胡汉才编著《理论力学》课后习题答案第3章习题解答(精编文档).doc

合集下载

理论力学(胡运康)第三章作业答案

理论力学(胡运康)第三章作业答案

11
3-26 已知:M1=10kN,求FBx 、 FBy 、MB 、FAC 、 FEx 、 FEy 解: 1、整体:
∑M
∑F
MB
FBx FBy
x
B
= 0 ⇒ MB
= 0 ⇒ FBx = 0
= 0 ⇒ FBy
∑F
y
2、AB: FD
A
FEy
E
∑M
FEx
B
E
= 0 ⇒ FD
∑F
∑F
x
= 0 ⇒ FEx
= 0 ⇒ FEy
3-42 已知:q1=4kN/m , q2=2kN/m ,F =2 kN ,M=2 kN.m 。求 A、B处受力;销钉C所受的力。
F1 F2
F B FB FC1y C FC2y
C FC2y 1m
4/3 m
q 解: 1、BC: F1 = 1 ⋅ 2 = 4kN, 2
F2 =
1 q1 ⋅ ⋅ 2 = 2kN 2 2
M1 B
FE
Aቤተ መጻሕፍቲ ባይዱ
∑M
2、DC:
M2
FC
x
A
= 0, ⇒ FE
F'E
D
FE= F'E
C FCy
∑M
C
= 0, ⇒ M 2
8
3-17 求 机构平衡时力偶M1、M2的关系。
FAx FAy
A
FD F'D D
B
M1
FD= F'D
FCx
M2
C FCy
解: 1、AB: ∑ M A = 0, FD ⋅ d − M 1 = 0, ⇒ FD = M 1
2
3-3
几何法

理论力学(哈工第七版) 课后练习答案 第三部分

理论力学(哈工第七版)  课后练习答案 第三部分
O M
A
ϕ
O
r ϕ
M
W=

∫ 4ϕ dϕ + (m
0
− mB ) g ⋅ 2π r
A B
A mAg
= 8π 2 + (mA − mB ) g ⋅ 2π r = 8π 2 + 1× 9.8 × 2π × 0.5 = 110 (J)
B
mBg
(a)
(b)
7
12-4 图示坦克的履带质量为 m,两个车轮的质量均为 m1。车轮被看成均质圆盘,半径为 R, 两车轮间的距离为 πR。设坦克前进速度为 v,计算此质点系的动能。 解:系统的动能为履带动能和车轮动能之和。将履带分为四部 分,如图b 所示。履带动能:
O
P2 P aB − 1 a A = FN − P 1−P 2 g g
其中, a A = a , aB = 解得
A
a 2 1 (2 P 1−P 2 )a 2g
B
(a)
FN = P 1+P 2 −
v FN
O
v P 1
A
v aA
v aB B
v P2
(b)
11-1 质量为 m 的点在平面 Oxy 内运动,其运动方程为

G1
320
B C
SB
S A = 170 mm S B = 90 mm
(b)
2
10-12 图示滑轮中,两重物 A 和 B 的重量分别为 P1 和 P2。如物体 A 以加速度 a 下降, 不计滑轮质量,求支座 O 的约束力。 解:对整体进行分析,两重物的加速度和支座 O 的约束力如图b 所示。由 动量定理知:
整体受力和运动分析如图b因为0xf所以x方向系统守恒有21cos0brbmvmvv??解得121cosbrmmvvm1所以该系统动能为设此时三棱柱a沿三棱柱b下滑的距离为s则其重力作的功为1sinwmgs??系统动能22b211221sin12cosmmtmmvm由系统动能定理tw即1sinwmgs??上式对时间求导并注意到rdsdtv整理后得22112121sinsincosbbrmmmmvamgvm?????得2b2a212b2b2r2122b21122

理论力学答案第三章

理论力学答案第三章

《理论力学》第三章作业参考答案习题3-9解:力F在x 、y 坐标轴上的投影分别为:)(03.169100050301010222N F x =⨯++=)(09.507100050301030222N F y =⨯++=力F作用点的坐标为1500.15x m m m =-=-,(10050)0.15y mm m =+=。

所以,0.15507.090.15169.09101.4(.)Z y x M xF yF N m =-=-⨯-⨯≈-答: 力F对z 轴的力矩为-101.4Nm .习题3-11解:力F在x 、y 、z 坐标轴上的投影分别为:00cos 60cos 304x F F F ==1cos 60sin 304y F F F=-=-FF F Z 2360sin 0-=-=力F的作用点C 的坐标为1sin 302o x r r==,cos 302o y r ==,z h =。

所以,()Fr h F h F r zF yF My z X341412323-=⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=-=()F r h F r F h xF zF Mz x y+=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛=-=4323243rF F r F r yF xF Mxy Z214323412-=⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=-=答:力F对x 、y 、z 轴的矩分别为:()134h r F -,)4h r F +,12rF-。

习题3-12解:以整个支架为研究对象。

由于各杆为二力杆,球铰链A 、B 、C 处的约束力A F 、B F 、C F 沿杆件连线汇交于D 端球铰链,与物块的重力P构成一空间汇交力系,其受力情况如图所示。

以O 为原点建立坐标系,列平衡方程,我们有⎪⎪⎩⎪⎪⎨⎧===∑∑∑000z y x F F F⎪⎩⎪⎨⎧=-++=++=-015sin 30sin 45sin 30sin 45sin 015cos 30cos 45sin 30cos 45sin 045cos 45cos 000000000000P F F F F F F F F C B A C B A B A 解之得:()()()cos1526.39()2sin 45sin 3015cos1526.39()2sin 45sin 3015cos 3033.46()sin 3015o A o o ooB o o ooC o o P F kN P F kN F P kN ⎧⎪==-⎪⎪⎪==⎨-⎪⎪⎪=-=-⎪-⎩答:铰链A 、B 的约束力均等于26.39kN ,方向与图示相同,即为压力,铰链C 的约束力等于-33.46 kN ,方向与图示相反,即为拉力。

理论力学第三章的课后习题答案

理论力学第三章的课后习题答案

F
x
0
FAx FC sin 30o 0
FAy FC cos30o 20 6 0


Fy 0
M A (F ) 0
M A FC cos 30o 9 40 20 6 6 0
杆BC:

M B (F ) 0
FC cos 30o 6 20 6 3 0
理论力学第三章的课后习题答案课后习题答案网选修44课后习题答案毛概课后习题答案数学课后习题答案微生物课后习题答案课后习题答案土力学课后习题答案理论力学习题理论力学答案
第三章 平面任意力系
作业
3-4 静定多跨梁的荷载及尺寸如图3.30(a)、(b)所示, 长度单位为m,求支座约束反力。
20kN/m 40kN·m A A 3 (a) B 6 C
20kN/m
联立求解,可得: F Ax 20kN /m20 3kN
MA
40kN·m A 3 B
F Ax
FAy 60kN
FC M A6 220 kN m 30
C
FBx
B 6
C
FAy
FBy
30
FC
FC 40 3kN
5kN A B 1 1
2.5kN/m
5kN ·m D
5kN
FAx பைடு நூலகம்Ay
5kN
2.5kN/m
5kN·m D
30
1 1
B 2
C 2 (b) 2
图3.30
20kN/ m 40kN ·m A 3 (a) B 6 C
30
MA F Ax
20kN/m 40kN·m A 3 B 6 C
FAy
30

理论力学第三版课后答案第3章

理论力学第三版课后答案第3章

r 由式(1)在 τ 向的坐标式,可得点 B 的速度 r τ : vB = vO + rω = 2rω
aw .
re vω B r vO
r n
(1)
co
τ
r
m
固定圆弧纯滚动由点 O′ 到点O,有 AD = AD′ ,即 r (φ + θ ) = Rθ ,得 rφ = (R − r )θ ,两边对时


ww w
r 公共基 e 的坐标式为 rA = rB + A1 ρBA ,展开,考虑到图
r x2 r x3
r y3
C
3-2Ca 有

θ3

0 ⎛ xA ⎞ ⎛ ⎞ ⎛ cos φ1 ⎜ ⎜y ⎟ ⎟=⎜ ⎜ l sin (α − φ )⎟ ⎟+⎜ ⎜ 1 ⎠ ⎝ sin φ1 ⎝ A⎠ ⎝
− sin φ1 ⎞⎛ l cos α ⎞ ⎟⎜ ⎟ ⎜ ⎟ cos φ1 ⎟ ⎠⎝ 0 ⎠
aw .
r y2
B
r r 连体基 e 2 相对于与连体基 e 1 的位形为
r y
co
A
(1)
m
r y1 r x1
φ1 α
r r r r (2)对于连体基 e 1 ,由图 3-2Ca 有 rA = rB + ρ BA 在
.k hd
ρ = (0 − l sin α ) , θ 3 =
1 C T
π
2
−α
(2)
洪嘉振等《理论力学》第 3 版习题详解
1
3-1C 试确定图示各机构中刚体 B2 的位形和它们相对于公共基的方向余弦阵。
r y
r y r y
C b
B2

理论力学第三章习题解答

理论力学第三章习题解答
T
连杆 B2 :连体基基点 B 的矢径 r2 ,坐标阵 r2 = (0 b ) ,连体基的姿态角为
π ϕ 2 = 。瞬时位形坐标 q 2 = r2T 4
(
ϕ2 )
T
⎛ = ⎜0 b ⎝
π⎞ ⎟ 4⎠
T
-2-
⎛ cos ϕ 2 A2 = ⎜ ⎜ sin ϕ 2 ⎝
⎛ − sin ϕ 2 ⎞ ⎜ ⎟=⎜ cos ϕ 2 ⎟ ⎠ ⎜ ⎜ ⎝
3r 2
π⎞ ⎟ 3⎟ ⎠
T
⎛ cos ϕ 3 A3 = ⎜ ⎜ sin ϕ 3 ⎝
⎛ − sin ϕ 3 ⎞ ⎜ ⎟=⎜ cos ϕ 3 ⎟ ⎠ ⎜ ⎜ ⎝
3⎞ ⎟ 2 ⎟ 1 ⎟ ⎟ 2 ⎠
(3) 凸轮挺杆机构,其中 O 为偏心轮,AB 为挺杆。
-4-
题 3-1 图 题 3-1 答案图(3) 解:建立公共参考基 O − e ,对二个构件进行编号并建立连体基
⎛ cos ϕ 2 A2 = ⎜ ⎜ sin ϕ 2 ⎝
T 2
ϕ2 )
T
⎛ = ⎜0 ⎝
r 2
⎞ 0⎟ , ⎠
T
− sin ϕ 2 ⎞ ⎛ 1 0 ⎞ ⎟=⎜ ⎟ ⎜ ⎟ cos ϕ 2 ⎟ ⎠ ⎝0 1⎠
-7-
3-2 图示长为 0.2m 的直杆,一端沿水平线运动,方向如图所示,一端沿 铅垂线运动,分别在其端部 A 和杆件中点 C,以及在其端部 A 和 B 分别建立两 个连体基。试求两个连体基位形坐标之间的关系。
理论力学第三章习题解答理论力学习题解答理论力学课后习题答案理论力学习题理论力学习题集理论力学运动学习题理论力学习题详解理论力学习题答案理论力学课后习题理论力学复习题及答案
第三章习题解答

理论力学课后习题部分答案

理论力学课后习题部分答案

B
A FAC FBA
P
(l)
(l1)
(l2)
(l3)
图 1-1
1-2 画出下列每个标注字符的物体的受力图。题图中未画重力的各物体的自重不计,所 有接触处均为光滑接触。
(a)
B
FN1
C
FN 2
P2 P1
FAy
A
FAx
(a2)
(b)
FN1
A
P1
FN
(b2)
C
FN′
P2
(a1)
B
FN1
FN 2
FN
P1
F Ay
FCy
FAx (f2)
C FC′x
FC′y F2
FBy
FBx B (f3)
FAy A FAx
FB
C B
(g)
FAy
FAx A
D FT C FCx
(g2)
FB
B
F1
FB′ B
FAy
A
FAx
(h)
(h1)
P (g1)
FC′y
FT
C
FC′x
P (g3)
D
FCy
FB
F2
C FCx
B
(h2)
A FAx
FAy
FCy
D FAy
A
FAx
(k3)
6
FB
F1
FB′
B B
FD D
(l) FD′ D
A FA
(l1) F2
C
FC (l2)
F1
D
F2
B
A
E
FE
FA
(l3) 或
F1
FB′

完整word版理论力学课后习题及答案解析

完整word版理论力学课后习题及答案解析

理论力学教科书课后习题及解析第一章偶,大小是260Nm,转向是逆时针。

.求图示平面力系的合成结果,长度单位为m1习题4-习题4-3.求下列各图中平行分布力的合力和对于A点之矩。

A点的矩是:(1) 解:平行力系对O(1) 解:取点为简化中心,求平面力系的主矢:B取点为简化中心,平行力系的主矢是:求平面力系对点的主矩:O 点的主矩是:B 平行力系对B RB向点简化的结果是一个力,且:M和一个力偶合成结果:平面力系的主矢为零,主矩不为零,力系的合成结果是一个合力(2) B.理论力学教科书课后习题及解析A,且:M向A点简化的结果是一个力如图所示;R和一个力偶A如图所示;将,使满足:d R向下平移一段距离B的大小等于载荷分布的其几何意义是:。

R最后简化为一个力R,大小等于R B,使满足:d R将向右平移一段距离A矩形面积,作用点通过矩形的形心。

A(2) 取点为简化中心,平行力系的主矢是:的大小等于载荷分布的R。

其几何意义是:RR最后简化为一个力,大小等于A三角形面积,作用点通过三角形的形心。

点的主矩是:A平行力系对.理论力学教科书课后习题及解析列平衡方程:。

.求下列各梁和刚架的支座反力,长度单位为习题4-4m解方程组:反力的实际方向如图示。

校核:解:(1) 研究AB杆,受力分析,画受力图:结果正确。

(2) 研究AB杆,受力分析,将线性分布的载荷简化成一个集中力,画受力图:理论力学教科书课后习题及解析(3) 研究ABC,受力分析,将均布的载荷简化成一个集中力,画受力图:列平衡方程:解方程组:列平衡方程:反力的实际方向如图示。

校核:解方程组:结果正确。

.理论力学教科书课后习题及解析反力的实际方向如图示。

校核:结果正确。

的约束反力A.重物悬挂如图,已知习题4-5G=1.8kN,其他重量不计;求铰链和杆BC所受的力。

列平衡方程:解方程组:BC是二力杆),画受力图:研究整体,受力分析((1) 解:反力的实际方向如图示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【最新整理,下载后即可编辑】
3-3在图示刚架中,已知kN/m
3
=
m
q,2
6
=
F kN,m
kN
10⋅
=
M,不计刚架自重。

求固定端A处的约束力。

m
kN
12
kN
6
0⋅
=
=
=
A
Ay
Ax
M
F
F,

3-4杆AB及其两端滚子的整体重心在G点,滚子搁置在倾斜的光滑刚性平面上,如图所示。

对于给定的θ角,试求平衡时的β角。

A
θ
3
l
G
β
G
θ
B
B
F
A
R
F3
2l
O
解:解法一:AB为三力汇交平衡,如图所示ΔAOG中
β
sin
l
AO=,θ-︒
=
∠90
AOG,β-︒
=
∠90
OAG,β
θ+
=
∠AGO
由正弦定理:
)
90
sin(
3
)
sin(
sin
θ
β
θ
β
-

=
+
l
l,
)
cos
3
1
)
sin(
sin
θ
β
θ
β
=
+
l
即β
θ
β
θ
θ
βsin
cos
cos
sin
cos
sin
3+
=
即θ
βtan
tan
2=
)
tan
2
1
arctan(θ
β=
解法二::
=

x
F,0
sin
R
=

G
F A(1)
=

y
F,0
cos
R
=

G
F B(2)
)(=∑F A M ,0
sin )sin(3
R =++-β
βθl F l
G B (3)
解(1)、(2)、(3)联立,得
)tan 2
1
arctan(θβ=
3-5 由AC 和CD 构成的组合梁通过铰链C 连接。

支承和受力如图所示。

已知均布载荷强度kN/m 10=q ,力偶矩m kN 40⋅=M ,不计梁重。

kN 15kN 5kN 40kN 15===-=D C B A F F F F ;;;
解:取CD 段为研究对象,受力如图所示。

0)(=∑F C M ,024=--q M F D ;kN 15=D F 取图整体为研究对象,受力如图所示。

0)(=∑F A M ,01682=--+q M F F D B ;kN 40=B F 0=∑y F ,04=+-+D B Ay F q F F ;kN 15-=Ay F 0=∑x F ,0=Ax F
3-6如图所示,组合梁由AC 和DC 两段铰接构成,起重机放在梁上。

已知起重机重P1 = 50kN ,重心在铅直线EC 上,起重载荷P2 = 10kN 。

如不计梁重,求支座A 、B 和D 三处的约束反力。

解:(1)取起重机为研究对象,受力如图。

0)(=∑F F M ,0512P R =--W F F G ,kN 50R =G F
(2)取CD 为研究对象,受力如图
0)(=∑F C M ,016'R R =-G D F F ,kN 33.8R =D F
(3)整体作研究对象,受力图(c ) 0)(=∑F A M ,0361012R P R =+--B D F F W F ,kN 100R =B F
0=∑x F ,0=Ax F
0=∑y F ,kN 33.48-=Ay F
3-7 构架由杆AB,AC和DF铰接而成,如图所示。

在DEF杆上作用一矩为M的力偶。

不计各杆的重量,求AB杆上铰链A,D 和B所受的力。

3-8 图示构架中,物体P 重1200N ,由细绳跨过滑轮E 而水平系于墙上,尺寸如图。

不计杆和滑轮的重量,求支承A 和B 处的约束力,以及杆BC 的内力F BC 。

解:(1)整体为研究对象,受力图(a ),W F =T 0=∑A M ,0)5.1()2(4T R =--+-⋅r F r W F B ,N 1050R =B F 0=∑x F ,N 1200T ===W F F Ax 0=∑y F ,N 501=Ay F
(2)研究对象CDE (BC 为二力杆),受力图(b ) 0=∑D M ,0)5.1(5.1sin T =-+⋅+⨯r F r W F BC θ
N 15005
41200
sin -=-=-=
θ
W F BC (压力)
3-9 图示结构中,A 处为固定端约束,C 处为光滑接触,D 处为铰链连接。

已知
N
40021==F F ,m N 300⋅=M ,mm 400==BC AB ,
mm 300==CE CD ,︒=45α,不计各构件自重,求固定端A 处与铰链
D 处 的约束
力。

3-10 图示结构由直角弯杆DAB与直杆BC、CD铰接而成,并在A 处与B处用固定铰支座和可动铰支座固定。

杆DC受均布载荷q 的作用,杆BC受矩为2qa
M 的力偶作用。

不计各构件的自重。

求铰链D受的力。

3-11 图示构架,由直杆BC,CD及直角弯杆AB组成,各杆自重
不计,载荷分布及尺寸如图。

在销钉B上作用载荷P。

已知q、a、
M、且2qa
M 。

求固定端A的约束力及销钉B对BC杆、AB杆的作用力。

3-12无重曲杆ABCD有两个直角,且平面ABC与平面BCD垂直。

杆的D端为球铰支座,A端为轴承约束,如图所示。

在曲杆的AB、BC和CD上作用三个力偶,力偶所在平面分别垂直于AB、BC和CD三线段。

已知力偶矩M
2
和M3 ,求使曲杆处于平衡的力偶矩
M
1和D
A、处的约束力。

解:如图所示:ΣF x = 0,F Dx = 0
ΣM y = 0,012=⋅-d F M Az ,1
2d M F
Az
=
ΣF z = 0,1
2d M F
Dz
-
=
ΣM z = 0,013=⋅+d F M Ay ,1
3
d
M F Ay -= ΣF y = 0,1
3
d M F
Dy
=
ΣM x = 0,0231=⋅+⋅--d F d F M Az Ay ,21
231
3
1M d
d M d d M += 3-13在图示转轴中,已知:Q=4KN ,r=0.5m ,轮C 与水平轴AB 垂直,自重均不计。

试求平衡时力偶矩M 的大小及轴承A 、B 的约束反力。

解:Σm Y =0, M -Qr=0, M=2KN ·m
ΣY=0, N AY =0
Σmx=0, N Bz ·6-Q ·2=0, N BZ =4/3KN
Σmz=0, N BX =0 ΣX=0, N AX =0
ΣZ=0, N AZ +N Bz -Q=0,N AZ =8/3KN
3-14匀质杆AB 重Q 长L ,AB 两端分别支于光滑的墙面及水平地板上,位置如图所示,并以二水平索AC 及BD 维持其平衡。

试求(1)墙及地板的反力;(2)两索的拉力。

解:ΣZ=0 N B =Q
Σmx=0
N B ·BDsin30°-Q ·2
1BDsin30°-Sc ·BDtg60°=0
Sc=0.144Q Σm Y =0
-N B ·BDsin60°+Q ·2
1BDsin60°+N A ·BDtg60°=0
N A =0.039Q
ΣY=0 -S B cos60°+Sc=0 S B =0.288Q
3-15 平面悬臂桁架所受的载荷如图所示。

求杆1,2和3的内力。

3-16 平面桁架的支座和载荷如图所示。

ABC为等边三角形,E,
F为两腰中点,又AD=DB。

求杆CD的内力
F。

CD
解:ED 为零杆,取BDF 研究,F CD =-0.866F
3-17 桁架受力如图所示,已知kN 101=F ,kN 2032==F F 。

试求桁
架4,5,7,10各杆的内力。

3-18 平面桁架的支座和载荷如图所示,求杆1,2和3的内力。

3-19 均质圆柱重P、半径为r,搁在不计自重的水平杆和固定斜面之间。

杆端A为光滑铰链,D端受一铅垂向上的力F,圆柱上作用一力偶。

如图所示。

已知P
F=,圆柱与杆和斜面间的静滑动摩擦系数皆为f S=0.3,不计滚动摩阻,当︒
α时,AB=BD。


=45
此时能保持系统静止的力偶矩M的最小值。

3-20 如图所示,A块重500N,轮轴B重1000N,A块与轮轴的轴以水平绳连接。

在轮轴外绕以细绳,此绳跨过一光滑的滑轮D,在绳的端点系一重物C。

如A块与平面间的摩擦系数为0.5,轮轴与平面间的摩擦系数为0.2,不计滚动摩阻,试求使系统平衡时物体C的重量P的最大值。

相关文档
最新文档