多项式的乘法
多项式乘多项式运算法则

多项式乘多项式运算法则一、分配律例子:设A(x) = a0 + a1x + a2x^2 + ... + anx^n,B(x) = b0 + b1x + b2x^2 + ... + bnx^n其中a0, a1, a2, ..., an为系数,b0, b1, b2, ..., bn为系数。
那么,A(x) * B(x) = (a0 + a1x + a2x^2 + ... + anx^n) * (b0 + b1x + b2x^2 + ... + bnx^n)= a0 * (b0 + b1x + b2x^2 + ... + bnx^n) + a1x * (b0 + b1x + b2x^2 + ... + bnx^n) + a2x^2 * (b0 + b1x + b2x^2 + ... + bnx^n) + ... + anx^n * (b0 + b1x + b2x^2 + ... + bnx^n)= (a0b0 + a1b0x + a2b0x^2 + ... + anb0x^n) + (a0b1x +a1b1x^2 + a2b1x^3 + ... + anb1x^n+1) + (a0b2x^2 + a1b2x^3 +a2b2x^4 + ... + anb2x^n+2) + ... + (a0bnx^n + a1bnx^n+1 +a2bnx^n+2 + ... + anbnx^2n)简化公式为:A(x) * B(x) = a0b0 + (a0b1 + a1b0)x + (a0b2 + a1b1 +a2b0)x^2 + ... + (anb0 + an-1b1 + an-2b2 + ... + a0bn)x^n + ... + anx^2n二、乘法运算规则1.指数相加:两个多项式相乘时,指数相加。
例如,(ax^m)(bx^n) = abx^(m+n)这里的a和b是系数,m和n是指数。
2.系数相乘:两个多项式相乘时,对应项系数相乘。
多项式的乘法

多项式的乘法多项式的乘法是代数学中的一种基本运算,用于计算两个多项式的乘积。
在多项式的乘法运算中,我们将一个多项式的每一项与另一个多项式的每一项相乘,并将结果相加得到最终的乘积。
本文将介绍多项式的乘法运算规则,并通过例子详细说明其计算方法。
1. 多项式的乘法运算规则设有两个多项式:P(x) = anxn + an-1xn-1 + ... + a1x + a0Q(x) = bmxm + bm-1xm-1 + ... + b1x + b0其中,an, an-1, ..., a1, a0, bn, bm-1, ..., b1, b0为常数系数,n, m为非负整数,n ≥ m。
两个多项式的乘积定义为:P(x) * Q(x) = (anxn + an-1xn-1 + ... + a1x + a0) * (bmxm + bm-1xm-1 + ... + b1x + b0)根据乘法的分配律,我们可以将上式展开为:P(x) * Q(x) = anxn * (bmxm + bm-1xm-1 + ... + b1x + b0) + an-1xn-1 * (bmxm + bm-1xm-1 + ... + b1x + b0) + ... + a1x * (bmxm + bm-1xm-1 + ... + b1x + b0) + a0 * (bmxm + bm-1xm-1 + ... + b1x + b0)再根据乘法的结合律,我们可以进一步简化上式为:P(x) * Q(x) = anxn * bmxm + anxn * bm-1xm-1 + ... + anxn * b1x + anxn * b0 + an-1xn-1 * bmxm + an-1xn-1 * bm-1xm-1 + ... + an-1xn-1 *b1x + an-1xn-1 * b0 + ... + a1x * bmxm + a1x * bm-1xm-1 + ... + a1x * b1x + a1x * b0 + a0 * bmxm + a0 * bm-1xm-1 + ... + a0 * b1x + a0 * b0由此可见,多项式的乘法运算实际上是将两个多项式的每一项进行相乘,并将结果按指数次数相加。
多项式的运算

多项式的运算多项式是代数中的基本概念之一,它由常数、变量和指数幂的乘积组成。
在数学中,多项式的运算是解决代数问题的重要手段之一。
本文将介绍多项式的基本运算,包括加法、减法、乘法和除法。
一、多项式的加法和减法多项式的加法和减法是最基本的运算,其操作规则比较简单。
1. 加法对于两个多项式的加法,只需要将相同次数的项的系数相加,保留相同的指数。
例如:多项式A:3x^2 + 5x + 2多项式B:2x^2 + 4x + 1将两个多项式相加得到:(A + B) = (3x^2 + 2x^2) + (5x + 4x) + (2 + 1)(A + B) = 5x^2 + 9x + 32. 减法多项式的减法与加法类似,只需将减数中各项的系数取相反数,然后按照加法的规则进行计算。
例如:多项式A:3x^2 + 5x + 2多项式B:2x^2 + 4x + 1将两个多项式相减得到:(A - B) = (3x^2 - 2x^2) + (5x - 4x) + (2 - 1)(A - B) = x^2 + x + 1二、多项式的乘法多项式的乘法是将两个多项式的每一项分别相乘,并将同类项合并。
例如:多项式A:3x^2 + 5x + 2多项式B:2x + 1将两个多项式进行乘法运算得到:(A * B) = (3x^2 * 2x) + (3x^2 * 1) + (5x * 2x) + (5x * 1) + (2 * 2x) + (2 * 1)(A * B) = 6x^3 + 3x^2 + 10x^2 + 5x + 4x + 2(A * B) = 6x^3 + 13x^2 + 9x + 2三、多项式的除法多项式的除法是将一个多项式除以另一个多项式,在实际计算中可采用长除法的方法进行。
例如:被除多项式:6x^3 + 16x^2 + 9x + 2除数多项式:2x + 1进行除法运算得到:3x^2 + 7x + 1____________________2x + 1 | 6x^3 + 16x^2 + 9x + 2- (6x^3 + 3x^2)_______________13x^2 + 9x + 2- (13x^2 + 6.5x)______________2.5x + 2- (2.5x + 1.25)___________0.75通过长除法运算可以得到商多项式为:3x^2 + 7x + 1,余数为0.75。
多项式的乘法

多项式的乘法在代数学中,多项式的乘法是一项基本的运算。
多项式是由常数和变量的乘积相加而成的表达式。
本文将介绍多项式乘法的定义、运算法则以及一些实例应用。
一、多项式乘法的定义多项式乘法是指将两个或多个多项式相乘的过程。
一个多项式可以写成如下形式:P(x) = a_nx^n + a_{n-1}x^{n-1} + ... + a_1x + a_0其中,a_n, a_{n-1}, ... , a_1, a_0为常数系数,x为自变量,n为多项式的次数。
对于两个多项式:P(x) = a_nx^n + a_{n-1}x^{n-1} + ... + a_1x + a_0Q(x) = b_mx^m + b_{m-1}x^{m-1} + ... + b_1x + b_0它们的乘积为:P(x) * Q(x) = (a_nx^n + a_{n-1}x^{n-1} + ... + a_1x + a_0) * (b_mx^m + b_{m-1}x^{m-1} + ... + b_1x + b_0)二、多项式乘法的运算法则多项式乘法遵循以下运算法则:1. 每一项的指数相加:两个同类项的指数相加,如x^m * x^n =x^{(m+n)}。
2. 常数系数相乘:两个同类项的常数系数相乘,如a_i * b_i。
3. 扩展运算:将每个项与另一个多项式的所有项进行相乘。
多项式的每一项都与另一个多项式的所有项进行相乘,并将结果相加。
三、多项式乘法的实例应用多项式乘法在数学和科学领域有广泛的应用。
以下是一些实例:1. 几何应用:在几何学中,多项式乘法用于计算多项式函数的图像和方程。
例如,通过将两个多项式相乘,可以得到一个表示曲线的方程。
2. 物理学应用:多项式乘法用于描述物理现象中的变化。
例如,通过将时间和速度的多项式相乘,可以得到物体的位移多项式。
3. 统计学应用:多项式乘法被用于计算和分析统计数据。
例如,在回归分析中,通过将自变量和系数的多项式相乘,可以找到一个最佳拟合的多项式函数。
知识点多项式的乘法与因式分解

知识点多项式的乘法与因式分解多项式的乘法与因式分解是高中数学中的重要内容之一。
本文将从多项式、乘法和因式分解三个方面进行论述,详细介绍知识点多项式的乘法与因式分解。
一、多项式的定义和性质多项式是由若干个单项式相加(或相减)而得到的代数式。
一般的多项式表达式为:$P(x)=a_nx^n+a_{n-1}x^{n-1}+...+a_2x^2+a_1x+a_0$,其中$a_i(i=0,1,...,n)$为常数,$x$为变量,$n$为多项式的次数。
多项式具有以下几个重要性质:1. 多项式的次数等于各项次数的最大值;2. 多项式的系数可以是实数、复数或其他数域中的元素;3. 多项式的次数为$0$时,称为零多项式;4. 多项式的次数为$1$时,称为一次多项式(线性多项式);5. 多项式的次数为$2$时,称为二次多项式(一元二次方程);6. 多项式可以进行加法、减法和乘法运算。
二、多项式的乘法多项式的乘法运算是指将两个多项式相乘得到一个新的多项式的过程。
多项式的乘法可以利用分配律和合并同类项的原则进行。
例如,给定两个多项式$P(x)=2x^2+3x-1$和$Q(x)=x-2$,它们的乘积$P(x) \cdot Q(x)$可以按照下面的步骤进行计算:$P(x) \cdot Q(x) = (2x^2+3x-1) \cdot (x-2)$$= 2x^3 - 4x^2 + 3x^2 - 6x - x + 2$$= 2x^3 - (4-3)x^2 - (6+1)x + 2$$= 2x^3 - x^2 - 7x + 2$因此,$P(x) \cdot Q(x) = 2x^3 - x^2 - 7x + 2$。
三、多项式的因式分解多项式的因式分解是指将一个多项式表示为若干个因式的乘积的形式。
多项式的因式分解可以用来求解方程、简化运算等。
常见的多项式因式分解形式包括:1. 一次因式的乘积:$a(x-b)$;2. 二次因式的乘积:$a(x-b)(x-c)$;3. 三次因式的乘积:$a(x-b)(x-c)(x-d)$。
多项式的乘法典型例题(整理)

多项式的乘法多项式的乘法的法则: 一般地,多项式与多项式相乘,先用一个多项式的每一项乘以另一个多项式的每一项。
然后把所得的积相加。
整式的乘法运算与化简多项式的乘法 转化为单项式与多项式相乘 代数式的化简求值典型例题一.整式的计算1.)1-n -m )(n 3m (+2.若c bx ax x x ++=+-2)3)(12(,求c b a ,,的值.二.确定多项式中字母的值1.多项式)32)(8x mx -+(中不含有x 的一次项,求m 的值?2.若))(23(22q px x x x +++-展开后不含3x 和2x 项,求q p ,的值。
三.与方程相结合 解方程:8)2)(2(32-=-+x x x x四.化简求值:化简并求值:)3(2)42)(2(22--++-m m m m m ,其中2=m五.图形应用 1.有若干张如图所示的正方形A 类、B 类卡片和长方形C 类卡片,如果要拼成一个长为(2a +b ),宽为(a +2b )的大长方形,则需要C 类卡片 张.2.如图所示的正方形和长方形卡片若干张,拼成一个长为(a+3b ),宽为(2a+b )的矩形,需要这三类卡片共________ 张.3.如图,在边长为a 的正方形中挖掉一个边长为b 的小正方形,把余下的部分剪成两个直角梯形后,再拼成一个长方形,通过计算阴影部分的面积,验证了一个等式,这个等式是( )A .a 2-b 2=(a +b )(a -b )B .(a +b )2=a 2+2ab +b 2C .(a -b )2=a 2-2ab +b 2D .a 2-ab =a (a -b )补充练习一.选择题1.若(x+a)(x+b)=x2-kx+ab,则k的值为()A.a+b B.-a-b C.a-b D.b-a2.(x2-px+3)(x-q)的乘积中不含x2项,则()A.p=q B.p=±q C.p=-q D.无法确定3.方程(x+4)(x-5)=x2-20的解是()A.x=0B.x=-4C.x=5D.x=404.若6x2-19x+15=(ax+b)(cx+b),则ac+bd等于()A.36B.15C.19D.21二.填空题1.(3x-1)(4x+5)=__________.2.当k=__________时,多项式x-1与2-kx的乘积不含一次项.3.若(x+a)(x+2)=x2-5x+b,则a=__________,b=__________.4.如果三角形的底边为(3a+2b),高为(9a2-6ab+4b2),则面积=__________.5.(x3+3x2+4x-1)(x2-2x+3)的展开式中,x4的系数是__________.三.简答题1.求(a+b)2-(a-b)2-4ab的值,其中a=2002,b=2001.2.已知(x2+px+8)(x2-3x+q)的展开式中不含x2和x3项,求p,q的值.。
多项式相乘

多项式相乘多项式相乘是数学中一个重要的运算,它可以帮助我们更好地理解多项式的运用和推导。
在这里,我们将探讨多项式相乘的基本原理以及它在日常数学实践中的应用。
首先,让我们来了解多项式相乘的基本原理。
当我们要将多项式a(x)和多项式b(x)相乘时,就是把多项式a(x)的每一项乘以多项式b(x)的每一项,并把所有的乘积结果相加,就可以得到它们的乘积。
比如,如果我们要将多项式a(x)=2x^2+3x+5 与多项式b(x)=x-1相乘,则我们可以将它们的各项分别乘起来,即(2x^2)*(x-1)+3x*(x-1)+5*(x-1) = 2x^3-2x^2+3x^2-3x+5x-5,这就是它们的乘积。
其次,多项式相乘也可以用于解决日常问题。
比如,假如有一幢三层楼房,每层楼层有不同数量的房间,如果我们要知道这个楼房共有多少个房间,那么我们可以用多项式的乘法来解决这个问题。
假设第一层有x个房间,第二层有y个房间,第三层有z个房间,那么我们可以用多项式的乘法将这三个多项式相乘,即 x*y*z,就可以得到一共有多少房间。
再者,多项式相乘也可以应用在数学游戏中。
比如,假如我们玩一个数学游戏,每个人都可以把一个数字乘以另外一个数字,然后再将乘积与另外一个数字乘起来,来比较大小,这就是多项式相乘的一个简单应用。
最后,多项式相乘也可以应用在各种科学和工程领域,比如计算机编程,数字信号处理,通讯工程和控制工程等等。
在这些领域中,多项式相乘是一种常见的运算,能够有效地简化复杂的问题,帮助我们解决一些不可解决的问题。
综上,多项式相乘是一种有用的数学运算,不仅可以用于解决日常数学问题,也可以用于计算机编程,数字信号处理,通讯工程和控制工程等等。
它可以有效而简洁地解决很多复杂的问题,是一种十分重要的数学运算方法。
多项式的乘法PPT课件

=
-
1
2
x2
·
2 xy
-1 2
x2
·
(-4 y2)-4x2
· (-xy)
= - x3 y + 2x2 y2+4x3 y
= 3x3 y + 2x2 y2
当 x=2,y=-1时,
原式的值为 3×23×(-1) +2×22×(-1)2 = -24+8 = -16.
动脑筋
有一套居室的平面图如图所示,怎样用 代数式表示它的总面积呢?
= 5a-6.
结束
东西向总长为 m+n
南北向总长为 a+b
所以居室的总面积为: (a+b)·(m+n); ①
北边两间房的面积 和为a(m+n)
南边两间房的 面积和为 b(m+n)
所以居室的总面积为: a(m+n)+b(m+n) ②
四间房(厅)的面积分别 为am,an,bm,bn
所以居室的总面积为 :am+an+bm+bn ③
1 2
b2
-4a2
·
(-4ab).
解:
1 2
b2
-
4a2
·
(-4ab)
=
1 b2 · 2
-4ab
-
4a2 ·
(-4ab)
= -2ab3 +16a3b
例11
求
-1 2
x2
·
2
xy
-4
y2
-4x2
· (-xy)
的值,其中x=2,y=-1.
解:
-
1 2
x2
·
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多项式的乘法
一、知识结构
二、重点、难点分析
本节教学的重点是利用公式(x+a)(x+b)=x2+(a+b)x+ab熟练地计算.难点是理解并掌握公式.本节内容是进一步学习乘法公式及后续知识的基础.
1.多项式乘法法则,是多次运用单项式与多项式相乘的法则得到的.计算时,先把看成一个单项式,是一个多项式,运用单项式与多项式相乘的法则,得到
然后再次运用单项式与多项式相乘的法则,得到:
2.含有一个相同字母的两个一次二项式相乘,得到的积是同一字母的二次三项式,它的二次项由两个因式中的一次项相乘得到;积的一次项是由两个因式中的常数基分别乘以两个因式中的一次项后,合并同类项得到;积的常数项等于两个因式中常数项的积.如果因式中一次项的系数都是1,那么积的二次项系数也是1,积的一次项系数等于两个因式中的常数项的和,这就是说,如果用、分别表示一个含有系数是1的相同字母的两个一次二项式中的常数项,则有
3.在进行两个多项式相乘、直接写出结果时,注意不要“漏项”.检查的办法是:两个多项式相乘,在没有合并同类项之前,积的项数应是这两个多基同甘共苦的积.如积的项数应是,即六项:
当然,如有同类项则应合并,得出最简结果.
4.运用多项式乘法法则时,必须做到不重不漏,为此,相乘时,要按一定的顺序进行.例如,,可先用第一个多项式中的第一项“”分别与第二个多项式的每一项相乘,再用第一个多项式中的第二项“”分别与第二个多项式的每一项相乘,然后把所得的积相加,即.
5.多项式与多项式相乘,仍得多项式.在合并同类项之前,积的项数应该等于两个多项式的项数之积.
6.注意确定积中每一项的符号,多项式中每一项都包含它前面的符号,“同号得正,异号得负”.
三、教法建议
教学时,应注意以下几点:
(1)要防止两个多项式相乘,直接写出结果时“漏项”.检查的办法是:两个多项式相乘,在没有合并同类项之前,积的项数应是这两个多项式项数的积.如,
积的项数应是,即四项当然,如有同类项,则应合并同类项,得出最简结果.
(2)要不失时机地指出:多项式是单项式的和,每一项都包括前面的符号,在计算时一定要注意确定积中各项的符号.
(3)例2的第(1)小题是乘法的平方差公式,例2的第(2)小题是两数和的完全平方公式.实际上任何乘法公式都是直接用多项式乘法计算出来的.然后,我们把这种特殊形式的乘法连同它的结果作为公式.这里只是为后面学习乘法公式作准备,不必提它们是乘法公式,分散学生的注意力.当然,在讲解这个1题时,要讲清它们在合并同类项前的项数.
(4)例3是另一种形式的多项式的乘法,要讲清楚两个因式的特点,积与两个因式的关系.总之,要讲清楚这种特殊形式的两个多项式相乘的规律,使学生在计算这种类型的题目时,能够迅速地求得结果.如对于练习第1题中的
等等,能够直接写出结果.
一、教学目标
1.理解和掌握单项式与多项式乘法法则及其推导过程.
2.熟练运用法则进行单项式与多项式的乘法计算.
3.通过用文字概括法则,提高学生数学表达能力.
4.通过反馈练习,培养学生计算能力和综合运用知识的能力.
5.渗透公式恒等变形的和谐美、简洁美.
二、学法引导
1.教学方法:讨论法、讲练结合法.
2.学生学法:本节主要学习了多项式的乘法法则和一个特殊的二项式乘法公式,在学习时应注意分析和比较这一法则和公式的关系,事实上它们是一般与特殊的关系.当遇到多项式乘法时,首先要看它是不是的形式,若是则可以用公式直接写出结果,若不是再应用法则计算.
三、重点、难点及解决办法
(一)重点
多项式乘法法则.
(二)难点
利用单项式与多项式相乘的法则推导本节法则.
(三)解决办法
在用面积法推导多项式与多项式乘法法则过程中,应让学生充分理解多项式乘法法则的几何意义,这样既便于学生理解记忆公式,又能让学生在解题过程中准确地使用.
四、课时安排
一课时.
五、教具学具准备
投影仪或电脑、自制胶片、长方形演示纸板.
六、师生互动活动设计
1.设计一组练习,以检查学生单项式乘以多项式的掌握情况.
2.尝试从多角度理解多项式与多项式乘法:
(1)把看成一单项式时,
.
(2)把看成一单项式时,
.
(3)利用面积法
3.在理解上述过程的基础之上,引导学生归纳并指出多项式乘法的规律.
4.通过举例,教师的示范,学生的尝试练习,不断巩固新学的知识.对于遇到的特殊二项式相乘可利用特殊的公式加以解决,并注意一般与特殊的关系.
七、教学步骤
(一)明确目标
本节课将学习多项式与多项式相乘的乘法法则及其特殊形式的公式的应用.
(二)整体感知
多项式与多项式的相乘关键在于展开式中的四项是如何得到的,这里教师应注重引导学生细心观察、品味法则的规律性,实质就在于让一个多项式的每一项与另一个多项式的每一项遍乘既不能漏又不能重复.对特殊的多项式相乘可运用特殊的办法去处理
(三)教学过程
1.创设情境,复习导入
(1)回忆单项式与多项式的乘法法则.
(2)计算:
①②
③④
学生活动:学生在练习本上完成,然后回答结果.
【教法说明】多项式乘法是以单项式乘法和单项式与多项式相乘为基础的,通过复习引起学生回忆,为本节学习提供铺垫和思想基础.
2.探索新知,讲授新课
今天,我们在以前学习的基础上,学习多项式的乘法.
多项式的乘法就是形如的计算.
这里都表示单项式,因此表示多项式相乘,那么如何对进行计算呢?若把看成一个单项式,能否利用单项式与多项式相乘的
法则计算呢?请同桌同学互相讨论,并试着进行计算.
学生活动:同桌讨论,并试着计算(教师适当引导),学生回答结论.
【教法说明】多项式乘法法则,是两次运用单项式与多项式相乘的法则得到的.这里的关键在于让学生理解,将看成一个单项式,然后运用单项式与多项式相乘的法则进行计算,让学生讨论并试着计算,目的是培养学生分析问题、解决问题的能力,鼓励学生积极探索知识、善于发现规律、主动参与学习.3.总结规律,揭示法则
对于的计算过程可以表示为:
教师引导学生用文字表述多项式乘法法则:
多项式与多项式相乘,先用一个多项式的第一项乘另一个多项式的每一项,再把所得的积相加.
如计算:看成公式中的;-1看成公式中的;看成公式中的;3看成公式中的.运用法则中的每一项分别去乘中的每一项,计算可得:.
学生活动:在教师引导下细心观察、品味法则.
【教法说明】借助算式图,指出的得出过程,实质就是用一个多项式的“每一项”乘另一个多项式的“每一项”,再把所得积相加的过程.可以达到两个目的:一是直观揭示法则,有利于学生理解;二是防止学生出现运用法则进行计算时“漏项”的错误,强调法则,加深理解,同时明确多项式是单项式的和,每一项都包括前面的符号.这个法则还可利用一个图形明显地表示出来.
(1)这个长方形的面积用代数式表示为_____________.
(2)Ⅰ的面积为________;Ⅱ的面积为________;Ⅲ的面积为____ ____;Ⅳ的面积为_______.结论:即
学生活动:随着教师的演示,边思考,边回答问题.
【教法说明】利用图形的直观性,使学生进一步理解、掌握这一法则,渗透数形结合的思想,培养学生观察、分析图形的能力.
4.运用知识,尝试解题
例1 计算:
(1)(2)
(3)
解:(1)原式
(2)原式
(3)原式
【教法说明】例1的目的是熟悉、理解法则.完成例1时,要求学生紧扣法则,按法则的文字叙发“一步步”解题,注意最后要合并同类项.让学生参与例题的解答,旨在强化学生的参与意识,使其主动思考.
例2 计算:
(1)(2)
学生活动:在教师引导下,说出解题过程.
解:(1)原式
(2)原式
【教法说明】例2的两个小题是后面要讲到的乘法公式,但目前仍按多项式乘法法则计算,无需说明它们是乘法公式,此题的目的在于为后面的学习做准备.
5.强化训练,巩固知识
(1)计算:
①②
③④
⑤⑥
(2)计算:
①②③④⑤⑥。