安徽中考数学总复习——10.一次函数及其应用
中考数学基础复习第10课一次函数的图象与性质课件

【知识清单】
一次函数的图象和性质 1.图象
正比例函数 y=kx(k≠0)
一次函数 y=kx+b(k≠0)
图象关系
是经过点(0,0)和点(1,___k___)的一条直线
是经过点(0,b__ )和点(____kb,0)的一条直线
一次函数y=kx+b的图象可由正比例函数y=kx的图象 平移得到,b>0,向___上____移动___b___个单位,b<0, 向___下____移动___-_b___个单位
∵m-n=4,∴m-(-2m+2)=4,解得m=2,n=-2,
∴点P的坐标为(2,-2).
反思:函数的性质可以结合图象来理解求解.
考点3 与方程(组)、不等式的关系 例3.(202X·乐山)直线y=kx+b在平面直角坐标系中的位置如图所示,求不等式 kx+b≤2的解.
【解析】根据图象得出直线y=kx+b经过(0,1),(2,0)两点,
2
.5
2
【联系课标】 【课标要求】 一次函数 (1)会利用待定系数法确定一次函数的表达式 (2)会画一次函数的图象 (3)能根据一次函数的图象和表达式探索并理解其性质 (4)体会一次函数与二元一次方程的关系
【考点剖析】 考点1 一次函数表达式的确定 例1.(202X·黔西南)如图,正比例函数的图象与一次函数y=-x+1的图象相交于 点P,点P到x轴的距离是2,求这个正比例函数的表达式.
变式1.(202X·广州)一次函数y=-3x+1的图象过点(x1,y1),(x1+1,y2),
(x1+2,y3),则 ( B )
A.y1<y2<y3
(安徽专版)2020年中考数学复习第三单元函数及其图象第10课时一次函数及其应用课件

| 考向精练 | 图10-8
[答案] B
2. [2009·安徽8题] 已知函数y=kx+b的图象如图10-9,则y=2kx+b的图象可能是 ()
图10-9
图10-10
[答案] C [解析]由函数y=kx+b的图象可知k>0,b=1, ∴y=2kx+b=2kx+1,2k>0, ∴2k>k,可见一次函数y=2kx+b图象与x轴的夹角大于y=kx+b图象与x轴的夹角. ∴函数y=2kx+1的图象过第一、二、三象限且与x轴的夹角大.故选C.
10分 12分 5分 4分 12分
★★★
★★
10分 ★★
考点聚焦
考点一 一次函数的概念 1.一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,其中k叫做比例系数. 2.一般地,形如y=kx+b(k,b是常数,k≠0)的函数,叫做一次函数.当b=0时,y=kx+b 即y=kx,所以说正比例函数是一种特殊的一次函数.
8.甲、乙两人分别从A,B两地相向而行,他们 [答案] 3.6 距B地的距离s(km)与时间t(h)的函数关系图 [解析] 由题意知,甲的速度为6 象如图10-6所示,那么乙的速度是 km/h. km/h.当甲开始运动时甲、乙相距
36 km, 2 h后,乙开始运动,经过2.5 h两人相遇.设乙的速度为x km/h, 则2.5×(6+x)=24,解得x=3.6.
5.在平面直角坐标系中,已知一次函数y=x-1的图象经过P1(x1,y1),P2(x2,y2)两点,若 x1<x2,则y1 < y2(填“>”“<”或“=”).
6.如图10-5,直线y=kx和y=ax+4交于A(1,k),则不等式kx-6<ax+4<kx的解集为 .
2023年安徽中考数学总复习专题: 一次函数及其应用

(4)利用函数性质解决问题;
(5)作答.
2.一次函数的实际应用常考类型(1)图象型问题:需要掌握数形结合思想的运用,从函数图象中提取数据和信息,再结合题干解答;在函数图象中常给出端点、交点(注意求交点坐标和方程组结合起来)等坐标,利用坐标通过待定系数法求出函数关系式(注意自变量的取值范围),并根据一次函数的增减性进行解答;
3
2.(2022济宁)某运输公司安排甲、乙两种货车24辆恰好一次性将328吨的物资运往 , 两地,两种货车载重量及到 , 两地的运输成本如表:
货车类型
载重量(吨/辆)
运往 地的成本(元/辆)
运往 地的成本(元/辆)
甲种
16
1200
900
乙种
12
1000
750
(1)求甲、乙两种货车各用了多少辆;
上加下减
向下平移 个单位长度
<m></m> ④_____
考点小练
1.(2022广州)点 在正比例函数 的图象上,则 的值为 ( )
A. B. C. D.
2.(2022娄底)将直线 向上平移2个单位,相当于 ( )
A.向左平移2个单位 B.向左平移1个单位C.向右平移2个单位 D.向右平移1个单位
解:设甲种货车用了 辆,则乙种货车用了 辆,根据题意,得 ,解得 , .答:甲种货车用了10辆,乙种货车用了14辆.
(2)如果前往 地的甲、乙两种货车共12辆,所运物资不少于160吨,其余货车将剩余物资运往 地.设甲、乙两种货车到 , 两地的总运输成本为 元,前往 地的甲种货车为 辆.
A.第四象限 B.第三象限 C.第二象限 D.第一象限
√
2.关于 的一次函数 , 的值随 值的增大而减小,则它的图象可能是 ( )
安徽省2017年中考数学总复习 第一轮 中考考点系统复习 第三单元 函数 第10讲 一次函数 第1课时

一次函数第1课时 一次函数的图象和性质1.下列函数关系式:①y=-x ;②y=2x -1;③y =x 2;④y=1x.其中一次函数的个数是( C ) A .4 B .3 C .2 D .12.(2016·湘西)一次函数y =-2x +3的图象不经过的象限是( C )A .第一象限B .第二象限C .第三象限D .第四象限3.(2015·西安)设正比例函数y =mx 的图象经过点A(m ,4),且y 的值随x 值的增大而减小,则m 的值为( B )A .2B .-2C .4D .-44.(2016·玉林)关于直线l :y =kx +k (k≠0),下列说法不正确的是( D )A .点(0,k)在l 上B .l 经过定点(-1,0)C .当k >0时,y 随x 的增大而增大D .l 经过第一、二、三象限5.(2016·无锡)一次函数y =43x -b 与y =43x -1的图象之间的距离等于3,则b 的值为( D ) A .-2或4 B .2或-4 C .4或-6 D .-4或66.(2016·益阳)将正比例函数y =2x 的图象向上平移3个单位,所得的直线不经过第四象限.7.(2015·无锡)一次函数y =2x -6的图象与x 轴的交点坐标为(3,0).8.已知点M(x 1,y 1)和点N(x 2,y 2)是一次函数y =-2x +1图象上的两点,若x 1<x 2,则y 1与y 2的大小关系是y 1>y 2.9.(2016·荆州)若点M(k -1,k +1)关于y 轴的对称点在第四象限内,则一次函数y =(k -1)x +k 的图象不经过第一象限.10.(2016·枣庄)如图,点A 的坐标为(-4,0),直线y =3x +n 与坐标轴交于点B ,C ,连接AC ,若∠ACD=90°,则n 的值为-311.(2016·厦门)已知一次函数y =kx +2,当x =-1时,y =1,求此函数的解析式,并在平面直角坐标系中画出此函数图象.解:将x =-1,y =1代入一次函数解析式y =kx +2,可得1=-k +2.解得k =1.∴一次函数的解析式为y =x +2.当x =0时,y =2;当y =0时,x =-2.∴函数图象经过(0,2),(-2,0).此函数图象如图所示.12.(2015·蒙城期末)已知正比例函数y =k 1x 的图象与一次函数y =k 2x -9的图象交于点P(3,-6),求两函数的表达式及一次函数y =k 2x -9与x 轴的交点坐标.解:∵点P(3,-6)在y =k 1x 和y =k 2x -9上,∴-6=3k 1, -6=3k 2-9.解得k 1=-2,k 2=1.∴两函数的表达式分别为y =-2x ,y =x -9.∵一次函数y =x -9与x 轴相交,当y =0时,x =9,∴一次函数y =x -9与x 轴交点为(9,0).13.如图,一次函数y =ax +b 的图象经过点(1,2),点(-1,6),且与x 轴交于点B ,与y 轴交于点A.(1)求出这个一次函数的解析式;(2)求出一次函数图象与两坐标轴围成的图形的面积.解:(1)∵一次函数y =ax +b 的图象经过点(1,2),点(-1,6),∴⎩⎪⎨⎪⎧a +b =2,-a +b =6.解得⎩⎪⎨⎪⎧a =-2,b =4. ∴这个一次函数的解析式为y =-2x +4.(2)∵当x =0时,y =4,∴一次函数与y 轴交于点A(0,4).∵当y =0时,x =2,∴一次函数与x 轴交于点B(2,0).∴一次函数图象与两坐标轴围成的图形的面积为12×2×4=4.14.点A(x 1,y 1),B(x 2,y 2)是一次函数y =kx +2(k <0)图象上不同的两点,若t =(x 2-x 1)(y 2-y 1),则( A )A .t <0B .t =0C .t >0D .t ≤015.(2016·合肥蜀山区一模)如图,一次函数y =-12x +3的图象上有两点A ,B ,A 点的横坐标为3,B 点的横坐标为a(0<a <6且a≠3),过点A ,B 分别作x 轴的垂线,垂足为点C ,D ,△AOC ,△BOD 的面积分别为S 1,S 2,则S 1,S 2的大小关系是( A )A .S 1>S 2B .S 1=S 2C .S 1<S 2D .无法确定提示:易知A(3,32),则S 1=12×32×3=94,S 2=12a×(-12a +3)=-14(a -3)2+94.又0<a <6且a≠3,∴S 2<94=S 1,即S 1>S 2.16.(2016·宁国一模)如图,在平面直角坐标系中,点P 的坐标为(2,0),直线y =43x +4与x 轴、y 轴分别交于点A ,B ,点M 是直线AB 上的一个动点,则PM 的最小值为4.17.在平面直角坐标系中,我们不妨把纵坐标是横坐标的2倍的点称为“理想点”.例如点(-2,-4),(1,2),(3,6),…,都是“理想点”,显然这样的“理想点”有无数多个.(1)若点M(2,a)是“理想点”,且在正比例函数y =kx(k 为常数,k ≠0)图象上,求这个正比例函数的表达式;(2)函数y =3mx -1(m 为常数,且m≠0)的图象上存在“理想点”吗?若存在,请用含m 的代数式表示出“理想点”的坐标;若不存在,请说明理由.解:(1)∵点M(2,a)是“理想点”,∴a =4.∵点M(2,4)在正比例函数y =kx(k 为常数,k ≠0)图象上,∴4=2k.解得k =2.∴正比例函数的表达式为y =2x.(2)设正比例函数y =3mx -1(m 为常数,m ≠0)的图象上存在“理想点”(x,2x),则有3mx -1=2x ,整理得(3m -2)x =1,当3m -2≠0,即m≠23时,解得x =13m -2. 当3m -2=0,即m =23时,无解. 综上所述,当m≠23时,函数图象上存在“理想点”,为(13m -2,23m -2);当m =23时,函数图象上不存在“理想点”.18.(2015·淮南期末)一次函数y =kx +b ,当-3≤x≤1时,1≤y ≤9,则k +b =9或1.提示:分2种情况:①当k >0时,有⎩⎪⎨⎪⎧1=-3k +b ,9=k +b. 解得⎩⎪⎨⎪⎧k =2,b =7. ∴k+b =9;②当k <0时,有⎩⎪⎨⎪⎧9=-3k +b ,1=k +b. 解得⎩⎪⎨⎪⎧k =-2,b =3.∴k+b =1.综上,k +b =9或1.。
中考数学考点10一次函数图像与性质总复习(原卷版)

一次函数的图像与性质【命题趋势】在中考中,主要以选择题、填空题和解答题形式出现,主要考查一次函数的图像与性质,确定一次函数的解析式,一次函数与方程(组)、不等式的关系。
一次函数与二次函数、反比例函数综合也是中考重点之一。
【中考考查重点】一、结合具体情景体会一次函数的意义,能根据已知条件确定一次函数的表达式;二、利用待定系数法确定一次函数的表达式;三、根据一次函数画出图像,探索并理解k>0和k<0时,图像的变化情况;四、体会一次函数与二元一次方程的关系考点一:一次函数及其图像性质概念一般地,形如y=kx+b(k,b为常数,k≠0)的函数,叫做一次函数,当b=0十,即y=kx,这时称y是x的正比例函数(一次函数的特殊形式)增减性k>0k<0从左向右看图像呈上升趋势,y随x的增大而增大从左向右看图像呈下降趋势,y随x的增大而较少图像(草图)b>0b=0b<0b<0b=0 b<0经过象限一、二、三一、三一、三、四一、二、四二、四二、三、四与y轴的交点位置b>0,交点在y轴正半轴上;b=0,交点在原点;b<0,交点在y轴负半轴上【提分要点】:1.若两直线平行,则;2.若两直线垂直,则1.(2021春•大安市期末)一次函数y=2x﹣1图象经过象限()A.一、二、三B.一、二、四C.二、三、四D.一、三、四2.(2021秋•肃州区期末)对于一次函数y=x+6,下列结论错误的是()A.函数值随自变量增大而增大B.函数图象与x轴正方向成45°角C.函数图象不经过第四象限D.函数图象与x轴交点坐标是(0,6)3.(2021秋•东港市期中)点A(﹣1,y1)和点B(﹣4,y2)都在直线y=﹣2x上,则y1与y2的大小关系为()A.y1>y2B.y1<y2C.y1=y2D.y1≥y2 4.(2021秋•三水区期末)若一次函数y=kx+b的图象经过第一、二、四象限,则一次函数y=bx+k的图象大致是()A.B.C.D.考点二:一次函数解析式的确定方法待定系数法步骤1.设:一般式y=kx+b(k≠0)(题干中未给解析式需设)2.代:找出一次函数图像上的两个点,并且将点坐标代入函数解析式,得到二元一次方程组;3.求:解方程(组)求出k、b的值;4.写:将k、b的值代入,直接写出一次函数解析式5.(2021秋•尤溪县期中)已知一次函数y=x+b过点(﹣1,﹣2),那么这个函数的表达式为()A.y=x﹣1B.y=x+1C.y=x﹣2D.y=x+2 6.(2021春•海珠区期末)已知一次函数y=mx﹣4m,当1≤x≤3时,2≤y≤6,则m 的值为()A.3B.2C.﹣2D.2或﹣2 7.(2021秋•萧山区月考)已知y与x﹣2成正比例,且当x=1时,y=1,则y与x之间的函数关系式为.8.(2021春•古丈县期末)某个一次函数的图象与直线y=x+6平行,并且经过点(﹣2,﹣4),则这个一次函数的解析式为()A.y=﹣x﹣5B.y=x+3C.y=x﹣3D.y=﹣2x﹣8考点三:一次函数图像的平移平移前平移方式(m>0)平移后简记y=kx+b 向左平移m个单位长度y=k(x+m)+bx左加右减向右平移m个单位长度y=k(x-m)+b向上平移m个单位长度y=kx+b+m等号右端整体上加下减向下平移m个单位长度y=kx+b-m9.(2021秋•金安区校级期中)将直线y=2x向右平移1个单位,再向上平移1个单位后,所得直线的表达式为()A.y=2x﹣1B.y=2x C.y=2x+4D.y=2x﹣2 10.(2021春•米易县期末)一次函数y=2x﹣4的图象由正比例函数y=2x的图象()A.向左平移4个单位长度得到B.向右平移4个单位长度得到C.向上平移4个单位长度得到D.向下平移4个单位长度得到11.(2021秋•长丰县月考)已知点A(2,4)沿水平方向向左平移3个单位长度得到点A',若点A'在直线y=x+b上,则b的值为()A.1B.3C.5D.﹣1考点四:一次函数与方程(组)、不等式与一元一次方程的关系方程ax+b=0(a≠0)的解是一次函数y=ax+b(a≠0)的函数值为0时自变量的取值,还是直线y=ax+b(a≠0)与x 轴交点的横坐标与二元一次方程组的关系方程组的解时直线的交点坐标与一元一次不等式的关系1.从“数”来看(1)kx+b>0的解集是y=kx+b中,y>0时x的取值范围(2)kx+b><0的解集是y=kx+b中,y<0时x的取值范围2.从“形”上看(1)kx+b>0的解集是y=kx+b函数图像位于x上方部分对应的点的横坐标(2)kx+b<0的解集是y=kx+b函数图像位于x下方部分对应的点的横坐标12.(2021秋•乐平市期中)一次函数y=kx+b的图象如图所示,则关于x的方程kx+b =0的解为()A.x=0B.x=3C.x=﹣2D.x=﹣3 13.(2021秋•安徽期中)已知一次函数y=ax﹣1与y=mx+4的图象交于点A(3,1),则关于x的方程ax﹣1=mx+4的解是()A.x=﹣1B.x=1C.x=3D.x=414.(2021春•沧县期末)如图,直线y=x+5和直线y=ax+b相交于点P(20,25),根据图象可知,方程x+5=ax+b的解是()A.x=20B.x=5C.x=25D.x=15 15.(2020秋•建湖县期末)如图,一次函数y=kx+b(k≠0)的图象经过点A(﹣1,﹣2)和点B(﹣2,0),一次函数y=2x的图象过点A,则不等式2x<kx+b≤0的解集为()A.x≤﹣2B.﹣2≤x<﹣1C.﹣2<x≤﹣1D.﹣1<x≤0 16.(2021秋•兴宁区校级月考)如图,直线y=kx+b交x轴于点A(﹣2,0),直线y =mx+n交x轴于点B(5,0),这两条直线相交于点C(2,c),则关于x的不等式组的解集为()A.x<5B.1<x<5C.﹣2<x<5D.x<﹣217.(2020秋•西林县期末)如图所示是函数y=kx+b与y=mx+n的图象,则方程组的解是()A.B.C.D.1.(2021春•扎兰屯市期末)将直线y=﹣2x﹣2向右平移1个单位长度,可得直线的表达式为()A.y=2x B.y=﹣2x﹣4C.y=﹣2x D.y=﹣2x+4 2.(2021春•玉田县期末)下列有关一次函数y=﹣6x﹣5的说法中,正确的是()A.y的值随着x值的增大而增大B.函数图象与y轴的交点坐标为(0,5)C.当x>0时,y>﹣5D.函数图象经过第二、三、四象限3.(2021春•红寺堡区期末)点P1(x1,y1),点P2(x2,y2)是一次函数y=﹣4x+3图象上的两个点,且x1<x2,则y1与y2的大小关系是()A.y1>y2B.y1>y2>0C.y1<y2D.y1=y2 4.(2021秋•运城期中)在平面直角坐标系中,一次函数y=kx+3(k≠0)的图象经过点A(2,﹣1),则这个一次函数的表达式是()A.y=﹣2x+3B.y=x+3C.y=2x+3D.y=x+35.(2021秋•南海区期中)如图,一次函数y=kx+b的图象经过点(2,0)、(0,1),则下列结论正确的是()A.k=1B.关于x的方程kx+b=0的解是x=2C.b=2D.关于x的方程kx+b=0的解是x=16.(2021秋•滕州市期中)直线y=ax+b(a≠0)过点A(0,2),B(1,0),则关于x的方程ax+b=0的解为()A.x=0B.x=2C.x=1D.x=3 7.(2021秋•龙凤区期末)一次函数y=mx﹣n(m,n为常数)的图象如图所示,则不等式mx﹣n≥0的解集是()A.x≥2B.x≤2C.x≥3D.x≤3 8.(2020秋•开化县期末)如图,直线y=2x+n与y=mx+3m(m≠0)的交点的横坐标为﹣1,则关于x的不等式2x+n<mx+3m<0的整数解为()A.﹣1B.﹣2C.﹣3D.﹣3.59.(2021春•单县期末)已知方程组的解为,则直线y=﹣x+2与直线y=2x﹣7的交点在平面直角坐标系中位于()A.第一象限B.第二象限C.第三象限D.第四象限10.(2021春•武陵区期末)对于实数a,b,我们定义符号max{a,b}的意义为:当a ≥b时,max{a,b}=a;当a<b时,max{a,b}=b;如:max{4,﹣2}=4,max{3,3}=3,若关于x的函数为y=max(2x﹣1,﹣x+2},则该函数的最小值是()A.2B.1C.0D.﹣1 11.(2020秋•成安县期末)如图,若直线y=kx+b与x轴交于点A(﹣4,0),与y 轴正半轴交于B,且△OAB的面积为4,则该直线的解析式为()A.B.y=2x+2C.y=4x+4D.12.(2021春•饶平县校级期末)已知2y﹣3与3x+1成正比例,则y与x的函数解析式可能是()A.y=3x+1B.C.D.y=3x+2 13.(2021秋•榆林期末)已知直线l1交x轴于点(﹣3,0),交y轴于点(0,6),直线l2与直线l1关于x轴对称,将直线l1向下平移8个单位得到直线l3,则直线l2与直线l3的交点坐标为()A.(﹣1,﹣4)B.(﹣2,﹣4)C.(﹣2,﹣1)D.(﹣1,﹣1)1.(2021•长沙)下列函数图象中,表示直线y=2x+1的是()A.B.C.D.2.(2021•嘉峪关)将直线y=5x向下平移2个单位长度,所得直线的表达式为()A.y=5x﹣2B.y=5x+2C.y=5(x+2)D.y=5(x﹣2)3.(2021•陕西)在平面直角坐标系中,将直线y=﹣2x向上平移3个单位,平移后的直线经过点(﹣1,m),则m的值为()A.﹣1B.1C.﹣5D.5 4.(2021•抚顺)如图,直线y=2x与y=kx+b相交于点P(m,2),则关于x的方程kx+b=2的解是()A.x=B.x=1C.x=2D.x=4 5.(2020•牡丹江)两个一次函数y=ax+b和y=bx+a,它们在同一个直角坐标系的图象可能是()A.B.C.D.6.(2021•乐山)如图,已知直线l1:y=﹣2x+4与坐标轴分别交于A、B两点,那么过原点O且将△AOB的面积平分的直线l2的解析式为()A.y=x B.y=x C.y=x D.y=2x 7.(2021•娄底)如图,直线y=x+b和y=kx+4与x轴分别相交于点A(﹣4,0),点B(2,0),则解集为()A.﹣4<x<2B.x<﹣4C.x>2D.x<﹣4或x>2 8.(2019•苏州)若一次函数y=kx+b(k,b为常数,且k≠0)的图象经过点A(0,﹣1),B(1,1),则不等式kx+b>1的解集为()A.x<0B.x>0C.x<1D.x>19.(2021•德阳)关于x,y的方程组的解为,若点P(a,b)总在直线y=x上方,那么k的取值范围是()A.k>1B.k>﹣1C.k<1D.k<﹣1 10.(2021•呼和浩特)在平面直角坐标系中,点A(3,0),B(0,4).以AB为一边在第一象限作正方形ABCD,则对角线BD所在直线的解析式为()A.y=﹣x+4B.y=﹣x+4C.y=﹣x+4D.y=4 11.(2019•江西)如图,在平面直角坐标系中,点A,B的坐标分别为(﹣,0),(,1),连接AB,以AB为边向上作等边三角形ABC.(1)求点C的坐标;(2)求线段BC所在直线的解析式.1.(2021•庐阳区校级一模)一次函数y=﹣2x﹣3的图象和性质.叙述正确的是()A.y随x的增大而增大B.与y轴交于点(0,﹣2)C.函数图象不经过第一象限D.与x轴交于点(﹣3,0)2.(2021•陕西模拟)平面直角坐标系中,直线y=﹣2x+m沿x轴向右平移4个单位后恰好经过(1,2),则m=()A.﹣1B.2C.﹣4D.﹣3 3.(2021•商河县校级模拟)若一次函数y=kx+b的图象经过一、二、四象限,则一次函数y=﹣bx+k的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限4.(2021•萧山区一模)已知y﹣3与x+5成正比例,且当x=﹣2时,y<0,则y关于x的函数图象经过()A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限5.(2021•陕西模拟)一次函数y=kx+b的图象经过点A(2,3),每当x增加1个单位时,y增加3个单位,则此函数表达式是()A.y=x+3B.y=2x﹣3C.y=3x﹣3D.y=4x﹣4 6.(2021•蕉岭县模拟)在平面直角坐标系中,一次函数y=mx+b(m,b均为常数)与正比例函数y=nx(n为常数)的图象如图所示,则关于x的方程mx=nx﹣b的解为()A.x=3B.x=﹣3C.x=1D.x=﹣17.(2021•奉化区校级模拟)八个边长为1的正方形如图摆放在平面直角坐标系中,经过原点的一条直线l将这八个正方形分成面积相等的两部分,则该直线l的解析式为()A.y=﹣x B.y=﹣x C.y=﹣x D.y=﹣x8.(2021•遵义一模)如图,直线y=kx+b(k<0)与直线y=x都经过点A(3,2),当kx+b>x时,x的取值范围是()A.x<2B.x>2C.x<3D.x>3 9.(2021•饶平县校级模拟)如图,函数y=ax+b和y=﹣x的图象交于点P,则根据图象可得,关于x,y的二元一次方程组中的解是()A.B.C.D.10.(2021•杭州模拟)已知直线l:y=kx+b经过点A(﹣1,a)和点B(1,a﹣4),若将直线l向上平移2个单位后经过原点,则直线的表达式为()A.y=2x+2B.y=2x﹣2C.y=﹣2x+2D.y=﹣2x﹣2 11.(2021•南山区校级二模)我国古代很早就对二元一次方程组进行了研究,古著《九章算术》记载用算筹表示二元一次方程组,发展到现代就是用矩阵式=来表示二元一次方程组,而该方程组的解就是对应两直线(不平行)a1x+b1y=c1与a2x+b2y=c2的交点坐标P(x,y)据此,则矩阵式=所对应两直线交点坐标是.12.(2021•杭州模拟)已知直线y=kx+b经过点A(5,0),B(1,4).(1)求直线AB的解析式;(2)若直线y=2x﹣4与直线AB相交于点C,求点C的坐标;(3)根据图象,写出关于x的不等式2x﹣4>kx+b的解集.。
安徽省2014年中考数学专题复习课件 第10课时 一次函数

皖考解读
考点聚焦
皖考探究
当堂检测
第10课时┃ 一次函数
变式题 [2012· 南宁] 如图 10-4,已知函数 y=x-2 和 y= -2x+1 的图象交于点
x=1, y=-1 . __________
x-y=2, P, 根据图象可得方程组 的解是 2 x + y = 1
A.x<0
解 析
图 10-3 B.x>0 C.x<2
D.x>2
观察一次函数的图象与 x 轴的交点为(2,0),
当 y>0 时,即函数图象位于 x 轴上方部分,对应的自变量 x 的取值范围为 x<2,故选 C.
皖考解读 考点聚焦 皖考探究 当堂检测
第10课时┃ 一次函数
(1) 两个一次函数的图象交点的坐标就是对应的二元一 次方程组的解; (2)根据两个一次函数图象的交点坐标, 结合函数的图象 可确定不等式的解集.
对于一次函数 y=(m+2)x+1, 若 y 随 x 的增 解 析 大而增大,则 m+2>0,解得 m>-2.
皖考解读
考点聚焦
皖考探究
当堂检测
第10课时┃ 一次函数
k 和 b 的符号作用:k 的符号决定一次函数的增减性,k>0 时,y 随 x 的增大而增大;k<0 时,y 随 x 的增大而减小.b 的 符号决定图象与 y 轴交点在 x 轴上方还是下方(上正,下负).
★★★★ ★★ ★
皖考探究
当堂检测
第10课时┃ 一次函数
考 点 聚 焦
考点1 一次函数与正比例函数的概念
正比例 形如 y=kx(k 是常数, k≠0)的函数是正比例函数. 函数 一次 一般地,形如 y=kx+b(k、b 是常数,k≠0)的函 函数 数是一次函数.
中考数学总复习训练 一次函数的实际应用含解析

一次函数的实际应用一、利用函数的解析式解决问题1.某市种植某种绿色蔬菜,全部用来出口.为了扩大出口规模,该市决定对这种蔬菜的种植实行政府补贴,规定每种植﹣亩这种蔬菜一次性补贴菜农若干元.经调查,种植亩数y(亩)与补贴数额x(元)之间大致满足如图1所示的一次函数关系.随着补贴数额x的不断增大,出口量也不断增加,但每亩蔬菜的收益z(元)会相应降低,且z与x之间也大致满足如图2所示的一次函数关系.(1)在政府未出台补贴措施前,该市种植这种蔬菜的总收益额为多少?(2)分别求出政府补贴政策实施后,种植亩数y和每亩蔬菜的收益z与政府补贴数额x之间的函数关系式;(3)要使全市这种蔬菜的总收益w(元)最大,政府应将每亩补贴数额x定为多少?并求出总收益w的最大值.2.某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如下表:x (元)15 20 25 …y (件)25 20 15 …若日销售量y是销售价x的一次函数.(1)求出日销售量y(件)与销售价x(元)的函数关系式;(2)求销售价定为30元时,每日的销售利润.3.如图,两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中给的数据信息,解答下列问题:(1)求整齐摆放在桌面上饭碗的高度y(cm)与饭碗数x(个)之间的一次函数解析式;(2)把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是多少?4.鞋子的“鞋码”和鞋长(cm)存在一种换算关系,下表是几组“鞋码”与鞋长换算的对应数值:(注:“鞋码”是表示鞋子大小的一种号码)鞋长(cm) 16 19 21 24鞋码(号) 22 28 32 38(1)设鞋长为x,“鞋码”为y,试判断点(x,y)在你学过的哪种函数的图象上;(2)求x、y之间的函数关系式;(3)如果某人穿44号“鞋码”的鞋,那么他的鞋长是多少?5.某市为了鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费,月用水量不超过20m3时,按2元/m3计费;月用水量超过20m3时,其中的20m3仍按2元/m3收费,超过部分按2.6元/m3计费.设每户家庭用水量为xm3时,应交水费y元.(1)分别求出0≤x≤20和x>20时y与x的函数表达式;(2)小明家第二季度交纳水费的情况如下:月份四月份五月份六月份交费金额30元34元42.6元小明家这个季度共用水多少立方米?6.一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y1(km),出租车离甲地的距离为y2(km),客车行驶时间为x(h),y1,y2与x 的函数关系图象如图所示:(1)根据图象,直接写出y1,y2关于x的函数关系式.(2)分别求出当x=3,x=5,x=8时,两车之间的距离.(3)若设两车间的距离为S(km),请写出S关于x的函数关系式.(4)甲、乙两地间有A、B两个加油站,相距200km,若客车进入A站加油时,出租车恰好进入B站加油.求A加油站到甲地的距离.7.我国是世界上严重缺水的国家之一.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费.即一月用水10吨以内(包括10吨)的用户,每吨收水费a元;一月用水超过10吨的用户,10吨水仍按每吨a元收费,超过10吨的部分,按每吨b元(b>a)收费.设一户居民月用水x吨,应收水费y元,y与x之间的函数关系如图所示.(1)求a的值;某户居民上月用水8吨,应收水费多少元;(2)求b的值,并写出当x>10时,y与x之间的函数关系式;(3)已知居民甲上月比居民乙多用水4吨,两家共收水费46元,求他们上月分别用水多少吨?二、利用函数的增减性解决问题8.某饮料厂为了开发新产品,用A种果汁原料和B种果汁原料试制新型甲、乙两种饮料共50千克,设甲种饮料需配制x千克,两种饮料的成本总额为y元.(1)已知甲种饮料成本每千克4元,乙种饮料成本每千克3元,请你写出y与x之间的函数关系式.(2)若用19千克A种果汁原料和17.2千克B种果汁原料试制甲、乙两种新型饮料,下表是试验的相关数据;请你列出关于x且满足题意的不等式组,求出它的解集,并由此分析如何配制这两种饮料,可使y值最小,最小值是多少?甲乙每千克饮料果汁含量果汁A 0.5千克0.2千克B 0.3千克0.4千克9.某厂工人小王某月工作的部分信息如下:信息一:工作时间:每天上午8:00~12:00,下午14:00~18:00,每月25天;信息二:生产甲、乙两种产品,并且按规定每月生产甲产品的件数不少于60件.生产产品件数与所用时间之间的关系见下表:生产甲产品数(件)生产乙产品数(件)所用时间(分)10 10 35030 20 850信息三:按件计酬,每生产一件甲产品可得1.50元,每生产一件乙产品可得2.80元.根据以上信息,回答下列问题:(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分;(2)小王该月最多能得多少元此时生产甲、乙两种产品分别多少件.10.“5.12”汶川特大地震灾害发生后,社会各界积极为灾区捐款捐物,某经销商在当月销售的甲种啤酒尚有2万元货款未收到的情况下,先将销售甲种啤酒全部应收货款的70%捐给了灾区,后又将该月销售乙种啤酒所得的全部货款的80%捐给了灾区.已知该月销售甲、乙两种啤酒共5000件,甲种啤酒每件售价为50元,乙种啤酒每件售价为35元,设该月销售甲种啤酒x件,共捐助救灾款y元.(1)该经销商先捐款元,后捐款元;(用含x的式子表示)(2)写出y与x的函数关系式,并求出自变量x的取值范围;(3)该经销商两次至少共捐助多少元?11.为支持四川抗震救灾,重庆市A、B、C三地现在分别有赈灾物资100吨、100吨、80吨,需要全部运往四川重灾地区的D、E两县.根据灾区的情况,这批赈灾物资运往D县的数量比运往E县的数量的2倍少20吨.(1)求这批赈灾物资运往D、E两县的数量各是多少?(2)若要求C地运往D县的赈灾物资为60吨,A地运往D的赈灾物资为x吨(x为整数),B地运往D县的赈灾物资数量小于A地运往D县的赈灾物资数量的2倍.其余的赈灾物资全部运往E县,且B地运往E县的赈灾物资数量不超过25吨.则A、B两地的赈灾物资运往D、E两县的方案有几种?请你写出具体的运送方案;(3)已知A、B、C三地的赈灾物资运往D、E两县的费用如下表:A地B地C地运往D县的费用(元/吨)220 200 200运往E县的费用(元/吨)250 220 210为及时将这批赈灾物资运往D、E两县,某公司主动承担运送这批赈灾物资的总费用,在(2)问的要求下,该公司承担运送这批赈灾物资的总费用最多是多少?12.某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.(1)今年三月份甲种电脑每台售价多少元?(2)为了增加收入,电脑公司决定再经销乙种型号电脑,已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?(3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a元,要使(2)中所有方案获利相同,a值应是多少此时,哪种方案对公司更有利?13.“5•12”四川汶川大地震的灾情牵动全国人民的心,某市A、B两个蔬菜基地得知四川C、D两个灾民安置点分别急需蔬菜240吨和260吨的消息后,决定调运蔬菜支援灾区.已知A蔬菜基地有蔬菜200吨,B蔬菜基地有蔬菜300吨,现将这些蔬菜全部调往C、D两个灾民安置点.从A地运往C、D两处的费用分别为每吨20元和25元,从B地运往C、D两处的费用分别为每吨15元和18元.设从B地运往C处的蔬菜为x吨.(1)请填写下表,并求两个蔬菜基地调运蔬菜的运费相等时x的值;C D 总计A 200吨B x吨300吨总计240吨260吨500吨(2)设A、B两个蔬菜基地的总运费为w元,写出w与x之间的函数关系式,并求总运费最小的调运方案;(3)经过抢修,从B地到C处的路况得到进一步改善,缩短了运输时间,运费每吨减少m 元(m>0),其余线路的运费不变,试讨论总运费最小的调运方案.14.某公司有A型产品40件,B型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:A型利润B型利润甲店200 170乙店160 150(1)设分配给甲店A型产品x件,这家公司卖出这100件产品的总利润为W(元),求W 关于x的函数关系式,并求出x的取值范围;(2)若公司要求总利润不低于17560元,说明有多少种不同分配方案,并将各种方案设计出来;(3)为了促销,公司决定仅对甲店A型产品让利销售,每件让利a元,但让利后A型产品的每件利润仍高于甲店B型产品的每件利润.甲店的B型产品以及乙店的A,B型产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大?一次函数的实际应用参考答案与试题解析一、利用函数的解析式解决问题1.某市种植某种绿色蔬菜,全部用来出口.为了扩大出口规模,该市决定对这种蔬菜的种植实行政府补贴,规定每种植﹣亩这种蔬菜一次性补贴菜农若干元.经调查,种植亩数y(亩)与补贴数额x(元)之间大致满足如图1所示的一次函数关系.随着补贴数额x的不断增大,出口量也不断增加,但每亩蔬菜的收益z(元)会相应降低,且z与x之间也大致满足如图2所示的一次函数关系.(1)在政府未出台补贴措施前,该市种植这种蔬菜的总收益额为多少?(2)分别求出政府补贴政策实施后,种植亩数y和每亩蔬菜的收益z与政府补贴数额x之间的函数关系式;(3)要使全市这种蔬菜的总收益w(元)最大,政府应将每亩补贴数额x定为多少?并求出总收益w的最大值.【考点】二次函数的应用;一次函数的应用.【专题】压轴题.【分析】(1)根据题意可知直接计算这种蔬菜的收益额为3000×800=2400000(元);(2)设种植亩数y和每亩蔬菜的收益z与政府补贴数额x之间的函数关系式分别为:y=kx+800,z=k1x+3000,并根据图象上点的坐标利用待定系数法求函数的解析式即可;(3)表示出蔬菜的总收益w(元)与x之间的关系式,w=﹣24x2+21600x+2400000,利用二次函数最值问题求最大值.【解答】解:(1)政府没出台补贴政策前,这种蔬菜的收益额为3000×800=2400000(元)(2)设种植亩数y和每亩蔬菜的收益z与政府补贴数额x之间的函数关系式分别为:y=kx+800,z=k1x+3000,分别把点(50,1200),(100,2700)代入得,50k+800=1200,100k1+3000=2700,解得:k=8,k1=﹣3,种植亩数与政府补贴的函数关系为:y=8x+800每亩蔬菜的收益与政府补贴的函数关系为z=﹣3x+3000(x>0)(3)由题意:w=yz=(8x+800)(﹣3x+3000)=﹣24x2+21600x+2400000=﹣24(x﹣450)2+7260000,∴当x=450,即政府每亩补贴450元时,总收益额最大,为7260000元.【点评】主要考查利用一次函数和二次函数的模型解决实际问题的能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义准确的列出解析式,再把对应值代入求解.利用二次函数的顶点坐标求最值是常用的方法之一.2.某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如下表:x (元)15 20 25 …y (件)25 20 15 …若日销售量y是销售价x的一次函数.(1)求出日销售量y(件)与销售价x(元)的函数关系式;(2)求销售价定为30元时,每日的销售利润.【考点】一次函数的应用.【专题】压轴题;图表型.【分析】(1)已知日销售量y是销售价x的一次函数,可设函数关系式为y=kx+b(k,b 为常数,且k≠0),代入两组对应值求k、b,确定函数关系式.(2)把x=30代入函数式求y,根据:(售价﹣进价)×销售量=利润,求解.【解答】解:(1)设此一次函数解析式为y=kx+b(k,b为常数,且k≠0).(1分)则.(2分)解得k=﹣1,b=40(4分)即一次函数解析式为y=﹣x+40(5分)(2)当x=30时,每日的销售量为y=﹣30+40=10(件)(6分)每日所获销售利润为(30﹣10)×10=200(元)(8分)【点评】本题主要考查用待定系数法求一次函数关系式,并会用一次函数研究实际问题.3.如图,两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中给的数据信息,解答下列问题:(1)求整齐摆放在桌面上饭碗的高度y(cm)与饭碗数x(个)之间的一次函数解析式;(2)把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是多少?【考点】一次函数的应用.【专题】应用题;压轴题.【分析】(1)可设y=kx+b,因为由图示可知,x=4时y=10.5;x=7时,y=15,由此可列方程组,进而求解;(2)令x=4+7,求出相应的y值即可.【解答】解:(1)设y=kx+b(k≠0).(2分)由图可知:当x=4时,y=10.5;当x=7时,y=15.(4分)把它们分别代入上式,得(6分)解得k=1.5,b=4.5.∴一次函数的解析式是y=1.5x+4.5(x是正整数).(8分)(2)当x=4+7=11时,y=1.5×11+4.5=21(cm).即把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是21cm.(10分)【点评】本题意在考查学生利用待定系数法求解一次函数关系式,并利用关系式求值的运算技能和从情景中提取信息、解释信息、解决问题的能力.而它通过所有学生都熟悉的摞碗现象构造问题,将有关数据以直观的形象呈现给学生,让人耳目一新.从以上例子我们看到,数学就在我们身边,只要我们去观察、发现,便能找到它的踪影;数学是有用的,它可以解决实际生活、生产中的不少问题.4.鞋子的“鞋码”和鞋长(cm)存在一种换算关系,下表是几组“鞋码”与鞋长换算的对应数值:(注:“鞋码”是表示鞋子大小的一种号码)鞋长(cm) 16 19 21 24鞋码(号) 22 28 32 38(1)设鞋长为x,“鞋码”为y,试判断点(x,y)在你学过的哪种函数的图象上;(2)求x、y之间的函数关系式;(3)如果某人穿44号“鞋码”的鞋,那么他的鞋长是多少?【考点】一次函数的应用.【专题】压轴题;图表型.【分析】(1)可利用函数图象判断这些点在一条直线上,即在一次函数的图象上;(2)可设y=kx+b,把两个点的坐标代入,利用方程组即可求解;(3)令(2)中求出的解析式中的y等于44,求出x即可.【解答】解:(1)如图,这些点在一次函数的图象上;(2)设y=kx+b,由题意得,解得,∴y=2x﹣10.(x是一些不连续的值.一般情况下,x取16、16.5、17、17.5、26、26.5、27等);(3)y=44时,x=27.答:此人的鞋长为27cm.【点评】本题首先利用待定系数法确定一次函数的解析式,然后利用函数实际解决问题.5.某市为了鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费,月用水量不超过20m3时,按2元/m3计费;月用水量超过20m3时,其中的20m3仍按2元/m3收费,超过部分按2.6元/m3计费.设每户家庭用水量为xm3时,应交水费y元.(1)分别求出0≤x≤20和x>20时y与x的函数表达式;(2)小明家第二季度交纳水费的情况如下:月份四月份五月份六月份交费金额30元34元42.6元小明家这个季度共用水多少立方米?【考点】一次函数的应用.【专题】应用题.【分析】(1)因为月用水量不超过20m3时,按2元/m3计费,所以当0≤x≤20时,y与x 的函数表达式是y=2x;因为月用水量超过20m3时,其中的20m3仍按2元/m3收费,超过部分按2.6元/m3计费,所以当x>20时,y与x的函数表达式是y=2×20+2.6(x﹣20),即y=2.6x ﹣12;(2)由题意可得:因为四月份、五月份缴费金额不超过40元,所以用y=2x计算用水量;六月份缴费金额超过40元,所以用y=2.6x﹣12计算用水量.【解答】解:(1)当0≤x≤20时,y与x的函数表达式是:y=2x;当x>20时,y与x的函数表达式是:y=2×20+2.6(x﹣20)=2.6x﹣12;(2)因为小明家四、五月份的水费都不超过40元,故0≤x≤20,此时y=2x,六月份的水费超过40元,x>20,此时y=2.6x﹣12,所以把y=30代入y=2x中得,2x=30,x=15;把y=34代入y=2x中得,2x=34,x=17;把y=42.6代入y=2.6x﹣12中得,2.6x﹣12=42.6,x=21.所以,15+17+21=53.答:小明家这个季度共用水53m3.【点评】本题是贴近社会生活的应用题,赋予了生活气息,使学生真切地感受到“数学来源于生活”,体验到数学的“有用性”.这样设计体现了《新课程标准》的“问题情景﹣建立模型﹣解释、应用和拓展”的数学学习模式.6.一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y1(km),出租车离甲地的距离为y2(km),客车行驶时间为x(h),y1,y2与x 的函数关系图象如图所示:(1)根据图象,直接写出y1,y2关于x的函数关系式.(2)分别求出当x=3,x=5,x=8时,两车之间的距离.(3)若设两车间的距离为S(km),请写出S关于x的函数关系式.(4)甲、乙两地间有A、B两个加油站,相距200km,若客车进入A站加油时,出租车恰好进入B站加油.求A加油站到甲地的距离.【考点】一次函数的应用.【分析】(1)可根据待定系数法来确定函数关系式;(2)可依照(1)得出的关系式,得出结果;(3)要根据图象中自变量的3种不同的取值范围,分类讨论;(4)根据(3)中得出的函数关系式,根据自变量的取值范围分别计算出A加油站到甲地的距离.【解答】解:(1)y1=60x(0≤x≤10),y2=﹣100x+600(0≤x≤6)(2)当x=3时,y1=180,y2=300,∴y2﹣y1=120,当x=5时y1=300,y2=100,∴y1﹣y2=200,当x=8时y1=480,y2=0,∴y1﹣y2=480.(3)当两车相遇时耗时为x,y1=y2,解得x=,S=y2﹣y1=﹣160x+600(0≤x≤)S=y1﹣y2=160x﹣600(<x≤6)S=60x(6<x≤10);(4)由题意得:S=200,①当0≤x≤时,﹣160x+600=200,∴x=,∴y1=60x=150.②当<x≤6时160x﹣600=200,∴x=5,∴y1=300,③当6<x≤10时,60x≥360不合题意.即:A加油站到甲地距离为150km或300km.【点评】本题通过考查一次函数的应用来考查从图象上获取信息的能力.借助函数图象表达题目中的信息,读懂图象是关键.注意自变量的取值范围不能遗漏.7.我国是世界上严重缺水的国家之一.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费.即一月用水10吨以内(包括10吨)的用户,每吨收水费a元;一月用水超过10吨的用户,10吨水仍按每吨a元收费,超过10吨的部分,按每吨b元(b>a)收费.设一户居民月用水x吨,应收水费y元,y与x之间的函数关系如图所示.(1)求a的值;某户居民上月用水8吨,应收水费多少元;(2)求b的值,并写出当x>10时,y与x之间的函数关系式;(3)已知居民甲上月比居民乙多用水4吨,两家共收水费46元,求他们上月分别用水多少吨?【考点】一次函数的应用;二元一次方程组的应用;分段函数.【分析】(1)由图中可知,10吨水出了15元,那么a=15÷10=1.5元,用水8吨,应收水费1.5×8元;(2)由图中可知当x>10时,有y=b(x﹣10)+15.把(20,35)代入一次函数解析式即可.(3)应先判断出两家水费量的范围.【解答】解:(1)a=15÷10=1.5.(1分)用8吨水应收水费8×1.5=12(元).(2分)(2)当x>10时,有y=b(x﹣10)+15.(3分)将x=20,y=35代入,得35=10b+15.b=2.(4分)故当x>10时,y=2x﹣5.(5分)(3)∵假设甲乙用水量均不超过10吨,水费不超过46元,不符合题意;假设乙用水10吨,则甲用水14吨,∴水费是:1.5×10+1.5×10+2×4<46,不符合题意;∴甲、乙两家上月用水均超过10吨.(6分)设甲、乙两家上月用水分别为x吨,y吨,则甲用水的水费是(2x﹣5)元,乙用水的水费是(2y﹣5)元,则(8分)解得:(9分)故居民甲上月用水16吨,居民乙上月用水12吨.(10分)【点评】本题主要考查了一次函数与图形的结合,应注意分段函数的计算方法.二、利用函数的增减性解决问题8.某饮料厂为了开发新产品,用A种果汁原料和B种果汁原料试制新型甲、乙两种饮料共50千克,设甲种饮料需配制x千克,两种饮料的成本总额为y元.(1)已知甲种饮料成本每千克4元,乙种饮料成本每千克3元,请你写出y与x之间的函数关系式.(2)若用19千克A种果汁原料和17.2千克B种果汁原料试制甲、乙两种新型饮料,下表是试验的相关数据;请你列出关于x且满足题意的不等式组,求出它的解集,并由此分析如何配制这两种饮料,可使y值最小,最小值是多少?甲乙每千克饮料果汁含量果汁A 0.5千克0.2千克B 0.3千克0.4千克【考点】一元一次不等式组的应用.【专题】应用题;压轴题.【分析】(1)由题意可知y与x的等式关系:y=4x+3(50﹣x)化简即可;(2)根据题目条件可列出不等式方程组,推出y随x的增大而增大,根据实际求解.【解答】解:(1)依题意得y=4x+3(50﹣x)=x+150;(2)依题意得解不等式(1)得x≤30解不等式(2)得x≥28∴不等式组的解集为28≤x≤30∵y=x+150,y是随x的增大而增大,且28≤x≤30∴当甲种饮料取28千克,乙种饮料取22千克时,成本总额y最小,即y最小=28+150=178元.【点评】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.注意本题的不等关系为:甲种果汁不超过19,乙种果汁不超过17.2.9.某厂工人小王某月工作的部分信息如下:信息一:工作时间:每天上午8:00~12:00,下午14:00~18:00,每月25天;信息二:生产甲、乙两种产品,并且按规定每月生产甲产品的件数不少于60件.生产产品件数与所用时间之间的关系见下表:生产甲产品数(件)生产乙产品数(件)所用时间(分)10 10 35030 20 850信息三:按件计酬,每生产一件甲产品可得1.50元,每生产一件乙产品可得2.80元.根据以上信息,回答下列问题:(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分;(2)小王该月最多能得多少元此时生产甲、乙两种产品分别多少件.【考点】二元一次方程组的应用;一次函数的应用.【专题】压轴题;阅读型;图表型.【分析】(1)设生产一件甲种产品需x分,生产一件乙种产品需y分,利用待定系数法求出x,y的值.(2)设生产甲种产品用x分,则生产乙种产品用(25×8×60﹣x)分,分别求出甲乙两种生产多少件产品.【解答】解:(1)设生产一件甲种产品需x分,生产一件乙种产品需y分.由题意得:(2分)即:解这个方程组得:答:生产一件甲产品需要15分,生产一件乙产品需要20分.(4分)(2)设生产甲种产品共用x分,则生产乙种产品用(25×8×60﹣x)分.则生产甲种产品件,生产乙种产品件.(5分)∴w总额===0.1x+1680﹣0.14x=﹣0.04x+1680(7分)又,得x≥900,由一次函数的增减性,当x=900时w取得最大值,此时w=0.04×900+1680=1644(元)此时甲有(件),乙有:(件)(9分)答:小王该月最多能得1644元,此时生产甲、乙两种产品分别60,555件.【点评】通过表格当中的信息,我们可以利用列方程组来求出生产甲、乙两种产品的时间,然后利用列函数关系式表示出小王得到的总钱数,然后利用一次函数的增减性求出钱数的最大值.10.“5.12”汶川特大地震灾害发生后,社会各界积极为灾区捐款捐物,某经销商在当月销售的甲种啤酒尚有2万元货款未收到的情况下,先将销售甲种啤酒全部应收货款的70%捐给了灾区,后又将该月销售乙种啤酒所得的全部货款的80%捐给了灾区.已知该月销售甲、乙两种啤酒共5000件,甲种啤酒每件售价为50元,乙种啤酒每件售价为35元,设该月销售甲种啤酒x件,共捐助救灾款y元.(1)该经销商先捐款元,后捐款元;(用含x的式子表示)(2)写出y与x的函数关系式,并求出自变量x的取值范围;(3)该经销商两次至少共捐助多少元?【考点】一次函数的应用.【专题】压轴题.【分析】(1)根据题意可直接得出经销商先捐款50x•70%=35x元,后捐款35(5000﹣x)•80%或(140000﹣28x)元;(2)根据题意可列出式子为y=7x+140000,根据“50x﹣20000≥0”,“5000﹣x>0”求出自变量取值范围为400≤x<5000;(3)当x=400时,y最小值=142800.【解答】解:(1)50x•70%或35x,35(5000﹣x)•80%或(140000﹣28x);(2)y与x的函数关系式为:y=7x+140000,由题意得解得400≤x<5000,∴自变量x的取值范围是400≤x<5000;(3)∵y=7x+140000是一个一次函数,且7>0,400≤x<5000,∴当x=400时,y最小值=142800.答:该经销商两次至少共捐款142800元.【点评】主要考查利用一次函数的模型解决实际问题的能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义求解.注意要根据自变量的实际范围确定函数的最值.11.为支持四川抗震救灾,重庆市A、B、C三地现在分别有赈灾物资100吨、100吨、80吨,需要全部运往四川重灾地区的D、E两县.根据灾区的情况,这批赈灾物资运往D县的数量比运往E县的数量的2倍少20吨.(1)求这批赈灾物资运往D、E两县的数量各是多少?(2)若要求C地运往D县的赈灾物资为60吨,A地运往D的赈灾物资为x吨(x为整数),B地运往D县的赈灾物资数量小于A地运往D县的赈灾物资数量的2倍.其余的赈灾物资全部运往E县,且B地运往E县的赈灾物资数量不超过25吨.则A、B两地的赈灾物资运往D、E两县的方案有几种?请你写出具体的运送方案;(3)已知A、B、C三地的赈灾物资运往D、E两县的费用如下表:A地B地C地运往D县的费用(元/吨)220 200 200运往E县的费用(元/吨)250 220 210为及时将这批赈灾物资运往D、E两县,某公司主动承担运送这批赈灾物资的总费用,在(2)问的要求下,该公司承担运送这批赈灾物资的总费用最多是多少?【考点】一元一次不等式组的应用;一次函数的应用.【专题】压轴题;方案型.【分析】(1)设这批赈灾物资运往D县的数量为a吨,运往E县的数量为b吨,得到一个二元一次方程组,求解即可.(2)根据题意得到一元二次不等式,再找符合条件的整数值即可.(3)求出总费用的函数表达式,利用函数性质可求出最多的总费用.【解答】解:(1)设这批赈灾物资运往D县的数量为a吨,运往E县的数量为b吨.(1分)由题意,得(2分)解得(3分)答:这批赈灾物资运往D县的数量为180吨,运往E县的数量为100吨.(4分)(2)由题意,得(5分)解得即40<x≤45.∵x为整数,∴x的取值为41,42,43,44,45.(6分)则这批赈灾物资的运送方案有五种.具体的运送方案是:方案一:A地的赈灾物资运往D县41吨,运往E县59吨;B地的赈灾物资运往D县79吨,运往E县21吨.。
中考数学复习题纲—10 函数(一次函数、正比例函数)

中考数学复习题纲—10 函数(一次函数、正比例函数)函 数x 数量(标量):一些量在取定度量单位后,可用一个实数来表示。
如距离、时间、面积、质量等。
向量(矢量):一些量不但有大小,而且有方向。
如位移、速度、力等。
量常量:在某一变化过程中,始终保持不变的量叫做常量。
在某一变化过程中,如果对每一个实数 ,可以按变量:y y x xy 照某一确定的对应法则,得到唯一一个实数 ,那么就称 是关于 的一个函数,其中 叫做自变量, 叫做因变量。
自变量的广义解释:任何一个系统(或模型)都是由各种变量构成的,当我们分析这些系统(或模型)时,可以选择研究其中一些变量对另一些变量的影响,那么我们选择的这些变量就称为自变量,而被影响的量就被称为因变量。
例如:我们可以分析人体这个系统中,呼吸对于维持生命的影响,那么呼吸就是自变量,而生命维持的状态被认为是因变量。
系统和模型可以是一个二元函数这么简单,也可是整个社会这样复杂。
:::⎧⎧⎨⎪⎩⎪⎪⎧⎨⎪⎪⎨⎪⎪⎪⎩⎩满足解析式的坐标所表示的点都在图象上函数与点的坐标在图象上的点的坐标都满足解析式函数列表法不必通过计算就可以知道自变量与因变量的对应关系。
表示方法解析法便于用解析式去研究函数的性质。
图象法可以从整体上直观形象地表示出函数的变化情况。
函数与二次函数的一些基本性质:⇔点图象坐标解析式(即图象所对应的方程)1. 坐标满足函数解析式的点一定在函数的图象上,反之函数图象上的点的坐标一定满足函数解析式,因此判断平面直角坐标系中的一个点是否在函数图象上,只需把点的坐标代入函数解析式进行检验,能满足函数解析式的表明点在图象上,不满足函数解析式的则表明点不在图象上。
2. 求两个函数的交点坐标,即求这两个函数解析式组成的二元方程组的解。
3. 在解决有关函数的问题时,要注意利用平面直角坐标系中X 轴与Y 轴之间的夹角为直角、以及勾股定理等平面几何知识,要能很熟练地求出函数与坐标轴的交点坐标。