m 2﹣9m 的值为_____.17.小亮测得一圆锥模型的底面直径为10cm ,母线长为7cm ,那么它的侧面展开图的面积是_____cm 2.18.将二次函数y=2x 2的图像沿x 轴向左平移2个单位,再向下平移3个单位后,所得函数图像的函数关系式为______________.19.如图,已知正六边形内接于O ,若正六边形的边长为2,则图中涂色部分的面积为______.20.关于x 的方程2()0a x m b ++=的解是19x =-,211x =(a ,m ,b 均为常数,0a ≠),则关于x 的方程2(3)0a x m b +++=的解是________.21.如图,已知D 是等边△ABC 边AB 上的一点,现将△ABC 折叠,使点C 与D 重合,折痕为EF ,点E 、F 分别在AC 和BC 上.如果AD :DB=1:2,则CE :CF 的值为____________.22.将抛物线y=﹣2x 2+1向左平移三个单位,再向下平移两个单位得到抛物线________;23.如图,AB 是⊙O 的直径,点C 是⊙O 上的一点,若BC=6,AB=10,OD ⊥BC 于点D ,则OD 的长为______.24.二次函数2y ax bx c =++的图像开口方向向上,则a ______0.(用“=、>、<”填空) 25.如图,抛物线2143115y x =-与x 轴交于A 、B 两点,与y 轴交于C 点,⊙B 的圆心为B ,半径是1,点P 是直线AC 上的动点,过点P 作⊙B 的切线,切点是Q ,则切线长PQ 的最小值是__.26.二次函数y =ax 2+bx +c (a ,b ,c 为常数,且a ≠0)的图像上部分点的横坐标x 和纵 坐标y 的对应值如下表x… -1 0 1 2 3 … y … -3 -3 -1 39 …关于x 的方程ax 2+bx +c =0一个负数解x 1满足k <x 1<k +1(k 为整数),则k =________.27.如图,1ABB △,12AB B ,△A 2B 2B 3 是全等的等边三角形,点 B ,B 1,B 2,B 3 在同一条 直线上,连接 A 2B 交 AB 1 于点 P ,交 A 1B 1 于点 Q ,则 PB 1∶QB 1 的值为___.28.若⊙O 的直径是4,圆心O 到直线l 的距离为3,则直线l 与⊙O 的位置关系是_________.29.如图,将二次函数y =12(x -2)2+1的图像沿y 轴向上平移得到一条新的二次函数图像,其中A (1,m ),B (4,n )平移后对应点分别是A′、B′,若曲线AB 所扫过的面积为12(图中阴影部分),则新的二次函数对应的函数表达是__________________.30.已知二次函数y =3x 2+2x ,当﹣1≤x ≤0时,函数值y 的取值范围是_____.三、解答题31.定义:如果一个四边形的一组对角互余,那么我们称这个四边形为“对角互余四边形”.(1)如图①,在对角互余四边形ABCD中,∠B=60°,且AC⊥BC,AC⊥AD,若BC=1,则四边形ABCD的面积为;(2)如图②,在对角互余四边形ABCD中,AB=BC,BD=13,∠ABC+∠ADC=90°,AD=8,CD=6,求四边形ABCD的面积;(3)如图③,在△ABC中,BC=2AB,∠ABC=60°,以AC为边在△ABC异侧作△ACD,且∠ADC=30°,若BD=10,CD=6,求△ACD的面积.32.京杭大运河是世界文化遗产.综合实践活动小组为了测出某段运河的河宽(岸沿是平行的),如图,在岸边分别选定了点A、B和点C、D,先用卷尺量得AB=160m,CD=40m,再用测角仪测得∠CAB=30°,∠DBA=60°,求该段运河的河宽(即CH 的长).33.解方程:(1)x2-8x+6=0(2)(x -1)2 -3(x -1)=034.已知二次函数y=ax2+bx﹣16的图象经过点(﹣2,﹣40)和点(6,8).(1)求这个二次函数图象与x轴的交点坐标;(2)当y>0时,直接写出自变量x的取值范围.35.在2017年“KFC”篮球赛进校园活动中,某校甲、乙两队进行决赛,比赛规则规定:两队之间进行3局比赛,3局比赛必须全部打完,只要赢满2局的队为获胜队,假如甲、乙两队之间每局比赛输赢的机会相同,且乙队已经赢得了第1局比赛,那么甲队获胜的概率是多少?(请用“画树状图”或“列表”等方法写出分析过程)四、压轴题36.如图,函数y=-x2+bx+c的图象经过点A(m,0),B(0,n)两点,m,n分别是方程x2-2x-3=0的两个实数根,且m<n.(1)求m ,n 的值以及函数的解析式;(2)设抛物线y=-x 2+bx +c 与x 轴的另一交点为点C ,顶点为点D ,连结BD 、BC 、CD ,求△BDC 面积;(3)对于(1)中所求的函数y=-x 2+bx +c ,①当0≤x ≤3时,求函数y 的最大值和最小值;②设函数y 在t ≤x ≤t +1内的最大值为p ,最小值为q ,若p-q =3,求t 的值.37.如图,抛物线2()20y ax x c a =++<与x 轴交于点A 和点B (点A 在原点的左侧,点B 在原点的右侧),与y 轴交于点C ,3OB OC ==.(1)求该抛物线的函数解析式.(2)如图1,连接BC ,点D 是直线BC 上方抛物线上的点,连接OD ,CD .OD 交BC 于点F ,当32COF CDF S S =::时,求点D 的坐标.(3)如图2,点E 的坐标为(03)2-,,点P 是抛物线上的点,连接EB PB PE ,,形成的PBE △中,是否存在点P ,使PBE ∠或PEB ∠等于2OBE ∠?若存在,请直接写出符合条件的点P 的坐标;若不存在,请说明理由.38.如图,已知抛物线234y x bx c =++与坐标轴交于A 、B 、C 三点,A 点的坐标为(1,0)-,过点C 的直线334y x t=-与x 轴交于点Q ,点P 是线段BC 上的一个动点,过P 作PH OB ⊥于点H .若5PB t =,且01t <<.(1)点C 的坐标是________,b =________;(2)求线段QH 的长(用含t 的式子表示);(3)依点P 的变化,是否存在t 的值,使以P 、H 、Q 为顶点的三角形与COQ 相似?若存在,直接写出所有t 的值;若不存在,说明理由.39.已知点(4,0)、(2,3)-为二次函数图像抛物线上两点,且抛物线的对称轴为直线2x =.(1)求抛物线的解析式;(2)将抛物线平移,使顶点与原点重合,已知点(,1)M m -,点A 、B 为抛物线上不重合的两点(B 在A 的左侧),且直线MA 与抛物线仅有一个公共点.①如图1,当点M 在y 轴上时,过点A 、B 分别作AP y ⊥轴于点P ,BQ x ⊥轴于点Q .若APM △与BQO △ 相似, 求直线AB 的解析式;②如图2,当直线MB 与抛物线也只有一个公共点时,记A 、B 两点的横坐标分别为a 、b .当点M 在y 轴上时,直接写出m a m b--的值为 ;当点M 不在y 轴上时,求证:m a m b--为一个定值,并求出这个值.40.()1尺规作图1:已知:如图,线段AB 和直线且点B 在直线上求作:点C ,使点C 在直线上并且使ABC 为等腰三角形.作图要求:保留作图痕迹,不写作法,做出所有符合条件的点C .()2特例思考:如图一,当190∠=时,符合()1中条件的点C 有______个;如图二,当160∠=时,符合()1中条件的点C 有______个.()3拓展应用:如图,AOB 45∠=,点M ,N 在射线OA 上,OM x =,ON x 2=+,点P 是射线OB 上的点.若使点P ,M ,N 构成等腰三角形的点P 有且只有三个,求x 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】通过矩形的性质和等角的条件可得∠BPC=90°,所以P点应该在以BC为直径的圆上,即OP=4,根据两边之差小于第三边及三点共线问题解决.【详解】如图,∵四边形ABCD为矩形,∴AB=CD=3,∠BCD=90°,∴∠PCD+∠PCB=90°,∵PBC PCD∠=∠,∴∠PBC+∠PCB=90°,∴∠BPC=90°,∴点P在以BC为直径的圆⊙O上,在Rt△OCD中,OC=118422BC,CD=3,由勾股定理得,OD=5,∵PD≥OD OP ,∴当P,D,O三点共线时,PD最小,∴PD的最小值为OD-OP=5-4=1.故选:B.【点睛】本题考查矩形的性质,勾股定理,线段最小值问题及圆的性质,分析出P点的运动轨迹是解答此题的关键.2.B解析:B【解析】【分析】延长NM交y轴于P点,则MN⊥y轴.连接CN.证明△PAB∽△NCA,得出PB PA NA NC=,设PA =x ,则NA =PN ﹣PA =3﹣x,设PB =y ,代入整理得到y =3x ﹣x 2=﹣(x ﹣32)2+94,根据二次函数的性质以及14≤x≤3,求出y 的最大与最小值,进而求出b 的取值范围.【详解】解:如图,延长NM 交y 轴于P 点,则MN ⊥y 轴.连接CN .在△PAB 与△NCA 中,9090APB CNA PAB NCA CAN∠∠︒⎧⎨∠∠︒-∠⎩==== , ∴△PAB ∽△NCA ,∴PB PA NA NC=, 设PA =x ,则NA =PN ﹣PA =3﹣x ,设PB =y , ∴31y x x =-, ∴y =3x ﹣x 2=﹣(x ﹣32)2+94, ∵﹣1<0,14≤x≤3, ∴x =32时,y 有最大值94,此时b =1﹣94=﹣54, x =3时,y 有最小值0,此时b =1,∴b 的取值范围是﹣54≤b≤1. 故选:B .【点睛】本题考查了相似三角形的判定与性质,二次函数的性质,得出y 与x 之间的函数解析式是解题的关键.3.B解析:B【解析】【分析】由已知条件可得ABC DAC ~,可得出AC BC DC AC=,可求出AC 的长. 【详解】 解:由题意得:∠B =∠DAC ,∠ACB =∠ACD,所以ABC DAC ~,根据“相似三角形对应边成比例”,得AC BC DC AC=,又AD 是中线,BC =8,得DC=4,代入可得AC=, 故选B.【点睛】本题主要考查相似三角形的判定与性质.灵活运用相似的性质可得出解答. 4.A解析:A【解析】【分析】先根据勾股定理求出斜边的长,再根据正弦的定义解答即可.【详解】解:在Rt ABC ∆中,∵90C ∠=︒,3AC =,=1BC ,∴AB =∴sin10BC A AB ===. 故选:A.【点睛】本题考查了勾股定理和正弦的定义,属于基本题型,熟练掌握基本知识是解题关键. 5.B解析:B【解析】【分析】利用概率的意义直接得出答案.【详解】解:抛掷一枚质地均匀的硬币,正面朝上概率等于12, 前6次的结果都是正面朝上,不影响下一次抛掷正面朝上概率,则第7次抛掷这枚硬币,正面朝上的概率为:12, 故选:B .【点睛】此题主要考查了概率的意义,正确把握概率的定义是解题关键. 6.D解析:D【解析】试题分析:把这组数据从小到大排列:7,8,9,9,10,10,10,最中间的数是9,则中位数是9;10出现了3次,出现的次数最多,则众数是10;故选D.考点:众数;中位数.7.C解析:C【解析】【分析】如图,作直径BD,连接CD,根据圆周角定理得到∠D=∠BAC=30°,∠BCD=90°,根据直角三角形的性质解答.【详解】如图,作直径BD,连接CD,∵∠BDC和∠BAC是BC所对的圆周角,∠BAC=30°,∴∠BDC=∠BAC=30°,∵BD是直径,∠BCD是BD所对的圆周角,∴∠BCD=90°,∴BD=2BC=4,故选:C.【点睛】本题考查圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;半圆(或直径)所对的圆周角是直角;90°圆周角所对的弦是直径;熟练掌握圆周角定理是解题关键.8.C解析:C【解析】【分析】先把数据从小到大排列,然后根据算术平均数,中位数,众数的定义得出这组数据的平均数、中位数、众数,再利用求方差的计算公式求出这组数据的方差,再逐项判定即可.【详解】解:数据从小到大排列为:1,2,6,6,10,中位数为:6;众数为:6;平均数为:()112661055⨯++++=; 方差为:()()()()()2222211525656510510.45⎡⎤⨯-+-+-+-+-=⎣⎦. 故选:C .【点睛】本题考查的知识点是平均数,中位数,众数,方差的概念定义,熟记定义以及方差公式是解此题的关键.9.D解析:D【解析】【分析】先根据条件x 2 -2x+d=0有实根得出判别式大于或等于0,求出d 的范围,进而得出d 与r 的数量关系,即可判断点P 和⊙O 的关系..【详解】解:∵关于x 的方程x 2 -2x+d=0有实根,∴根的判别式△=(-2) 2 -4×d ≥0,解得d ≤1,∵⊙O 的半径为r=1,∴d ≤r∴点P 在圆内或在圆上.故选:D.【点睛】本题考查了点和圆的位置关系,由点到圆心的距离和半径的数量关系对点和圆的位置关系作出判断是解答此题的重要途径,即当d>r 时,点在圆外,当d=r 时,点在圆上,当d<r 时,点在圆内.10.C解析:C【解析】【分析】先求函数的对称轴,再根据开口方向确定x 的取值范围.【详解】222(1)1y x x x =-+=--+,∵图像的对称轴为x=1,a=-10<,∴当x 1<时,y 随着x 的增大而增大,故选:C.【点睛】此题考查二次函数的性质,当a 0a 0<时,对称轴左增右减,当>时,对称轴左减右增.11.A解析:A【解析】【分析】根据一元二次方程的定义逐一判断即可.【详解】解:A . 2321x x =+是一元二次方程,故本选项符合题意;B . 3230x x --是一元三次方程,故本选项不符合题意;C . 221x y -=是二元二次方程,故本选项不符合题意;D . 20x y +=是二元一次方程,故本选项不符合题意;故选A .【点睛】此题考查的是一元二次方程的判断,掌握一元二次方程的定义是解决此题的关键.12.C解析:C【解析】【分析】由题意根据相似三角形的判定定理依次对各选项进行分析判断即可.【详解】解:A 、∠AED=∠B ,∠A=∠A ,则可判断△ADE ∽△ACB ,故A 选项错误;B 、∠ADE=∠C ,∠A=∠A ,则可判断△ADE ∽△ACB ,故B 选项错误;C 、AD DE AB BC =不能判定△ADE ∽△ACB ,故C 选项正确; D 、AD AE AC AB=,且夹角∠A=∠A ,能确定△ADE ∽△ACB ,故D 选项错误. 故选:C .【点睛】本题考查的是相似三角形的判定,熟练掌握相似三角形的判定定理是解答此题的关键.13.C解析:C【解析】【分析】首先根据3、4、6、7、x 这组数据的平均数求得x 值,再根据中位数的定义找到中位数即可.【详解】由3、4、6、7、x 的平均数是5,即(3467)55++++÷=x得5x =这组数据按照从小到大排列为3、4、5、6、7,则中位数为5.故选C【点睛】此题考查了平均数计算及中位数的定义,熟练运算平均数及掌握中位数的定义是解题关键.14.A解析:A【解析】【分析】先根据垂径定理得到CE DE =,再根据圆周角定理得到245BOC A ∠=∠=,可得OCE ∆为等腰直角三角形,所以2CE ==CD 的长. 【详解】∵CD AB ⊥,AB 为直径,∴CE DE =, ∵∠BOC 和∠A 分别为BC 所对的圆心角和圆周角,∠A=22.5°,∴2222.545BOC A ∠=∠=⨯=,∴OCE ∆为等腰直角三角形,∵OC=6,∴6CE ===∴2CD CE ==故选A .【点睛】本题考查了垂径定理及圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;垂直于弦的直径,平分这条弦且平分这条弦所对的两条弧.15.C解析:C【解析】【分析】画树状图展示所有12种等可能的结果数,再找出2次抽出的签上的数字和为正数的结果数,最后根据概率公式计算即可.【详解】根据题意画图如下:共有12种等情况数,其中2次抽出的签上的数字的和为正数的有6种,则2次抽出的签上的数字的和为正数的概率为612=12;故选:C.【点睛】本题考查列表法与树状图法、概率计算题,解题的关键是画树状图展示出所有12种等可能的结果数及准确找出2次抽出的签上的数字和为正数的结果数,二、填空题16.3【解析】【分析】把m代入方程2x2﹣3x=1,得到2m2-3m=1,再把6m2-9m变形为3(2m2-3m),然后利用整体代入的方法计算.【详解】解:∵m是方程2x2﹣3x=1的一个根,解析:3【解析】【分析】把m代入方程2x2﹣3x=1,得到2m2-3m=1,再把6m2-9m变形为3(2m2-3m),然后利用整体代入的方法计算.【详解】解:∵m是方程2x2﹣3x=1的一个根,∴2m2﹣3m=1,∴6m2﹣9m=3(2m2﹣3m)=3×1=3.故答案为3.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.17.35π.【解析】【分析】首先求得圆锥的底面周长,然后利用扇形的面积公式S=lr即可求解.【详解】底面周长是:10π,则侧面展开图的面积是:×10π×7=35πcm2.故答案是:35π.解析:35π.【解析】【分析】首先求得圆锥的底面周长,然后利用扇形的面积公式S=12lr即可求解.【详解】底面周长是:10π,则侧面展开图的面积是:12×10π×7=35πcm2.故答案是:35π.【点睛】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.18.y=2(x+2)2-3【解析】【分析】根据“上加下减,左加右减”的原则进行解答即可.【详解】解:根据“上加下减,左加右减”的原则可知,二次函数y=2x2的图象向左平移2个单位,再向下平移解析:y=2(x+2)2-3【解析】【分析】根据“上加下减,左加右减”的原则进行解答即可.【详解】解:根据“上加下减,左加右减”的原则可知,二次函数y=2x2的图象向左平移2个单位,再向下平移3个单位后得到的图象表达式为y=2(x+2)2-3【点睛】本题考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.19.【解析】【分析】根据圆的性质和正六边形的性质证明△CDA≌△BDO,得出涂色部分即为扇形AOB的面积,根据扇形面积公式求解.【详解】解:连接OA,OB,OC,AB,OA与BC交于D点∵正解析:2 3π【解析】【分析】根据圆的性质和正六边形的性质证明△CDA≌△BDO,得出涂色部分即为扇形AOB的面积,根据扇形面积公式求解.【详解】解:连接OA,OB,OC,AB,OA与BC交于D点∵正六边形内接于O,∴∠BOA=∠AOC=60°,OA=OB=OC=4,∴∠BOC=120°,OD⊥BC,BD=CD∴∠OCB=∠OBC=30°,∴OD=1122OB OA DA ,∵∠CDA=∠BDO,∴△CDA≌△BDO,∴S△CDA=S△BDO,∴图中涂色部分的面积等于扇形AOB的面积为:26022 3603ππ⨯=.故答案为:23π.【点睛】本题考查圆的内接正多边形的性质,根据圆的性质结合正六边形的性质将涂色部分转化成扇形面积是解答此题的关键.20.x1=-12,x2=8【解析】【分析】把后面一个方程中的x +3看作一个整体,相当于前面方程中的x 来求解.【详解】解:∵关于x 的方程的解是,(a ,m ,b 均为常数,a≠0),∴方程变形为,即解析:x 1=-12,x 2=8【解析】【分析】把后面一个方程中的x +3看作一个整体,相当于前面方程中的x 来求解.【详解】解:∵关于x 的方程2()0a x m b ++=的解是19x =-,211x =(a ,m ,b 均为常数,a≠0),∴方程2(3)0a x m b +++=变形为2[(3)]0a x m b +++=,即此方程中x +3=-9或x +3=11,解得x 1=-12,x 2=8,故方程2(3)0a x m b +++=的解为x 1=-12,x 2=8.故答案为x 1=-12,x 2=8.【点睛】此题主要考查了方程解的含义.注意观察两个方程的特点,运用整体思想进行简便计算. 21.【解析】【分析】根据折叠的性质可得DE=CE,DF=CF,利用两角对应相等的两三角形相似得出△AED∽△BDF,进而得出对应边成比例得出比例式,将比例式变形即可得.【详解】解:如图,连接D 解析:45【解析】【分析】根据折叠的性质可得DE=CE,DF=CF,利用两角对应相等的两三角形相似得出△AED ∽△BDF ,进而得出对应边成比例得出比例式,将比例式变形即可得.【详解】解:如图,连接DE,DF,∵△ABC 是等边三角形,∴AB=BC=AC, ∠A=∠B=∠ACB=60°,由折叠可得,∠EDF=∠ACB=60°,DE=CE,DF=CF∵∠BDE=∠BDF+∠FDE=∠A+∠AED,∴∠BDF+60°=∠AED+60°,∴∠BDF=∠AED,∵∠A=∠B,∴△AED∽△BDF,∴AD AE DE BF BD DF,设AD=x,∵AD:DB=1:2,则BD=2x,∴AC=BC=3x,∵AD AE DE BF BD DF,∴AD AE DE DE BF BD DF DF∴323x x DE x x DF∴45 DEDF,∴45 CECF.故答案为:4 5 .【点睛】本题考查了折叠的性质,利用三角形相似对应边成比例及比例的性质解决问题,能发现相似三角形的模型,即“一线三等角”是解答此题的重要突破口.22.【解析】【分析】根据抛物线平移的规律计算即可得到答案.【详解】根据题意:平移后的抛物线为.【点睛】此题考查抛物线的平移规律:对称轴左加右减,函数值上加下减,掌握规律并熟练运用是解题的关解析:()2231y x =-+-【解析】【分析】根据抛物线平移的规律计算即可得到答案.【详解】根据题意:平移后的抛物线为()2231y x =-+-.【点睛】此题考查抛物线的平移规律:对称轴左加右减,函数值上加下减,掌握规律并熟练运用是解题的关键. 23.4【解析】【分析】根据垂径定理求得BD ,然后根据勾股定理求得即可.【详解】解:∵OD ⊥BC ,∴BD=CD=BC=3,∵OB=AB=5,∴在Rt △OBD 中,OD==4.故答案为4.解析:4【解析】【分析】根据垂径定理求得BD ,然后根据勾股定理求得即可.【详解】解:∵OD ⊥BC ,∴BD=CD=12BC=3, ∵OB=12AB=5,∴在Rt △OBD 中,=4.故答案为4.【点睛】本题考查垂径定理及其勾股定理,熟记定理并灵活应用是本题的解题关键.24.>【解析】【分析】根据题意直接利用二次函数的图象与a 的关系即可得出答案.【详解】解:因为二次函数的图像开口方向向上,所以有>0.故填>.【点睛】本题主要考查二次函数的性质,掌握二次解析:>【解析】【分析】根据题意直接利用二次函数的图象与a 的关系即可得出答案.【详解】解:因为二次函数2y ax bx c =++的图像开口方向向上,所以有a >0.故填>.【点睛】本题主要考查二次函数的性质,掌握二次项系数a 与抛物线的关系是解题的关键,图像开口方向向上,a >0;图像开口方向向下,a <0. 25.【解析】【分析】先根据解析式求出点A 、B 、C 的坐标,求出直线AC 的解析式,设点P 的坐标,根据过点P 作⊙B 的切线,切点是Q 得到PQ 的函数关系式,求出最小值即可.【详解】令中y=0,得x1=【解析】【分析】先根据解析式求出点A 、B 、C 的坐标,求出直线AC 的解析式,设点P 的坐标,根据过点P 作⊙B 的切线,切点是Q 得到PQ 的函数关系式,求出最小值即可.【详解】令21115y x =-中y=0,得x 1x 2∴直线AC 的解析式为1y =-, 设P (x ,313x ),∵过点P 作⊙B 的切线,切点是Q ,BQ=1∴PQ 2=PB 2-BQ 2,2+(313x )2-1, =24283753x x , ∵43a =0<, ∴PQ 2有最小值24283475()3326443,∴PQ【点睛】此题考查二次函数最小值的实际应用,求动线段的最小值,需构建关于此线段的函数解析式,利用二次函数顶点坐标公式求最值,此题找到线段PQ 、BQ 、PB 之间的关系式是解题的关键.26.-3【解析】【分析】首先利用表中的数据求出二次函数,再利用求根公式解得x1,再利用夹逼法可确定x1 的取值范围,可得k .【详解】解:把x=0,y=-3,x=1,y=-1,x=-1,y=-3解析:-3【解析】【分析】首先利用表中的数据求出二次函数,再利用求根公式解得x 1,再利用夹逼法可确定x 1 的取值范围,可得k .【详解】解:把x=0,y=-3,x=1,y=-1,x=-1,y=-3代入y =ax 2+bx +c 得313c a b c a b c -=⎧⎪-=++⎨⎪-=-+⎩,解得113a b c =⎧⎪=⎨⎪=-⎩,∴y=x²+x-3,∵△=b 2-4ac=12-4×1×(-3)=13,∴==−1±2, ∵1x <0,∴1x =−1-2<0, ∵-4≤-3,∴3222-≤-≤-, ∴-≤ 2.5-, ∵整数k 满足k <x 1<k+1,∴k=-3,故答案为:-3.【点睛】本题考查了二次函数的图象和性质,解题的关键是求出二次函数的解析式.27.【解析】【分析】根据题意说明PB1∥A2 B3,A1B1∥A2B2,从而说明△BB1P ∽△BA2B3,△BB1Q ∽△BB2A2,再得到PB1和A2B3的关系以及QB1和A2B2的关系,根据 解析:23【解析】【分析】根据题意说明PB 1∥A 2 B 3,A 1B 1∥A 2B 2,从而说明△BB 1P ∽△BA 2 B 3,△BB 1Q ∽△BB 2A 2,再得到PB 1 和A 2B 3的关系以及QB 1和A 2B 2的关系,根据A 2B 3=A 2B 2,得到PB 1和QB 1的比值.【详解】解:∵△ABB 1,△A 1B 1B 2,△A 2B 2B 3是全等的等边三角形,∴∠BB 1P=∠B 3,∠A 1B 1 B 2=∠A 2B 2B 3,∴PB 1∥A 2B 3,A 1B 1∥A 2B 2,∴△BB 1P ∽△BA 2 B 3,△BB 1Q ∽△BB 2A 2, ∴112331==3PB BB A B BB ,112221==2QB BB A B BB , ∴1231=3PB A B ,1221=2QB A B , ∵2322=A B A B ,∴PB1∶QB1=13A2B3∶12A2 B2=2:3.故答案为:2 3 .【点睛】本题考查了相似三角形的判定和性质,等边三角形的性质,平行线的判定,正确的识别图形是解题的关键.28.相离【解析】r=2,d=3, 则直线l与⊙O的位置关系是相离解析:相离【解析】r=2,d=3,则直线l与⊙O的位置关系是相离29.y=0.5(x-2)+5【解析】解:∵函数y=(x﹣2)2+1的图象过点A(1,m),B(4,n),∴m=(1﹣2)2+1=1,n=(4﹣2)2+1=3,∴A(1,1),B(4,3),过A作AC解析:y=0.5(x-2)2+5【解析】解:∵函数y=12(x﹣2)2+1的图象过点A(1,m),B(4,n),∴m=12(1﹣2)2+1=112,n=12(4﹣2)2+1=3,∴A(1,112),B(4,3),过A作AC∥x轴,交B′B的延长线于点C,则C(4,112),∴AC=4﹣1=3.∵曲线段AB扫过的面积为12(图中的阴影部分),∴AC•AA′=3AA′=12,∴AA′=4,即将函数y=12(x﹣2)2+1的图象沿y轴向上平移4个单位长度得到一条新函数的图象,∴新图象的函数表达式是y=12(x﹣2)2+5.故答案为y=0.5(x﹣2)2+5.点睛:本题主要考查了二次函数图象与几何变换以及平行四边形面积求法等知识,根据已知得出AA′是解题的关键.30.﹣≤y≤1【解析】【分析】利用配方法转化二次函数求出对称轴,根据二次函数的性质即可求解.【详解】∵y=3x2+2x=3(x+)2﹣,∴函数的对称轴为x=﹣,∴当﹣1≤x≤0时,函数有最解析:﹣13≤y≤1【解析】【分析】利用配方法转化二次函数求出对称轴,根据二次函数的性质即可求解.【详解】∵y=3x2+2x=3(x+13)2﹣13,∴函数的对称轴为x=﹣13,∴当﹣1≤x≤0时,函数有最小值﹣13,当x=﹣1时,有最大值1,∴y的取值范围是﹣13≤y≤1,故答案为﹣13≤y≤1.【点睛】本题考查二次函数的性质、一般式和顶点式之间的转化,解题的关键是熟练掌握二次函数的性质.三、解答题31.(1)2)36;(3.【解析】【分析】(1)由AC⊥BC,AC⊥AD,得出∠ACB=∠CAD=90°,利用含30°直角三角形三边的特殊关系以及勾股定理,就可以解决问题;(2)将△BAD绕点B顺时针旋转到△BCE,则△BCE≌△BAD,连接DE,作BH⊥DE于H,作CG ⊥DE 于G ,作CF ⊥BH 于F .这样可以求∠DCE=90°,则可以得到DE 的长,进而把四边形ABCD 的面积转化为△BCD 和△BCE 的面积之和,△BDE 和△CDE 的面积容易算出来,则四边形ABCD 面积可求;(3)取BC 的中点E ,连接AE ,作CF ⊥AD 于F ,DG ⊥BC 于G ,则BE=CE=12BC ,证出△ABE 是等边三角形,得出∠BAE=∠AEB=60°,AE=BE=CE ,得出∠EAC=∠ECA= =30°,证出∠BAC=∠BAE+∠EAC=90°,得出,设AB=x ,则,由直角三角形的性质得出CF=3,从而CG=a ,AF=y ,证明△ACF ∽△CDG ,得出=AF AC CG CD ,求出y=6,由勾股定理得出y 2x)2-32=3x 2-9,b 2=62-a 2=102-(2x+a)2,(2x+a)2+b 2=132,整理得出a=216x x -,进而得)216=6x -,得出[)2166x -]2=3x 2-9,解得x 2,得出y 22,解得,得出角形面积即可得出答案.【详解】解:(1)∵AC ⊥BC ,AC ⊥AD ,∴∠ACB =∠CAD =90°,∵对角互余四边形ABCD 中,∠B =60°,∴∠D =30°,在Rt △ABC 中,∠ACB =90°,∠B =60°,BC =1,∴∠BAC =30°,∴AB =2BC =2,AC在Rt △ACD 中,∠CAD =90°,∠D =30°,∴AD=3,CD =2AC =,∵S△ABC =12•AC•BC =12=2,S △ACD ═12•AC•AD =12×3=2, ∴S四边形ABCD =S △ABC +S △ACD =,故答案为:(2)将△BAD 绕点B 顺时针旋转到△BCE ,如图②所示:则△BCE ≌△BAD ,连接DE ,作BH ⊥DE 于H ,作CG ⊥DE 于G ,作CF ⊥BH 于F .∴∠CFH =∠FHG =∠HGC =90°,∴四边形CFHG 是矩形,∴FH =CG ,CF =HG ,∵△BCE ≌△BAD ,∴BE =BD =13,∠CBE =∠ABD ,∠CEB =∠ADB ,CE =AD =8,∵∠ABC+∠ADC =90°,∴∠DBC+∠CBE+∠BDC+∠CEB =90°,∴∠CDE+∠CED =90°,∴∠DCE =90°,在△BDE 中,根据勾股定理可得:DE =22CD CE +=2268+=10,∵BD =BE ,BH ⊥DE ,∴EH =DH =5,∴BH =22BE EH -=22135-=12,∴S △BED =12•BH•DE =12×12×10=60, S △CED =12•CD•CE =12×6×8=24, ∵△BCE ≌△BAD ,∴S 四边形ABCD =S △BCD +S △BCE =S △BED ﹣S △CED =60﹣24=36;(3)取BC 的中点E ,连接AE ,作CF ⊥AD 于F ,DG ⊥BC 于G ,如图③所示:则BE =CE =12BC , ∵BC =2AB ,∴AB =BE ,∵∠ABC =60°,∴△ABE 是等边三角形,∴∠BAE =∠AEB =60°,AE =BE =CE ,∴∠EAC =∠ECA =12∠AEB =30°, ∴∠BAC =∠BAE+∠EAC =90°, ∴AC,设AB =x ,则AC ,∵∠ADC =30°,∴CF =12CD =3,DF = 设CG =a ,AF =y , 在四边形ABCD 中,∠ABC+∠BCD+∠ADC+∠BAC+∠DAC =360°,∴∠DAC+∠BCD =180°,∵∠BCD+∠DCG =180°,∴∠DAC =∠DCG ,∵∠AFC =∠CGD =90°,∴△ACF ∽△CDG ,∴AF CG =AC CD ,即y a ,∴y =6,在Rt △ACF 中,Rt △CDG 和Rt △BDG 中,由勾股定理得:y 2=2﹣32=3x 2﹣9,b 2=62﹣a 2=102﹣(2x+a)2,(2x+a)2+b 2=132,整理得:x 2+ax ﹣16=0,∴a =216x x-,∴y =6×216x x -=)2166x -,∴[)2166x -]2=3x 2﹣9, 整理得:x 4﹣68x 2+364=0,解得:x 2=34﹣,或x 2=∴x2=34﹣∴y2=3(34﹣﹣9=93﹣=93﹣2,∴y∴AF∴AD =AF+DF ,∴△ACD 的面积=12AD×CF =12×66×3=3662. 【点睛】 此题是四边形综合题,主要考查了新定义的理解和应用,相似三角形的判定和性质,勾股定理,等边三角形的判定与性质,旋转的性质,全等三角形的性质,含30°角的直角三角形的性质等知识;本题综合性强,有一定难度.32.该段运河的河宽为303m .【解析】【分析】过D 作DE ⊥AB ,可得四边形CHED 为矩形,由矩形的对边相等得到两对对边相等,分别在直角三角形ACH 与直角三角形BDE 中,设CH=DE=xm ,利用锐角三角函数定义表示出AH 与BE ,由AH+HE+EB=AB 列出方程,求出方程的解即可得到结果.【详解】解:过D 作DE AB ⊥,可得四边形CHED 为矩形,40HE CD m ∴==,设CH DE xm ==,在Rt BDE ∆中,60DBA ∠=︒,33BE xm ∴=, 在Rt ACH ∆中,30BAC ∠=︒,3AH xm ∴=,由160AH HE EB AB m ++==,得到3340160x x ++=, 解得:303x =,即303CH m =,则该段运河的河宽为303m .【点睛】考查了解直角三角形的应用,熟练掌握锐角三角函数定义是解本题的关键.33.(1)x 1104,x 2104(2) x 1=1,x 2=4.【解析】【分析】(1)根据配方法即可求解;(2)根据因式分解法即可求解.【详解】。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苏科版九年级数学上册期末真题试卷(一)解析版 一、选择题 1.如图,四边形ABCD 内接于O ,若40A ∠=︒,则C ∠=( )A .110︒B .120︒C .135︒D .140︒2.如图是一个圆柱形输水管横截面的示意图,阴影部分为有水部分,如果水面AB 的宽为8cm ,水面最深的地方高度为2cm ,则该输水管的半径为( )A .3cmB .5cmC .6cmD .8cm3.已知一元二次方程2330p p --=,2330q q --=,则p q +的值为( ) A .3-B .3C .3-D .3 4.已知3sin 2α=,则α∠的度数是( ) A .30°B .45°C .60°D .90° 5.在Rt △ABC 中,∠C=90°,BC=4,AC=3,CD ⊥AB 于D ,设∠ACD=α,则cosα的值为( )A .45B .34C .43D .356.如图,在平面直角坐标系xOy 中,点A 为(0,3),点B 为(2,1),点C 为(2,-3).则经画图操作可知:△ABC 的外心坐标应是( )A .()0,0B .()1,0C .()2,1--D .()2,07.如图,点P 为⊙O 外一点,PA 为⊙O 的切线,A 为切点,PO 交⊙O 于点B ,∠P=30°,OB=3,则线段BP 的长为( )A .3B .33C .6D .9 8.某班7名女生的体重(单位:kg )分别是35、37、38、40、42、42、74,这组数据的众数是( )A .74B .44C .42D .409.如图,若二次函数y=ax 2+bx+c (a≠0)图象的对称轴为x=1,与y 轴交于点C ,与x 轴交于点A 、点B (﹣1,0),则①二次函数的最大值为a+b+c ;②a ﹣b+c <0;③b 2﹣4ac <0;④当y >0时,﹣1<x <3,其中正确的个数是( )A .1B .2C .3D .4 10.已知⊙O 的半径为1,点P 到圆心的距离为d ,若关于x 的方程x 2-2x+d=0有实数根,则点P ( )A .在⊙O 的内部B .在⊙O 的外部C .在⊙O 上D .在⊙O 上或⊙O 内部 11.如图示,二次函数2y x mx =-+的图像与x 轴交于坐标原点和()4,0,若关于x 的方程20x mx t -+=(t 为实数)在15x <<的范围内有解,则t 的取值范围是( )A .53t -<<B .5t >-C .34t <≤D .54t -<≤ 12.抛物线y =x 2先向右平移1个单位,再向上平移3个单位,得到新的抛物线解析式是( ) A .y =(x+1)2+3B .y =(x+1)2﹣3C .y =(x ﹣1)2﹣3D .y =(x ﹣1)2+313.如图,点A 、B 、C 都在⊙O 上,若∠ABC =60°,则∠AOC 的度数是( )A .100°B .110°C .120°D .130°14.如图所示的网格是正方形网格,则sin A 的值为( )A .12B 2C .35D .4515.已知点P 是线段AB 的黄金分割点(AP >PB ),AB=4,那么AP 的长是( ) A .252 B .25C .251 D 52二、填空题16.已知一组数据为1,2,3,4,5,则这组数据的方差为_____.17.飞机着陆后滑行的距离s (单位:m )关于滑行的时间t (单位:s )的函数解析式是2200.5s t t =-,飞机着陆后滑行______m 才能停下来.18.一个不透明的袋中原装有2个白球和1个红球,搅匀后从中任意摸出一个球,要使摸出红球的概率为23,则袋中应再添加红球____个(以上球除颜色外其他都相同). 19.如图,已知D 是等边△ABC 边AB 上的一点,现将△ABC 折叠,使点C 与D 重合,折痕为EF ,点E 、F 分别在AC 和BC 上.如果AD :DB=1:2,则CE :CF 的值为____________.20.已知点11(,)A x y ,22(,)B x y 在二次函数2(1)1y x =-+的图象上,若121x x >>,则1y __________2y .(填“>”“<”“=”)21.若线段AB=10cm ,点C 是线段AB 的黄金分割点,则AC 的长为_____cm.(结果保留根号)22.如图,四边形ABCD 内接于⊙O ,若∠BOD=140°,则∠BCD=_____.23.两个相似三角形的面积比为9:16,其中较大的三角形的周长为64cm ,则较小的三角形的周长为__________cm .24.如图,O 的直径AB 与弦CD 相交于点53E AB AC ==,,,则tan ADC ∠=______.25.如图示,在Rt ABC ∆中,90ACB ∠=︒,3AC =,3BC =,点P 在Rt ABC ∆内部,且PAB PBC ∠=∠,连接CP ,则CP 的最小值等于______.26.如图,123////l l l ,直线a 、b 与1l 、2l 、3l 分别相交于点A 、B 、C 和点D 、E 、F .若AB=3,BC=5,DE=4,则EF 的长为______.27.如图,在由边长为1的小正方形组成的网格中.点 A,B,C,D 都在这些小正方形的格点上,AB、CD 相交于点E,则sin∠AEC的值为_____.28.若把一根长200cm的铁丝分成两部分,分别围成两个正方形,则这两个正方形的面积的和最小值为_____.29.如图,在△ABC中,P是AB边上的点,请补充一个条件,使△ACP∽△ABC,这个条件可以是:___(写出一个即可),30.如图,Rt△ABC中,∠ACB=90°,BC=3,tan A=34,将Rt△ABC绕点C顺时针旋转90°得到△DEC,点F是DE上一动点,以点F为圆心,FD为半径作⊙F,当FD=_____时,⊙F与Rt△ABC的边相切.三、解答题31.某养殖场计划用96米的竹篱笆围成如图所示的①、②、③三个养殖区域,其中区域①是正方形,区域②和③是矩形,且AG∶BG=3∶2.设BG的长为2x米.(1)用含x的代数式表示DF=;(2)x为何值时,区域③的面积为180平方米;(3)x为何值时,区域③的面积最大?最大面积是多少?32.某公司研制出新产品,该产品的成本为每件2400元.在试销期间,购买不超过10件时,每件销售价为3000元;购买超过10件时,每多购买一件,所购产品的销售单价均降低5元,但最低销售单价为2600元。

请解决下列问题:(1)直接写出:购买这种产品 ________件时,销售单价恰好为2600元;(2)设购买这种产品x件(其中x>10,且x为整数),该公司所获利润为y元,求y与x之间的函数表达式;(3)该公司的销售人员发现:当购买产品的件数超过10件时,会出现随着数量的增多,公司所获利润反而减少这一情况.为使购买数量越多,公司所获利润越大,公司应将最低销售单价调整为多少元?(其它销售条件不变)33.在平面直角坐标系中,点O(0,0),点A(﹣3,0).已知抛物线y=﹣x2+2mx+3(m为常数),顶点为P.(1)当抛物线经过点A时,顶点P的坐标为;(2)在(1)的条件下,此抛物线与x轴的另一个交点为点B,与y轴交于点C.点Q为直线AC上方抛物线上一动点.①如图1,连接QA、QC,求△QAC的面积最大值;②如图2,若∠CBQ=45°,请求出此时点Q坐标.34.如图,C是直径AB延长线上的一点,CD为⊙O的切线,若∠C=20°,求∠A的度数.35.如图,四边形 ABCD 为矩形.(1)如图1,E为CD上一定点,在AD上找一点F,使得矩形沿着EF折叠后,点D落在 BC边上(尺规作图,保留作图痕迹);(2)如图2,在AD和CD边上分别找点M,N,使得矩形沿着MN折叠后BC的对应边B' C'恰好经过点D,且满足B' C' ⊥BD(尺规作图,保留作图痕迹);(3)在(2)的条件下,若AB=2,BC=4,则CN= .四、压轴题36.如图1,△ABC中,AB=AC=4,∠BAC=100,D是BC的中点.小明对图1进行了如下探究:在线段AD上任取一点E,连接EB.将线段EB绕点E逆时针旋转80°,点B的对应点是点F,连接BF,小明发现:随着点E在线段AD上位置的变化,点F的位置也在变化,点F可能在直线AD的左侧,也可能在直线AD上,还可能在直线AD的右侧.请你帮助小明继续探究,并解答下列问题:(1)如图2,当点F在直线AD上时,连接CF,猜想直线CF与直线AB的位置关系,并说明理由.(2)若点F落在直线AD的右侧,请在备用图中画出相应的图形,此时(1)中的结论是否仍然成立,为什么?(3)当点E在线段AD上运动时,直接写出AF的最小值.37.如图,在平面直角坐标系中,直线l:y=﹣13x+2与x轴交于点B,与y轴交于点A,以AB为斜边作等腰直角△ABC,使点C落在第一象限,过点C作CD⊥AB于点D,作CE⊥x轴于点E,连接ED并延长交y轴于点F.(1)如图(1),点P为线段EF上一点,点Q为x轴上一点,求AP+PQ的最小值.(2)将直线l进行平移,记平移后的直线为l1,若直线l1与直线AC相交于点M,与y轴相交于点N,是否存在这样的点M、点N,使得△CMN为等腰直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.38.数学概念若点P 在ABC ∆的内部,且APB ∠、BPC ∠和CPA ∠中有两个角相等,则称P 是ABC ∆的“等角点”,特别地,若这三个角都相等,则称P 是ABC ∆的“强等角点”. 理解概念(1)若点P 是ABC ∆的等角点,且100APB ∠=,则BPC ∠的度数是 .(2)已知点D 在ABC ∆的外部,且与点A 在BC 的异侧,并满足180BDC BAC ∠+∠<,作BCD ∆的外接圆O ,连接AD ,交圆O 于点P .当BCD ∆的边满足下面的条件时,求证:P 是ABC ∆的等角点.(要求:只选择其中一道题进行证明!)①如图①,DB DC =②如图②,BC BD =深入思考(3)如图③,在ABC ∆中,A ∠、B 、C ∠均小于120,用直尺和圆规作它的强等角点Q .(不写作法,保留作图痕迹)(4)下列关于“等角点”、“强等角点”的说法:①直角三角形的内心是它的等角点;②等腰三角形的内心和外心都是它的等角点;③正三角形的中心是它的强等角点;④若一个三角形存在强等角点,则该点到三角形三个顶点的距离相等;⑤若一个三角形存在强等角点,则该点是三角形内部到三个顶点距离之和最小的点,其中正确的有 .(填序号)39.如图,已知矩形ABCD 中,BC =2cm ,AB 3,点E 在边AB 上,点F 在边AD 上,点E 由A 向B 运动,连结EC 、EF ,在运动的过程中,始终保持EC ⊥EF ,△EFG 为等边三角形.(1)求证△AEF ∽△BCE ;(2)设BE 的长为xcm ,AF 的长为ycm ,求y 与x 的函数关系式,并写出线段AF 长的范围;(3)若点H 是EG 的中点,试说明A 、E 、H 、F 四点在同一个圆上,并求在点E 由A 到B 运动过程中,点H 移动的距离.40.如图,在ABC ∆中,90ACB ∠=︒,以点B 为圆心,BC 的长为半径画弧,交线段AB 于点D ,以点A 为圆心,AD 长为半径画弧,交线段AC 于点E ,连结CD .(1)若28A ∠=︒,求ACD ∠的度数;(2)设BC a =,AC b =;①线段AD 的长度是方程2220x ax b +-=的一个根吗?说明理由.②若线段AD EC =,求a b的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】直接利用圆内接四边形的对角互补计算∠C 的度数.【详解】∵四边形ABCD 内接于⊙O ,∠A =400,∴∠C =1800-400=1400,故选D.【点睛】此题考查圆内接四边形的性质,解题关键在于利用圆内接四边形的对角互补2.B解析:B【解析】【分析】先过点O作OD⊥AB于点D,连接OA,由垂径定理可知AD=12AB,设OA=r,则OD=r﹣2,在Rt△AOD中,利用勾股定理即可求出r的值.【详解】解:如图所示:过点O作OD⊥AB于点D,连接OA,∵OD⊥AB,∴AD=12AB=4cm,设OA=r,则OD=r﹣2,在Rt△AOD中,OA2=OD2+AD2,即r2=(r﹣2)2+42,解得r=5cm.∴该输水管的半径为5cm;故选:B.【点睛】此题主要考查垂径定理,解题的关键是熟知垂径定理及勾股定理的运用.3.B解析:B【解析】【分析】根据题干可以明确得到p,q是方程2330x x-=的两根,再利用韦达定理即可求解.【详解】解:由题可知p,q是方程2330x x-=的两根,∴3,故选B.【点睛】本题考查了一元二次方程的概念,韦达定理的应用,熟悉韦达定理的内容是解题关键. 4.C【解析】【分析】根据特殊角三角函数值,可得答案.【详解】解:由3sinα=,得α=60°,故选:C.【点睛】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.5.A解析:A【解析】【分析】根据勾股定理求出AB的长,在求出∠ACD的等角∠B,即可得到答案.【详解】如图,在Rt△ABC中,∠C=90°,BC=4,AC=3,∴2222AB AC BC345=+=+=,∵CD⊥AB,∴∠ADC=∠C=90°,∴∠A+∠ACD=∠A+∠B,∴∠B=∠ACD=α,∴4cos5BCcos BABα===.故选:A.【点睛】此题考查解直角三角形,求一个角的三角函数值有时可以求等角的对应函数值. 6.C解析:C【解析】外心在BC的垂直平分线上,则外心纵坐标为-1.故选C.7.A解析:A【分析】直接利用切线的性质得出∠OAP=90°,进而利用直角三角形的性质得出OP的长.【详解】连接OA,∵PA为⊙O的切线,∴∠OAP=90°,∵∠P=30°,OB=3,∴AO=3,则OP=6,故BP=6-3=3.故选A.【点睛】此题主要考查了切线的性质以及圆周角定理,正确作出辅助线是解题关键.8.C解析:C【解析】试题分析:众数是这组数据中出现次数最多的数据,在这组数据中42出现次数最多,故选C.考点:众数.9.B解析:B【解析】分析:直接利用二次函数图象的开口方向以及图象与x轴的交点,进而分别分析得出答案.详解:①∵二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,且开口向下,∴x=1时,y=a+b+c,即二次函数的最大值为a+b+c,故①正确;②当x=﹣1时,a﹣b+c=0,故②错误;③图象与x轴有2个交点,故b2﹣4ac>0,故③错误;④∵图象的对称轴为x=1,与x轴交于点A、点B(﹣1,0),∴A(3,0),故当y>0时,﹣1<x<3,故④正确.故选B.点睛:此题主要考查了二次函数的性质以及二次函数最值等知识,正确得出A点坐标是解题关键.10.D【解析】【分析】先根据条件x 2 -2x+d=0有实根得出判别式大于或等于0,求出d 的范围,进而得出d 与r 的数量关系,即可判断点P 和⊙O 的关系..【详解】解:∵关于x 的方程x 2 -2x+d=0有实根,∴根的判别式△=(-2) 2 -4×d ≥0,解得d ≤1,∵⊙O 的半径为r=1,∴d ≤r∴点P 在圆内或在圆上.故选:D.【点睛】本题考查了点和圆的位置关系,由点到圆心的距离和半径的数量关系对点和圆的位置关系作出判断是解答此题的重要途径,即当d>r 时,点在圆外,当d=r 时,点在圆上,当d<r 时,点在圆内.11.D解析:D【解析】【分析】首先将()4,0代入二次函数,求出m ,然后利用根的判别式和求根公式即可判定t 的取值范围.【详解】将()4,0代入二次函数,得2440m -+=∴4m =∴方程为240x x t -+=∴42x ±= ∵15x <<∴54t -<≤故答案为D .【点睛】此题主要考查二次函数与一元二次方程的综合应用,熟练掌握,即可解题.12.D解析:D【解析】按“左加右减,上加下减”的规律平移即可得出所求函数的解析式.【详解】抛物线y=x2先向右平移1个单位得y=(x﹣1)2,再向上平移3个单位得y=(x﹣1)2+3.故选D.【点睛】本题考查了二次函数图象的平移,其规律是是:将二次函数解析式转化成顶点式y=a(x-h)2+k(a,b,c为常数,a≠0),确定其顶点坐标(h,k),在原有函数的基础上“h值正右移,负左移;k值正上移,负下移”.13.C解析:C【解析】【分析】直接利用圆周角定理求解.【详解】解:∵∠ABC和∠AOC所对的弧为AC,∠ABC=60°,∴∠AOC=2∠ABC=2×60°=120°.故选:C.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.14.C解析:C【解析】【分析】设正方形网格中的小正方形的边长为1,连接格点BC,AD,过C作CE⊥AB于E,解直角三角形即可得到结论.【详解】解:设正方形网格中的小正方形的边长为1,连接格点BC,AD,过C作CE⊥AB于E,∵AC BC===BC=AD=,∵S△ABC=12AB•CE=12BC•AD,∴CE=225 BC ADAB==,∴6535525CEAsin CABC∠===,故选:C.【点睛】本题考查了解直角三角形的问题,掌握解直角三角形的方法以及锐角三角函数的定义是解题的关键.15.A解析:A【解析】根据黄金比的定义得:512APAB=,得5142522AP=⨯= .故选A.二、填空题16.【解析】试题分析:先根据平均数的定义确定平均数,再根据方差公式进行计算即可求出答案.由平均数的公式得:(1+2+3+4+5)÷5=3,∴方差=[(1﹣3)2+(2﹣3)2+(3﹣3)2+(4解析:【解析】试题分析:先根据平均数的定义确定平均数,再根据方差公式进行计算即可求出答案.由平均数的公式得:(1+2+3+4+5)÷5=3,∴方差=[(1﹣3)2+(2﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]÷5=2.考点:方差.17.200【解析】【分析】要求飞机从滑行到停止的路程就,即求出函数的最大值即可.【详解】解:所以当t=20时,该函数有最大值200.故答案为200.【点睛】本题主要考查了二次函数的应用解析:200【解析】【分析】要求飞机从滑行到停止的路程就,即求出函数的最大值即可.【详解】解:()()222200.50.5404002000.520200s t t t t t =-=--++=--+ 所以当t=20时,该函数有最大值200.故答案为200.【点睛】本题主要考查了二次函数的应用,掌握二次函数求最值的方法,即公式法或配方法是解题关键.18.3【解析】【分析】首先设应在该盒子中再添加红球x 个,根据题意得:,解此分式方程即可求得答案.【详解】解:设应在该盒子中再添加红球x 个,根据题意得:,解得:x=3,经检验,x=3是原分解析:3【解析】【分析】首先设应在该盒子中再添加红球x 个,根据题意得:12123x x +=++,解此分式方程即可求得答案.【详解】解:设应在该盒子中再添加红球x 个, 根据题意得:12123x x +=++, 解得:x=3,经检验,x=3是原分式方程的解.故答案为:3.【点睛】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.19.【解析】【分析】根据折叠的性质可得DE=CE,DF=CF,利用两角对应相等的两三角形相似得出△AED∽△BDF,进而得出对应边成比例得出比例式,将比例式变形即可得. 【详解】解:如图,连接D解析:4 5【解析】【分析】根据折叠的性质可得DE=CE,DF=CF,利用两角对应相等的两三角形相似得出△AED∽△BDF,进而得出对应边成比例得出比例式,将比例式变形即可得.【详解】解:如图,连接DE,DF,∵△ABC是等边三角形,∴AB=BC=AC, ∠A=∠B=∠ACB=60°,由折叠可得,∠EDF=∠ACB=60°,DE=CE,DF=CF∵∠BDE=∠BDF+∠FDE=∠A+∠AED,∴∠BDF+60°=∠AED+60°,∴∠BDF=∠AED,∵∠A=∠B,∴△AED∽△BDF,∴AD AE DE BF BD DF,设AD=x,∵AD:DB=1:2,则BD=2x,∴AC=BC=3x,∵AD AE DE BF BD DF,∴AD AE DE DE BF BD DF DF∴323x x DE x x DF∴45 DEDF,∴45 CECF.故答案为:45. 【点睛】 本题考查了折叠的性质,利用三角形相似对应边成比例及比例的性质解决问题,能发现相似三角形的模型,即“一线三等角”是解答此题的重要突破口.20.【解析】抛物线的对称轴为:x=1,∴当x>1时,y 随x 的增大而增大.∴若x1>x2>1 时,y1>y2 .故答案为>解析:12y y >【解析】抛物线()2y x 11=-+的对称轴为:x=1,∴当x>1时,y 随x 的增大而增大.∴若x 1>x 2>1 时,y 1>y 2 .故答案为> 21.或【解析】【分析】根据黄金分割比为计算出较长的线段长度,再求出较短线段长度即可,AC 可能为较长线段,也可能为较短线段.【详解】解:AB=10cm ,C 是黄金分割点,当AC>BC 时,则有 解析:555 或1555【解析】【分析】 51-计算出较长的线段长度,再求出较短线段长度即可,AC 可能为较长线段,也可能为较短线段.【详解】解:AB=10cm ,C 是黄金分割点,当AC>BC 时,则有AC=12AB=12×10=5, 当AC<BC 时,则有×10=5-,∴AC=AB-BC=10-(5 )=15-,∴AC 长为5 cm 或1555 cm. 故答案为:55 或1555【点睛】本题考查了黄金分割点的概念.注意这里的AC 可能是较长线段,也可能是较短线段;熟记黄金比的值是解题的关键.22.110°.【解析】【分析】由圆周角定理,同弧所对的圆心角是圆周角的2倍.可求∠A=∠BOD=70°,再根据圆内接四边形对角互补,可得∠C=180-∠A=110°【详解】∵∠BOD=140°解析:110°.【解析】【分析】由圆周角定理,同弧所对的圆心角是圆周角的2倍.可求∠A=12∠BOD=70°,再根据圆内接四边形对角互补,可得∠C=180-∠A=110°【详解】∵∠BOD=140° ∴∠A=12∠BOD=70° ∴∠C=180°-∠A=110°,故答案为:110°.【点睛】此题考查圆周角定理,解题的关键在于利用圆内接四边形的性质求角度.23.48【解析】【分析】根据面积之比得出相似比,然后利用周长之比等于相似比即可得出答案.【详解】∵两个相似三角形的面积比为∴两个相似三角形的相似比为∴两个相似三角形的周长也比为∵较大的三解析:48【解析】【分析】根据面积之比得出相似比,然后利用周长之比等于相似比即可得出答案.【详解】∵两个相似三角形的面积比为9:16∴两个相似三角形的相似比为3:4∴两个相似三角形的周长也比为3:4∵较大的三角形的周长为64cm∴较小的三角形的周长为643484cm ⨯=故答案为:48.【点睛】本题主要考查相似三角形的性质,掌握相似三角形的性质是解题的关键.24.【解析】分析:由已知条件易得△ACB中,∠ACB=90°,AC=3,AB=5,由此可得BC=4,结合∠ADC=∠ABC,即可由tan∠ADC=tan∠ABC=求得所求的值了.详解:∵AB是解析:3 4【解析】分析:由已知条件易得△ACB中,∠ACB=90°,AC=3,AB=5,由此可得BC=4,结合∠ADC=∠ABC,即可由tan∠ADC=tan∠ABC=ACBC求得所求的值了.详解:∵AB 是O 的直径,∴∠ACB=90°,又∵AC=3,AB=5,∴4=,∴tan ∠ABC=34AC BC =, 又∵∠ADC=∠ABC , ∴tan ∠ADC=34. 故答案为:34. 点睛:熟记“圆的相关性质和正切函数的定义”解得本题的关键.25.【解析】【分析】首先判定直角三角形∠CAB=30°,∠ABC=60°,,然后根据,得出∠ACB+∠PAC+∠PBC=∠APB=120°,定角定弦,点P 的轨迹是以AB 为弦,圆周角为120°的圆弧2【解析】【分析】首先判定直角三角形∠CAB=30°,∠ABC=60°,AB ===PAB PBC ∠=∠,得出∠ACB+∠PAC+∠PBC=∠APB=120°,定角定弦,点P 的轨迹是以AB 为弦,圆周角为120°的圆弧上,如图所示,当点C 、O 、P 在同一直线上时,CP 最小,构建圆,利用勾股定理,即可得解.【详解】∵90ACB ∠=︒,3AC =,BC =,∴AB ===∴∠CAB=30°,∠ABC=60°∵PAB PBC ∠=∠,∠PAB+∠PAC=30°∴∠ACB+∠PAC+∠PBC=∠APB=120°∴定角定弦,点P 的轨迹是以AB 为弦,圆周角为120°的圆弧上,如图所示,当点C 、O 、P 在同一直线上时,CP 最小∴CO ⊥AB ,∠COB=60°,∠ABO=30°∴OB=2,∠OBC=90°∴()2222237OC OB BC =+=+= ∴72CP OC OP =-=-故答案为72-.【点睛】此题主要考查直角三角形中的动点综合问题,解题关键是找到点P 的位置.26.【解析】【分析】直接根据平行线分线段成比例定理即可得.【详解】,,,,解得,故答案为:.【点睛】本题考查了平行线分线段成比例定理,熟记平行线分线段成比例定理是解题关键.解析:203【解析】【分析】直接根据平行线分线段成比例定理即可得.【详解】123////l l l ,AB DE BC EF∴=, 3,5,4AB BC DE ===,345EF∴=, 解得203EF =, 故答案为:203. 【点睛】 本题考查了平行线分线段成比例定理,熟记平行线分线段成比例定理是解题关键.27.【解析】【分析】通过作垂线构造直角三角形,由网格的特点可得Rt△ABD 是等腰直角三角形,进而可得Rt△ACF 是等腰直角三角形,求出CF ,再根据△ACE∽△BDE 的相似比为1:3,根据勾股定理求【解析】【分析】通过作垂线构造直角三角形,由网格的特点可得Rt △ABD 是等腰直角三角形,进而可得Rt △ACF 是等腰直角三角形,求出CF ,再根据△ACE ∽△BDE 的相似比为1:3,根据勾股定理求出CD 的长,从而求出CE ,最后根据锐角三角函数的意义求出结果即可.【详解】过点C 作CF ⊥AE ,垂足为F ,在Rt △ACD 中,CD =由网格可知,Rt △ABD 是等腰直角三角形,因此Rt △ACF 是等腰直角三角形,∴CF =AC •sin45°, 由AC ∥BD 可得△ACE ∽△BDE , ∴13CE AC DE BD ==,∴CE =14CD =4,在Rt △ECF 中,sin ∠AEC =CF CE ==.【点睛】 考查锐角三角函数的意义、直角三角形的边角关系,作垂线构造直角三角形是解决问题常用的方法,借助网格,利用网格中隐含的边角关系是解决问题的关键.28.1250cm2【解析】【分析】设将铁丝分成xcm 和(200﹣x )cm 两部分,则两个正方形的边长分别是cm ,cm ,再列出二次函数,求其最小值即可.【详解】如图:设将铁丝分成xcm 和(200﹣解析:1250cm 2【解析】【分析】设将铁丝分成xcm 和(200﹣x )cm 两部分,则两个正方形的边长分别是4x cm ,2004x -cm ,再列出二次函数,求其最小值即可. 【详解】如图:设将铁丝分成xcm 和(200﹣x )cm 两部分,列二次函数得:y =(4x )2+(2004x -)2=18(x ﹣100)2+1250, 由于18>0,故其最小值为1250cm 2, 故答案为:1250cm 2.【点睛】本题考查二次函数的最值问题,解题的关键是根据题意正确列出二次函数.29.∠ACP=∠B(或).【解析】【分析】由于△ACP与△ABC有一个公共角,所以可利用两组对应边的比相等且夹角对应相等的两个三角形相似或有两组角对应相等的两个三角形相似进行添加条件.【详解】解析:∠ACP=∠B(或AP ACAC AB=).【解析】【分析】由于△ACP与△ABC有一个公共角,所以可利用两组对应边的比相等且夹角对应相等的两个三角形相似或有两组角对应相等的两个三角形相似进行添加条件.【详解】解:∵∠PAC=∠CAB,∴当∠ACP=∠B时,△ACP∽△ABC;当AP ACAC AB=时,△ACP∽△ABC.故答案为:∠ACP=∠B(或AP ACAC AB=).【点睛】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似:有两组角对应相等的两个三角形相似.30.或【解析】【分析】如图1,当⊙F与Rt△ABC的边AC相切时,切点为H,连接FH,则HF⊥AC,解直角三角形得到AC=4,AB=5,根据旋转的性质得到∠DCE=∠ACB=90°,DE =AB=5解析:209或145【解析】【分析】如图1,当⊙F与Rt△ABC的边AC相切时,切点为H,连接FH,则HF⊥AC,解直角三角形得到AC=4,AB=5,根据旋转的性质得到∠DCE=∠ACB=90°,DE=AB=5,CD=AC=4,根据相似三角形的性质得到DF=209;如图2,当⊙F与Rt△ABC的边AC相切时,延长DE交AB于H,推出点H为切点,DH为⊙F的直径,根据相似三角形的性质即可得到结论.【详解】如图1,当⊙F与Rt△ABC的边AC相切时,切点为H,连接FH,则HF⊥AC,∴DF =HF ,∵Rt △ABC 中,∠ACB =90°,BC =3,tan A =BC AC =34, ∴AC =4,AB =5,将Rt △ABC 绕点C 顺时针旋转90°得到△DEC ,∴∠DCE =∠ACB =90°,DE =AB =5,CD =AC =4,∵FH ⊥AC ,CD ⊥AC ,∴FH ∥CD ,∴△EFH ∽△EDC ,∴FH CD =EF DE , ∴4DF =55DF , 解得:DF =209; 如图2,当⊙F 与Rt △ABC 的边AC 相切时,延长DE 交AB 于H ,∵∠A =∠D ,∠AEH =∠DEC∴∠AHE =90°,∴点H 为切点,DH 为⊙F 的直径,∴△DEC ∽△DBH ,∴DE BD =CD DH , ∴57=4DH,∴DH=285,∴DF=145,综上所述,当FD=209或145时,⊙F与Rt△ABC的边相切,故答案为:209或145.【点睛】本题考查了切线的判定和性质,相似三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.三、解答题31.(1)48-12x;(2)x为1或3;(3)x为2时,区域③的面积最大,为240平方米【解析】【分析】(1)将DF、EC以外的线段用x表示出来,再用96减去所有线段的长再除以2可得DF的长度;(2)将区域③图形的面积用关于x的代数式表示出来,并令其值为180,求出方程的解即可;(3)令区域③的面积为S,得出x关于S的表达式,得到关于S的二次函数,求出二次函数在x取值范围内的最大值即可.【详解】(1)48-12x(2)根据题意,得5x(48-12x)=180,解得x1=1,x2=3答:x为1或3时,区域③的面积为180平方米(3)设区域③的面积为S,则S=5x(48-12x)=-60x2+240x=-60(x-2)2+240∵-60<0,∴当x=2时,S有最大值,最大值为240答:x为2时,区域③的面积最大,为240平方米【点睛】本题考查了二次函数的实际应用,解题的关键是正确理解题中的等量关系,正确得出区域面积的表达式.32.(1)90;(2)25650(1090,){200(90,)x x x xyx x x-+<≤=>且为整数且为整数;(3)公司应将最低销售单价调整为2725元.【解析】【分析】(1)设购买产品x件,因为销售单间2600元,所以一定超过10件,根据题意列方程可解;(2)分10<x≤90,x>90两种情况讨论,由利润=(销售单价-成本单价)×件数列出函数关系;(3)由(2)的函数关系式,利用函数的性质求出最大值,并求出最大值时x 的值,可确定销售单价。

相关文档
最新文档