3.4生活中的优化问题举例
3-4 生活中的优化问题举例

能力拓展提升一、选择题11.某公司生产一种产品,固定成本为20 000元,每生产一单位的产品,成本增加100元,若总收入R 与年产量x (0≤x ≤390)的关系是R (x )=-x 39 000+400x,0≤x ≤390,则当总利润最大时,每年生产的产品单位数是( )A .150B .200C .250D .300[答案] D[解析] 由题意可得总利润P (x )=-x 3900+300x -20 000,0≤x ≤390.由P ′(x )=0,得x =300.当0≤x ≤300时,p ′(x )>0;当300<x ≤390时,P ′(x )<0,所以当x =300时,P (x )最大,故选D.12.三棱锥O -ABC 中,OA 、OB 、OC 两两垂直,OC =2x ,OA =x ,OB =y ,且x +y =3,则三棱锥O -ABC 体积的最大值为( )A .4B .8 C.43 D.83[答案] C[解析] V =13×2x 22·y =x 2y 3=x 2(3-x )3=3x 2-x33(0<x <3),V ′=6x -3x 23=2x -x 2=x (2-x ). 令V ′=0,得x =2或x =0(舍去). ∴x =2时,V 最大为43.13.要制作一个圆锥形的漏斗,其母线长为20cm ,要使其体积最大,则高为( )A.33cm B.1033cm C.1633cm D.2033cm[答案] D[解析] 设圆锥的高为x ,则底面半径为202-x 2, 其体积为V =13πx (400-x 2) (0<x <20), V ′=13π(400-3x 2),令V ′=0,解得x =2033. 当0<x <2033时,V ′>0;当2033<x <20时,V ′<0 所以当x =2033时,V 取最大值.14.若一球的半径为r ,作内接于球的圆柱,则其圆柱侧面积最大值为( )A .2πr 2B .πr 2C .4πr 2D.12πr 2[答案] A[解析] 设内接圆柱的底面半径为r 1,高为t ,则S =2πr 1t =2πr 12r 2-r 21=4πr 1r 2-r 21. ∴S =4πr 2r 21-r 41. 令(r 2r 21-r 41)′=0得r 1=22r .此时S =4π·22r ·r 2-⎝ ⎛⎭⎪⎫22r 2=4π·22r ·22r =2πr 2. 二、填空题15.做一个容积为256的方底无盖水箱,它的高为________时最省料.[答案] 4[解析] 设底面边长为x ,则高为h =256x 2,其表面积为S =x 2+4×256x 2×x =x 2+256×4x ,S ′=2x -256×4x 2,令S ′=0,则x =8,则当高h =25664=4时S 取得最小值.16.某厂生产某种产品x 件的总成本:C (x )=1 200+275x 3,又产品单价的平方与产品件数x 成反比,生产100件这样的产品的单价为50元,总利润最大时,产量应定为________件.[答案] 25[解析] 设产品单价为a 元,又产品单价的平方与产品件数x 成反比,即a 2x =k ,由题知a =500x .总利润y =500x -275x 3-1 200(x >0),y ′=250x -225x 2,由y ′=0,得x =25,x ∈(0,25)时,y ′>0,x ∈(25,+∞)时,y ′<0,所以x =25时,y 取最大值.三、解答题17.已知某厂生产x 件产品的成本为c =25 000+200x +140x 2(元). (1)要使平均成本最低,应生产多少件产品?(2)若产品以每件500元售出,要使利润最大,应生产多少件产品?[解析] (1)设平均成本为y 元,则y =25 000+200x +140x 2x =25 000x +200+x40(x >0), y ′=⎝ ⎛⎭⎪⎫25 000x +200+x 40′=-25 000x 2+140. 令y ′=0,得x 1=1 000,x 2=-1 000(舍去). 当在x =1 000附近左侧时,y ′<0; 在x =1 000附近右侧时,y ′>0; 故当x =1 000时,y 取得极小值.由于函数只有一个极小值点,那么函数在该点取得最小值,因此要使平均成本最低,应生产1 000件产品.(2)利润函数为L =500x -(25 000+200x +x 240) =300x -25 000-x 240. ∴L ′=300-x20.令L ′=0,得x =6 000,当x 在6 000附近左侧时,L ′>0;当x 在6 000附近右侧时,L ′<0,故当x =6 000时,L 取得极大值.由于函数只有一个使L ′=0的点,且函数在该点有极大值,那么函数在该点取得最大值.因此,要使利润最大,应生产6 000件产品.18.已知圆柱的表面积为定值S ,求当圆柱的容积V 最大时圆柱的高h 的值.[分析]将容积V表达为高h或底半径r的函数,运用导数求最值.由于表面积S=2πr2+2πrh,此式较易解出h,故将V的表达式中h消去可得V是r的函数.[解析]设圆柱的底面半径为r,高为h,则S圆柱底=2πr2,S圆柱侧=2πrh,∴圆柱的表面积S=2πr2+2πrh.∴h=S-2πr2 2πr,又圆柱的体积V=πr2h=r2(S-2πr 2)=rS-2πr32,V′=S-6πr22,令V′=0得S=6πr2,∴h=2r,又r=S6π,∴h=2S6π=6πS3π.即当圆柱的容积V最大时,圆柱的高h为6πS 3π.。
3.4生活中的优化问题举例

变式训练
2.某地建一座桥,两端的桥墩已建好,这两墩相距m米,余下工程 只需建两端桥墩之间的桥面和桥墩.经测算,一个桥墩的工程费用 为256万元,距离为x米的相邻两墩之间的桥面工程费用为
万元,(2假设桥x)墩x等距离分布,所有桥墩都视为点,且不考虑其他因
素,记余下工程的费用为y万元. (1)试写出y关于x的函数关系式; (2)当m=640米时,需新建多少个桥墩才能使y最小?
费用最省、用料最少问题
例2.已知A、B两地相距200千米,一只船从A地逆水而行到B地,水 速为8千米/小时,船在静水中的速度为v千米/小时(8<v≤v0).若船每小时 的燃料费与其在静水中的速度的平方成正比.当v=12千米/小时时,每 小时的燃料费为720元,为了使全程燃料费最省,船在静水中的速 度为多少?
第十三页,编辑于星期一:十四点 十二分。
第十四页,编辑于星期一:十四点 十二分。
第十二页,编辑于星期一:十四点 十二分。
(1)审题:阅读理解文字表达的题意,分清条件和结论,找出问 题的主要关系; (2)建模;将文字语言转化成数学语言,利用数学知识,建立相应 的数学模型; (3)解模:把数学问题化归为常规问题,选择合适的数学方法 求解; (4)对结果进行验证评估,定性定量分析,作出正确的判断,确定 其答案. 注:在将实际问题转化成数学问题时,要注意所设变量的取值 范围.
第九页,编辑于星期一:十四点 十二分。
变式训练
3.某集团为了获得更大的收益,每年要投入一定的资金用于广告促销, 经调查,每年投入广告费t(百万元),可增加销售额约为-t2+5t(百万 元)(0≤t≤3). (1)若该公司将当年的广告费控制在300万元之内,则应投入多少广告
3-4 生活中的优化问题举例

基础巩固强化一、选择题1.三次函数当x =1时,有极大值4;当x =3时,有极小值0,且函数过原点,则此函数是( )A .y =x 3+6x 2+9xB .y =x 3-6x 2+9xC .y =x 3-6x 2-9xD .y =x 3+6x 2-9x [答案] B[解析] 设函数f (x )=ax 3+bx 2+cx +d (a ≠0), ∵函数图象过原点,∴d =0.f ′(x )=3ax 2+2bx +c , 由题意得,⎩⎪⎨⎪⎧f ′(1)=0f ′(3)=0f (1)=4,即⎩⎪⎨⎪⎧3a +2b +c =027a +6b +c =0a +b +c =4,解得⎩⎪⎨⎪⎧a =1b =-6c =9,∴f (x )=x 3-6x 2+9x ,故应选B.2.将数8拆分为两个非负数之和,使其立方之和为最小,则分法为( )A .2和6B .4和4C .3和5D .以上都不对[答案] B[解析] 设一个数为x ,则另一个数为8-x ,则y =x 3+(8-x)3,0≤x≤8,y′=3x2-3(8-x)2,令y′=0,即3x2-3(8-x)2=0,解得x=4.当0≤x<4时,y′<0,函数单调递减;当4<x≤8时,y′>0,函数单调递增,所以x=4时,y最小.3.某产品的销售收入y1(万元)是产量x(千台)的函数:y1=17x2(x>0);生产成本y2(万元)是产量x(千台)的函数:y2=2x3-x2(x>0),为使利润最大,则应生产()A.6千台B.7千台C.8千台D.9千台[答案] A[解析]设利润为y(万元),则y=y1-y2=17x2-2x3+x2=18x2-2x3(x>0),y′=36x-6x2,令y′>0,得0<x<6,令y′<0,得x>6,∴当x=6时,y取最大值,故为使利润最大,则应生产6千台.4.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s看作时间t的函数,其图象可能是()[答案] A[解析]加速过程,路程对时间的导数逐渐变大,图象下凸;减速过程,路程对时间的导数逐渐变小,图象上凸,故选A.5.内接于半径为R 的球且体积最大的圆锥的高为( ) A .R B .2R C.43R D.34R[答案] C[解析] 设圆锥高为h ,底面半径为r , 则R 2=(R -h )2+r 2,∴r 2=2Rh -h 2, ∴V =13πr 2h =π3h (2Rh -h 2)=23πRh 2-π3h 3, ∴V ′=43πRh -πh 2,令V ′=0得h =43R , 当0<h <43R 时,V ′>0;当43R <h <2R 时,V ′<0. 因此当h =43R 时,圆锥体积最大,故应选C.6.福建炼油厂某分厂将原油精炼为汽油,需对原油进行冷却和加热,如果第x h 时,原油温度(单位:℃)为f (x )=13x 3-x 2+8(0≤x ≤5),那么,原油温度的瞬时变化率的最小值是( )A .8 B.203 C .-1 D .-8 [答案] C[解析] 瞬时变化率即为f ′(x )=x 2-2x 为二次函数,且f ′(x )=(x -1)2-1,又x ∈[0,5],故x =1时,f ′(x )min =-1. 二、填空题7.把长为60cm 的铁丝围成矩形,长为________,宽为________时,矩形的面积最大.[答案] 15cm 15cm[解析] 设长为x cm ,则宽为(30-x )cm ,此时S =x ·(30-x )=30x -x 2,S ′=30-2x =0,所以x =15.所以长为15cm ,宽为15cm 时,矩形的面积最大.8.做一个无盖的圆柱形水桶,若要使其体积是27π,且用料最小,则圆柱的底面半径为________.[答案] 3[解析] 设圆柱的底面半径为R ,母线长为L ,则V =πR 2L =27π,∴L =27R 2,要使用料最省,只需使圆柱形表面积最小,∴S 表=πR 2+2πRL =πR 2+54πR ,∴S ′(R )=2πR -54πR 2=0,令S ′=0得R =3, ∴当R =3时,S 表最小.9.用长为18m 的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2 1,该长方体的最大体积是________.[答案] 3m 3[解析] 设长方体的宽为x ,则长为2x ,高为92-3x (0<x <32),故体积为V =2x 2⎝ ⎛⎭⎪⎫92-3x =-6x 3+9x 2,V ′=-18x 2+18x ,令V ′=0得,x =0或1, ∵0<x <2,∴x =1.∴该长方体的长、宽、高各为2m 、1m 、1.5m 时,体积最大,最大体积V max =3m 3.三、解答题10.用边长为120cm的正方形铁皮做一个无盖水箱,先在四角分别截去一个小正方形,然后把四边翻转90°角,再焊接成水箱.问:水箱底边的长取多少时,水箱容积最大?最大容积是多少?[解析]设水箱底边长为x cm,则水箱高为h=60-x2(cm).水箱容积V=V(x)=60x2-x32(0<x<120)(cm3).V′(x)=120x-32x 2.令V′(x)=0得,x=0(舍)或x=80.当x在(0,120)内变化时,导数V′(x)的正负如下表:数V(x)的最大值.将x=80代入V(x),得最大容积V=802×60-8032=128 000(cm3).答:水箱底边长取80cm时,容积最大,最大容积为128 000cm3.。
高中数学选修1-1优质学案:§3.4 生活中的优化问题举例

§3.4生活中的优化问题举例学习目标1.了解导数在解决实际问题中的作用.2.掌握利用导数解决简单的实际生活中的优化问题.知识点生活中的优化问题1.生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题.2.利用导数解决优化问题的实质是求函数最值.3.解决优化问题的基本思路:上述解决优化问题的过程是一个典型的数学建模过程.1.生活中常见到的收益最高、用料最省等问题就是数学中的最大、最小值问题.(√) 2.解决应用问题的关键是建立数学模型.(√)类型一几何中的最值问题例1请你设计一个包装盒如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得ABCD四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E,F在AB上是被切去的等腰直角三角形斜边的两个端点,设AE=FB=x cm.(1)若广告商要求包装盒侧面积S 最大,则x 应取何值?(2)若广告商要求包装盒容积V 最大,则x 应取何值?并求出此时包装盒的高与底面边长的比值.考点 几何类型的优化问题 题点 几何体体积的最值问题解 (1)由题意知包装盒的底面边长为2x cm , 高为2(30-x )cm,0<x <30,所以包装盒侧面积为S =42x ×2(30-x ) =8x (30-x )≤8×⎝⎛⎭⎪⎫x +30-x 22=8×225,当且仅当x =30-x ,即x =15时,等号成立, 所以若广告商要求包装盒侧面积S 最大,则x =15. (2)包装盒容积V =2x 2·2(30-x ) =-22x 3+602x 2(0<x <30),所以V ′=-62x 2+1202x =-62x (x -20). 令V ′>0,得0<x <20; 令V ′<0,得20<x <30.所以当x =20时,包装盒容积V 取得最大值,此时包装盒的底面边长为202cm ,高为102cm ,包装盒的高与底面边长的比值为1∶2.反思与感悟 面积、体积(容积)最大,周长最短,距离最小等实际几何问题,求解时先设出恰当的变量,将待求解最值的问题表示为变量的函数,再按函数求最值的方法求解,最后检验.特别注意:在列函数关系式时,要注意实际问题中变量的取值范围,即函数的定义域. 跟踪训练1 已知圆柱的表面积为定值S ,当圆柱的容积V 最小时,圆柱的高h 的值为________.考点 几何类型的优化问题 题点 几何体体积的最值问题 [答案]6πS 3π[解析] 设圆柱的底面半径为r ,则S 圆柱底=2πr 2, S 圆柱侧=2πrh ,∴圆柱的表面积S =2πr 2+2πrh , ∴h =S -2πr 22πr.又圆柱的体积V =πr 2h =r2(S -2πr 2)=rS -2πr 32,V ′(r )=S -6πr 22,令V ′(r )=0,得S =6πr 2,∴h =2r , ∵V ′(r )只有一个极值点, ∴当h =2r 时圆柱的容积最小. 又r =S6π,∴h =2S 6π=6πS 3π. 即当圆柱的容积V 最小时, 圆柱的高h 为6πS 3π. 类型二 实际生活中的最值问题 命题角度1 利润最大问题例2 某集团为了获得更大的收益,每年要投入一定的资金用于广告促销.经调查,每年投入广告费t (百万元),可增加销售额-t 2+5t (百万元)(0≤t ≤3).(1)若该公司将当年的广告费控制在3百万元之内,则应投入多少广告费,才能使该公司由此获得的收益最大?(2)现该公司准备共投入3百万元,分别用于广告促销和技术改造,经预测,每投入技术改造费x 百万元,可增加的销售额为-13x 3+x 2+3x (百万元).请设计一个资金分配方案,使该公司由此获得的收益最大.(收益=销售额-投入) 考点 函数类型的优化问题 题点 利用导数求解最大利润问题解 (1)设投入t (百万元)的广告费后增加的收益为f (t )(百万元),则有f (t )=(-t 2+5t )-t =-t 2+4t =-(t -2)2+4(0≤t ≤3),∴当t =2时,f (t )取得最大值4,即投入2百万元的广告费时,该公司由此获得的收益最大.(2)设用于技术改造的资金为x (百万元),则用于广告促销的资金为(3-x )(百万元),又设由此获得的收益是g (x )(百万元),则g (x )=⎝⎛⎭⎫-13x 3+x 2+3x +[-(3-x )2+5(3-x )]-3=-13x 3+4x +3(0≤x ≤3),∴g ′(x )=-x 2+4,令g ′(x )=0,解得x =-2(舍去)或x =2.又当0<x <2时,g ′(x )>0;当2<x ≤3时,g ′(x )<0,∴当x =2时,g (x )取得最大值,即将2百万元用于技术改造,1百万元用于广告促销,该公司由此获得的收益最大.反思与感悟 解决此类有关利润的实际应用题,应灵活运用题设条件,建立利润的函数关系,常见的基本等量关系有: (1)利润=收入-成本.(2)利润=每件产品的利润×销售件数.跟踪训练2 某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式y =ax -3+10(x -6)2,其中3<x <6,a 为常数.已知销售价格为5元/千克时,每日可售出该商品11千克. (1)求a 的值;(2)若该商品的成本为3元/千克,试确定销售价格x 的值,使商场每日销售该商品所获得的利润最大.考点 函数类型的优化问题 题点 利用导数求解最大利润问题解 (1)因为当x =5时,y =11,所以a2+10=11,所以a =2.(2)由(1)可知,该商品每日的销售量 y =2x -3+10(x -6)2, 所以商场每日销售该商品所获得的利润f (x )=(x -3)⎣⎢⎡⎦⎥⎤2x -3+10(x -6)2=2+10(x -3)(x -6)2,3<x <6.从而f ′(x )=10[(x -6)2+2(x -3)(x -6)] =30(x -4)(x -6).于是,当x 变化时,f ′(x ),f (x )的变化情况如下表:由上表可得,x =4是函数f (x )在区间(3,6)内的极大值点,也是最大值点. 所以当x =4时,函数f (x )取得最大值,且最大值为42.答 当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大. 命题角度2 用料(费用)最省问题例3 某网球中心欲建连成片的网球场数块,用128万元购买土地10000平方米,该中心每块球场的建设面积为1000平方米,球场的总建筑面积的每平方米的平均建设费用与球场数有关,当该中心建球场x 块时,每平方米的平均建设费用(单位:元)可近似地用f (x )=800⎝⎛⎭⎫1+15ln x 来刻画.为了使该球场每平方米的综合费用最省(综合费用是建设费用与购地费用之和),该网球中心应建几个球场? 考点 函数类型的优化问题 题点 利用导数解决费用最省问题解 设建成x 个球场,则1≤x ≤10,每平方米的购地费用为128×1041000x =1280x (元),因为每平方米的平均建设费用(单位:元)可近似地用f (x )=800⎝⎛⎭⎫1+15ln x 来表示, 所以每平方米的综合费用为g (x )=f (x )+1280x =800+160ln x +1280x (x >0),所以g ′(x )=160(x -8)x 2(x >0),令g ′(x )=0,则x =8,当0<x <8时, g ′(x )<0,当x >8时,g ′(x )>0,所以当x =8时,函数取得极小值,且为最小值. 故当建成8个球场时,每平方米的综合费用最省.反思与感悟 费用、用料最省问题是日常生活中常见的问题之一,解决这类问题要明确自变量的意义以及最值问题所研究的对象.正确书写函数表达式,准确求导,结合实际作答. 跟踪训练3 某地建一座桥,两端的桥墩已建好,这两墩相距m 米,余下工程只需建两端桥墩之间的桥面和桥墩.经测算,一个桥墩的工程费用为256万元;距离为x 米的相邻两墩之间的桥面工程费用为(2+x )x 万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记余下工程的费用为y 万元. (1)试写出y 关于x 的函数关系式;(2)当m =640米时,需新建多少个桥墩才能使y 最小? 考点 函数类型的优化问题 题点 利用导数解决费用最省问题 解 (1)设需新建n 个桥墩,则(n +1)x =m , 即n =mx-1,所以y =f (x )=256n +(n +1)(2+x )x =256⎝⎛⎭⎫m x -1+m x (2+x )x =256mx+m x +2m -256. (2)由(1)知,f ′(x )=-256m x 2+1212mx -=m 2x 232512x ⎛⎫- ⎪⎝⎭.令f ′(x )=0,得32x =512, 所以x =64.当0<x <64时,f ′(x )<0,f (x )在区间(0,64)内为减函数; 当64<x <640时,f ′(x )>0,f (x )在区间(64,640)内为增函数, 所以f (x )在x =64处取得最小值. 此时n =m x -1=64064-1=9.故需新建9个桥墩才能使y 最小.1.某公司的盈利y (元)和时间x (天)的函数关系是y =f (x ),且f ′(100)=-1,这个数据说明在第100天时( ) A .公司已经亏损 B .公司的盈利在增加 C .公司的盈利在逐渐减少D .公司有时盈利有时亏损 考点 函数类型的优化问题 题点 利用导数求解最大利润问题 [答案] C[解析] 因为f ′(100)=-1,所以函数图象在x =100处的切线的斜率为负值,说明公司的盈利在逐渐减少.2.已知某厂家生产某种产品的年利润y (单位:万元)与年产量x (单位:万件)的函数关系式为y =-13x 3+36x +126,则使该生产厂家获取最大年利润的年产量为( )A .11万件B .9万件C .7万件D .6万件考点 函数类型的优化问题 题点 利用导数求解最大利润问题 [答案] D[解析] 由y ′=-x 2+36=0, 解得x =6或x =-6(舍去). 当0<x <6时,y ′>0; 当x >6时,y ′<0, ∴在x =6时y 取最大值.3.用长为18m 的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2∶1,则该长方体的最大体积为( ) A .2m 3 B .3m 3 C .4m 3D .5m 3 考点 几何类型的优化问题 题点 几何体体积的最值问题 [答案] B[解析] 设长方体的宽为x (m),则长为2x (m),高为h =18-12x 4=92-3x (m)⎝⎛⎭⎫0<x <32,故长方体的体积为V (x )=2x 2⎝⎛⎭⎫92-3x=9x 2-6x 3⎝⎛⎭⎫0<x <32, 从而V ′(x )=18x -18x 2=18x (1-x ),令V ′(x )=0,解得x =1或x =0(舍去).当0<x <1时,V ′(x )>0;当1<x <32时,V ′(x )<0, 故在x =1处V (x )取得极大值,并且这个极大值就是V (x )的最大值,从而最大体积V =V (1)=9×12-6×13=3(m 3).4.容积为256的方底无盖水箱,它的高为________时最省材料.考点 函数类型的优化问题题点 利用导数解决费用最省问题[答案] 4[解析] 设水箱高为h ,底面边长为a ,则a 2h =256,其表面积为S =a 2+4ah =a 2+4a ·256a 2=a 2+210a. 令S ′=2a -210a 2=0,得a =8. 当0<a <8时,S ′<0;当a >8时,S ′>0,故当a =8时,S 最小,此时h =2882=4. 5.某商品每件成本9元,售价30元,每星期卖出432件.如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低额x (单位:元,0≤x ≤21)的平方成正比.已知当商品单价降低2元时,每星期多卖出24件.(1)将一个星期的商品销售利润表示成x 的函数;(2)如何定价才能使一个星期的商品销售利润最大?考点 函数类型的优化问题题点 利用导数求解最大利润问题解 (1)设商品降价x 元,则每星期多卖的商品数为kx 2.若记商品在一个星期的获利为f (x ),则有f(x)=(30-x-9)(432+kx2)=(21-x)(432+kx2).由已知条件,得24=k×22,于是有k=6.所以f(x)=-6x3+126x2-432x+9072,x∈[0,21].(2)由(1)得f′(x)=-18x2+252x-432=-18(x-2)(x-12).当x变化时,f′(x),f(x)的变化情况如下表:故当x=12时,f(x)取得极大值.因为f(0)=9072,f(12)=11664.所以当定价为30-12=18(元)时,才能使一个星期的商品销售利润最大.1.利用导数解决生活中优化问题的一般步骤(1)分析实际问题中各量之间的关系,列出实际问题的数学模型,写出实际问题中变量之间的函数关系式y=f(x).(2)求函数的导函数f′(x),解方程f′(x)=0.(3)比较函数在区间端点和使f′(x)=0的点的函数值的大小,最大(小)者为最大(小)值.2.正确理解题意,建立数学模型,利用导数求解是解答应用问题的主要思路.另外需要特别注意:(1)合理选择变量,正确写出函数[解析]式,给出函数定义域;(2)与实际问题相联系;(3)必要时注意分类讨论思想的应用.。
生活中的优化问题举例

练习3:某种圆柱形的饮料罐的容积一定时,如何确定它 的高为R.
h
则表面积为 S(R)=2πRh+2πR2.
又V=πR2h(定值),
则h
V
R 2
.
R
S
(R)
2R
V
R 2
2R2
2V R
2R2.
当r (2,6) 时, f '(r) 0.
解: 由于瓶子的半径为r,所以每瓶饮料的利
润为: y
4r 3
f (r) 0.2
0.8r 2
(0 r 6)
3
令 f '(r) 0.8 (r 2 2r) 0
当r 2时, f '(r) 0. 当r (0,2)时, f '(r) 0;
3.4 生活中的优化问题举例
生活中经常遇到求利润最大、用 料最省、效率最高等问题,这些问题 通常称为优化问题,通过前面的学习, 知道,导数是求函数最大(小)值的 有力工具,本节我们运用导数,解决 一些生活中的优化问题。
问题1:海报版面尺寸的设计
学校或班级举行活动,通常需要张贴海报 进行宣传,现让你设计一张如图所示的竖向张 贴的海报,要求版心面积为128dm2,上下边各 空2dm,左右空1dm,如何设计海报的尺寸,才 能使四周空白面积最小? 解:设版心的高为xdm,则宽为 128 dm
(1)瓶子半径多大时,能使每瓶饮料的利润最大? (2)瓶子半径多大时,每瓶饮料的利润最小?
解: 由于瓶子的半径为r,所以每瓶饮料的利
润为:y f (r) 0.2 4r 3
令
3
f '(r) 0.8 (r 2
2013-2014学年 高中数学 人教A版选修1-1 第三章 3.4生活中的优化问题举例

半径为 6 cm 时,利润最大.
研一研·问题探究、课堂更高效
§ 3.4
小结
本 讲 栏 目 开 关
解决此类有关利润的实际应用题, 应灵活运用题设条
件,建立利润的函数关系,常见的基本等量关系有
练一练·当堂检测、目标达成落实处
§ 3.4
2.某银行准备新设一种定期存款业务,经预算,存款量与存 款利率的平方成正比, 比例系数为 k(k>0).已知贷款的利率 为 0.048 6,且假设银行吸收的存款能全部放贷出去.设存 款利率为 x,x∈(0,0.048 6),若使银行获得最大收益,则
本 讲 栏 目 开 关
A.4
解析
B.6
C.4.5
D.8
设底面边长为 x,高为 h,
2
256 则 V(x)=x · h=256,∴h= 2 , x 256 2 4×256 2 2 ∴S(x)=x +4xh=x +4x· 2 =x + , x x 4×256 ∴S′(x)=2x- . x2 256 令 S′(x)=0,解得 x=8,∴h= 2 =4. 8
研一研·问题探究、课堂更高效
从而,f′(x)=10[(x-6)2+2(x-3)(x-6)]
§ 3.4
=30(x-4)(x-6).
于是,当 x 变化时,f′(x),f(x)的变化情况如下表: x
本 讲 栏 目 开 关
(3,4) + 单调递增
4 0 极大值 42
(4,6) - 单调递减
f′(x) f(x)
研一研·问题探究、课堂更高效
§ 3.4
设 P(y2,y)(0≤y≤2)是曲线 MD 上任一点,
生活中的优化问题举例

生活中的优化问题举例引言生活中,我们经常面临各种各样的问题和挑战。
为了提高效率、提升生活质量,我们需要不断寻找解决问题的方法和策略。
在这篇文章中,我们将探讨生活中的优化问题,并给出一些实际的例子来说明如何应对这些问题。
什么是优化问题?优化问题是指在给定的限制条件下,寻找一个最优解的问题。
通过优化,我们可以最大限度地提高效率、降低成本、提升满意度等。
在生活中,我们可以将优化问题应用于各个领域,如时间管理、健康管理、金融规划等。
生活中的优化问题举例1. 时间管理时间管理是一个常见的生活优化问题。
我们每天都面临着有限的时间资源,如何合理分配时间成为了一个重要的课题。
以下是一些可以帮助我们优化时间管理的方法和技巧:1.制定优先级:将任务按照重要性和紧急性进行排序,优先处理重要且紧急的任务,避免因琐碎的事务耗费过多时间。
2.打破大目标:学会将大目标分解成小目标,逐步推进。
这样可以减少任务的压力,并更好地管理时间。
3.制定时间表:制定一个明确的时间表,为每项任务规定固定的时间段。
这样可以提高效率,并避免时间的浪费。
4.利用时间碎片:充分利用日常生活中的碎片化时间,比如排队等待、交通工具上的时间,可以用来读书、听课等。
2. 健康管理健康是幸福生活的基石,因此健康管理也成为了一个重要的优化问题。
以下是一些可以帮助我们优化健康管理的方法和策略:1.合理饮食:均衡饮食是健康的基础。
合理控制饮食,摄入适量的营养物质,避免过量或偏食,有助于维持身体的健康状态。
2.积极运动:适量的运动可以帮助我们保持身体健康和心理平衡。
根据个人情况选择合适的运动方式和时间,如慢跑、游泳、瑜伽等。
3.规律作息:良好的作息习惯对于身体和心理健康至关重要。
合理安排睡眠时间,确保充足的休息,有助于保持精力充沛和情绪稳定。
4.健康检查:定期进行身体检查,及时发现和处理潜在的健康问题,有助于预防和治疗疾病。
3. 金融规划金融规划是一个经济优化的问题。
2022-2021年《金版学案》数学·选修1-1(人教A版)习题:3.4生活中的优化问题举例

第三章 导数及其应用 3.4 生活中的优化问题举例A 级 基础巩固 一、选择题1.把长为12 cm 的细铁丝截成两段,各自摆成一个正三角形,那么这两个正三角形的面积之和的最小值是( )A.323 cm 2 B .4 cm 2 C .3 2 cm 2D .2 3 cm 2解析:设一个正三角形的边长为x cm ,则另一个正三角形的边长为(4-x )cm ,则这两个正三角形的面积之和为S =34x 2+34(4-x )2=32[(x -2)2+4]≥23(cm 2).答案:D2.某公司生产一种产品,固定成本为20 000元,每生产一单位的产品,成本增加100元,若总收入R 与年产量x (0≤x ≤390)的关系是R (x )=-x 3900+400x ,0≤x ≤390,则当总利润最大时,每年生产的产品单位数是( )A .150B .200C .250D .300解析:由题意可得总利润P (x )=-x 3900+300x -20 000,0≤x ≤390,由P ′(x )=0,得x =300.当0≤x <300时,P ′(x )>0;当300<x ≤390时,P ′(x )<0,所以当x =300时,P (x )最大.答案:D3.将8分为两个非负数之和,使其立方和最小,则这两个数为( ) A .2和6 B .4和4 C .3和5D .以上都不对解析:设一个数为x ,则另一个数为8-x ,其立方和y =x 3+(8-x )3=83-192x +24x 2且0≤x ≤8,y ′=48x -192.令y ′=0,即48x -192=0,解得x =4.当0≤x <4时,y ′<0;当4<x ≤8时,y ′>0,所以当x =4时,y 取得微小值,也是最小值.答案:B4.做一个容积为256 m 3的方底无盖水箱,所用材料最省时,它的高为( ) A .6 m B .8 m C .4 m D .2 m解析:设底面边长为x m ,高为h m .则有x 2h =256, 所以h =256x 2.所用材料的面积设为S m 2,则有S =4x ·h +x 2=4x ·256x 2+x 2=256×4x +x 2.S ′=2x -256×4x 2,令S ′=0得x =8,因此h =25664=4(m).答案:C5.假如圆柱截面的周长l 为定值,则体积的最大值为( )A.⎝ ⎛⎭⎪⎫l 63π B.⎝ ⎛⎭⎪⎫l 33π C.⎝ ⎛⎭⎪⎫l 43π D.14⎝ ⎛⎭⎪⎫l 43π 解析:设圆柱的底面半径为r ,高为h ,体积为V ,则4r +2h =l ,所以 h =l -4r 2,V =πr 2h =l 2πr 2-2πr 3⎝ ⎛⎭⎪⎫0<r <l 4. 则V ′=l πr -6πr 2,令V ′=0,得r =0或r =l6,而r >0,所以 r =l6是其唯一的极值点.所以 当r =l6时,V 取得最大值,最大值为⎝ ⎛⎭⎪⎫l 63π.答案:A 二、填空题6.某商品每件的成本为30元,在某段时间内,若以每件x 元出售,可卖出(200-x )件,当每件商品的定价为________元时,利润最大.解析:由题意知,利润S (x )=(x -30)(200-x )=-x 2+230x -6000(30≤x ≤200),所以S ′(x )=-2x +230,令S ′(x )=0,解得x =115.当30≤x <115时,S ′(x )>0;当115<x ≤200时,S ′(x )<0,所以当x =115时,利润S (x )取得极大值,也是最大值.答案:1157.已知某矩形广场面积为4万平方米,则其周长至少为________米.解析:设广场的长为x 米,则宽为40 000x 米,于是其周长为y =2⎝ ⎛⎭⎪⎫x +40 000x (x>0),所以y ′=2⎝ ⎛⎭⎪⎫1-40 000x 2, 令y ′=0,解得x =200(x =-200舍去),这时y =800.当0<x <200时,y ′<0;当x >200时,y ′>0.所以当x =200时,y 取得最小值,故其周长至少为800米.答案:8008.做一个无盖的圆柱形水桶,若要使其体积是27π,且用料最省,则圆柱的底面半径为________.解析:设圆柱的底面半径R ,母线长为L ,则V =πR 2L =27π,所以L =27R 2.要使用料最省,只需使圆柱表面积最小.S 表=πR 2+2πRL =πR 2+2π·27R,令S ′表=2πR -54πR2=0,得R =3,即当R =3时,S 表最小.答案:3 三、解答题9.如图,要设计一张矩形广告,该广告含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏的面积之和为18 000 cm 2,四周空白的宽度为10 cm ,两栏之间的中缝空白的宽度为5 cm.怎样确定广告的高与宽的尺寸(单位:cm),能使矩形广告面积最小?解:设广告的高和宽分别为x cm ,y cm ,则每栏的高和宽分别为x -20,y -252,其中x >20,y >25.两栏面积之和为2(x -20)· y -252=18 000,由此得y =18 000x -20+25.广告的面积S =xy =x ⎝ ⎛⎭⎪⎪⎫18 000x -20+25=18 000x x -20+25x , 所以 S ′=18 000[(x -20)-x ](x -20)2+25=-360 000(x -20)2+25. 令S ′>0得x >140,令S ′<0得20<x <140.所以 函数在(140,+∞)上单调递增,在(20,140)上单调递减,所以 S (x )的最小值为S (140).当x =140时,y =175.即当x =140,y =175时,S 取得最小值24 500,故当广告的高为140 cm ,宽为175 cm 时,可使广告的面积最小.10.现有一批货物由海上从A 地运往B 地,已知轮船的最大航行速度为35海里/时,A 地到B 地之间的航行距离约为500海里,每小时的运输成本由燃料费和其余费用组成,轮船每小时的燃料费与轮船速度的平方成正比(比例系数为0.6),其余费用为每小时960元.(1)把全程运输成本y (元)表示为速度x (海里/时)的函数; (2)为了使全程运输成本最小,轮船应以多大速度航行?解:(1)依题意得y =500x (960+0.6x 2)=480 000x +300x ,且由题意知函数的定义域为(0,35],即y =480 000x+300x (0<x ≤35).(2)由(1)得y ′=-480 000x 2+300,令y ′=0,解得x =40或x =-40(舍去).由于函数的定义域为(0,35],所以函数在定义域内没有极值点.又当0<x ≤35时,y ′<0,所以函数y =480 000x +300x 在(0,35]上单调递减,故当x =35时,函数y=480 000x +300x 取得最小值.故为了使全程运输成本最小,轮船应以35海里/时的速度航行.B 级 力量提升1.某公司的盈利y (元)和时间x (天)的函数关系是y =f (x ),且f ′(100)=-1,这个数据说明在第100天时( )A .公司已经亏损B .公司的盈利在增加C .公司的盈利在渐渐削减D .公司有时盈利有时亏损解析:由于f ′(100)=-1,所以函数图象在x =100处的切线的斜率为负值,说明公司的盈利在渐渐削减.答案:C2.某公司租地建仓库,每月土地占用费y 1(万元)与仓库到车站的距离成反比,而每月库存货物的运费y 2(万元)与仓库到车站的距离成正比.假如在距离车站10千米处建仓库,y 1和y 2分别为2万元和8万元,那么要使这两项费用之和最小,仓库应建在离车站________千米处.解析:依题意可设每月土地占用费y 1=k 1x ,每月库存货物的运费y 2=k 2x ,其中x 是仓库到车站的距离,k 1,k 2是比例系数.于是由2=k 110,得k 1=20;由8=10k 2,得k 2=45.因此,两项费用之和为y =20x +4x5(x >0),y ′=-20x 2+45,令y ′=0,得x =5或x =-5(舍去).当0<x <5时,y ′<0;当x >5时,y ′>0.因此,当x =5时,y 取得微小值,也是最小值.故当仓库建在离车站5千米处时,两项费用之和最小.答案:53.某公司生产某种产品的固定成本为20 000元,每生产1吨该产品需增加投入100元,已知总收益满足函数R (x )=⎩⎨⎧400 x -12x 2(0≤x ≤400),80 000(x >400),其中x 是该产品的月产量(单位:吨). (1)将利润表示为月产量的函数f (x );(2)当月产量为何值时,该公司所获利润最大?最大利润为多少元? 解:(1)f (x )=⎩⎪⎨⎪⎧-12x 2+300x -20 000(0≤x ≤400),60 000-100x (x >400).(2)当0≤x ≤400时,f ′(x )=-x +300, 当0≤x <300时,f ′(x )>0,f (x )是增函数; 当x >300时,f ′(x )<0,f (x )是减函数;所以 当x =300时,f (x )取得极大值,也是最大值,且最大值为25 000. 当x >400时,f (x )=60 000-100x ,易知f (x )是减函数, 所以 f (x )<60 000-100×400=20 000<25 000, 综上,当x =300时,f (x )有最大值25 000.即当月产量为300吨时,利润最大,最大利润为25 000元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学习任务单
生活中的优化问题举例
班级_______________ 学号_______________ 姓名_______________
学习目标
(1) 使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用; (2) 提高将实际问题转化为数学问题的能力.
环节一 自主完成,课前思考
解答应用题就是数学建模的过程,一般都要过三关:一是读懂题意,二是构建相应数学模型,三是利用数学知识解决问题。
例、【2018年课标Ⅱ卷理18】下图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了与时间变量的两个线性回归模型.根据2000年至2016年的数据(时间变量的值依次为
)建立模型①:;根据2010年至2016年的数据(时间变量的值依次为)建立模型②:. (1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠?并说明理由. 解答:
笔记:
y y t t 1,2,,17ˆ30.413.5y
t =-+t 1,2,
,7ˆ9917.5y
t =
+20002001200220032004200520062007200820092010201120122013201420152016年份
6080
学而不思则罔,思而不学则殆
环节二课堂展示,交流探讨
例、某大学饭堂邀请你作为分析师分析饭堂窗口开设数量的优化方案,饭堂最多可开设九个窗口,开设窗口数x与用餐人数及平均消费额的变化情况如下表,开设每个窗口需支付的成本费为44(百元)元:
(1)结合图中数据,以窗口数为自变量x总用餐人数为f(x),作出散点图,并用函数建立总用餐人数f(x)与开设窗口数x间的关系;
(2)同样请建立平均消费额g(x)与开设窗口数x之间的函数关系式
(3)由(1)(2),分析题意,建立饭堂每日盈利h(x)与开设窗口数x间的函数关系式。
(4)请利用(3)中的h(x)与实际情况相结合帮助饭堂设计较为合理的方案。
问题:①由散点图,用餐人数与开设窗口数之间存在怎样的一种关系?
②平均消费额与开设窗口数之间又存在怎样的关系?
③如何计算盈利?
④何为最优方案?需要计算什么量?
学习任务单
优化方案:
环节三 经验分享,课堂小结
总结:优化问题是通过建立函数模型,利用数学知识解决生活中有关函数的最大值,最小值问题,例如可以解决面积体积的最大值问题,流量速度的最大值问题,利润的最大值问题,成本的最小值问题,效率最大化问题 方法与步骤:1 2
环节四 课后巩固,知识积累
已知某生产厂家的年利润y (单位:万元)与年产量x (单位:万件)的函数关系式为3
1812343
y x x =-+-,求该生产厂家获取得最大年利润。